Available online at www.sciencedirect.com

SCIENCE(lenECT'- Electronic Notes in
Theoretical Computer
Science

ELS ER Electronic Notes in Theoretical Computer Science 127 (2005) 141-156
www.elsevier.com/locate/entcs

New Object-Oriented PROGRES for
Specifying the Conceptual Design Tool
GraCAD

Janusz Szuba !

Real-Time Systems Lab
Darmstadt University of Technology
Merckstr. 25, D-64283 Darmstadt, Germany
Janusz.Szuba@es. tu-darmstadt. de

Abstract

This paper deals with the application of graph transformations for the specification of conceptual
design tools. We show how the graph rewriting system PROGRES is used for specifying the graph
part of the conceptual method for architects in which functional requirements of the building to be
designed are elicited by means of graph structures. The consistency of the specified requirements
and whether a design matches those requirements is verified with graph constraint checkers. We
consider how the new object-oriented extensions of the PROGRES language, i.e. packages and node
objects with redefinable methods can be used to achieve the required constraint monitoring and
preserving functions in the form of graph checker objects. The prototype for our method, called
GraCAD, is created with UPGRADE - the recently developed Java framework for developing
visual applications based on a PROGRES specification, and the commercial system for architects
ArchiCAD.

Keywords: PROGRES, CAD, ArchiCAD, Conceptual Design

1 Introduction

Designers, especially architects, very frequently use graph structures to repre-
sent the functional and spatial relations of the object to be designed. Based

1 Many thanks to Andy Schiirr for fruitful discussions and assistance in the paper prepara-
tion, and to the PROGRES and UPGRADE team for its support (in particular Bodo Kraft,
Galina Volkova, and Marita Breuer). This research was supported by European Research
Training Network “SegraVis” and Computational Engineering Center of TU Darmstadt.

1571-0661 © 2005 Elsevier B.V. Open access under CC BY-NC-ND license.
doi:10.1016/j.entcs.2004.12.032

http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

142 J. Szuba / Electronic Notes in Theoretical Computer Science 127 (2005) 141-156

on this observation, a new conceptual design method for buildings has been
created in which the functional requirements and constraints of the building
to be designed are specified by using graph structures. The consistency of
the specified requirements and whether the design meets the requirements is
verified by means of graph checkers. For prototyping the graph part of our
method we use the graph-rewriting system PROGRES [21] developed at the
RWTH Aachen, i.e. we use a kind of graph transformation-based approach for
knowledge representation purposes. The design tool GraCAD, which utilises
this method, can be seen as a conceptual pre-processor for a new generation of
CAD-tools. GraCAD was created with the usage of PROGRES UPGRADE
Framework [2] and the CAD design tool for architects ArchiCAD [1].

In [23] we used the PROGRES mechanisms of constraints and repair ac-
tions for specifying the constraint checks for the GraCAD method. However,
these mechanisms turned out to be still difficult to use. Moreover, the old
PROGRES specifications (i.e. before ver. 11) were not easily extendable and
adaptable to the new types of building and constraints. Therefore, we have
decided to avoid using constraints and repair action and use the new PRO-
GRES constructs of packages and methods, which allows for the creation of
more modular and clearer specifications. The main topic of this paper is the
usage of these new object-oriented features of PROGRES for specifying Gra-
CAD and presenting the new object-oriented style of specifying graph-based
tools.

The joint Polish-German research project “Graph-based tools for concep-
tual design in Civil Engineering” was the starting point for our research. This
project has now been completed, however the research is continued at the
RWTH Aachen in the direction of the specification of parameterizable knowl-
edge for buildings ([14],[15]), and at the TU Darmstadt (supported by Seg-
raVis!) with a main emphasis on the integration of UML activity and use
case diagrams with ArchiCAD. The results described in sections 2 and 4 can
be viewed as a further development of the research reported previously in [23]
and [24], i.e. combining, for the first time, graph transformation techniques
with a conceptual design approach for buildings, based on functionality analy-
sis. Section 2 gives a short description of our method. Section 3 shows how we
use the recently introduced PROGRES concepts of packages and methods to
specify the checkers of our method. Section 4 concerns the GraCAD prototype
(realizing the method) which was created with UPGRADE, the framework for
developing visual applications which use PROGRES graphs as their internal
data model, and the commercial CAD tool for architects ArchiCAD. Section

! European Research Training Network SegraVis - Syntactic and Semantic Integration of
Visual Modelling Techniques

J. Szuba / Electronic Notes in Theoretical Computer Science 127 (2005) 141-156 143

4 discusses related work, and the last section summarizes the new PROGRES
features.

2 Graphs in Supporting Conceptual Design

As mentioned previously architects very frequently use graphs to depict the
functional and spatial relations of designed objects. Furthermore, they use
control flow graphs, similar to UML activity diagrams, to show the order of
activities performed in the considered design object; i.e. — similar to software
engineers — architects follow a use case driven approach for requirements elic-
itation purposes (cf. [17]). Based on these observations, we have created a
method that addresses the conceptual phase of architectural design in which
the functional requirements and constraints for designed buildings are spec-
ified in the form of graph structures. In this method, UML use case and
activity diagrams are integrated with so-called area and room graphs, which
are then translated into a prototype design. One of the main advantages of the
graph-based design approach introduced thereby is the possibility to specify
domain-specific design rules and norms on area and room graphs in the form
of constraints on a very high level, and to derive the corresponding consis-
tency checking code automatically by using the graph transformation system
PROGRES. In the following, a short description of the method is presented.
Use case diagrams and area graphs are excluded from this description due to
lack of space. Details can be found in [23].

First, the architect defines scenarios for the usage of the building to be de-
signed in the form of activity graphs (UML activity diagrams). These activity
graphs model the most frequent and important behaviours of the users. By
creating scenarios in the form of activity graphs for various types of users, the
functionality of the object is considered from various points of view (from the
perspective of the client of the swimming pool, the lifeguard, etc.). Then the
architect decomposes the designed object into rooms. For this purpose, he/she
creates a room graph in which room nodes and relations between them like
accessibility, visibility, and adjacency are specified. Afterwards, activity nodes
from activity graphs are mapped onto room modes. Mapping activities onto
a given room node means that these activities are performed in the assigned
room. In this way a functional requirements’ graph for the building, consisting
of rooms, activities, and edges between them is created. Functional require-
ments defined in this way may be checked with respect to quite a number of
general or domain specific consistency rules. The PROGRES implementation
of such a checker (i.e. checking whether users are able to perform the activities
comfortably in the order imposed by the activity graph if the building has a

144 J. Szuba / Electronic Notes in Theoretical Computer Science 127 (2005) 141-156

Hile View Options Layout Demo Remove Insert Check PaperExample Unmatched

Transaction
@ 3 swimming ¢
[activi : ? @
f
EntryToBuilding Exit
—)entrv — Jexit

* /
i UsingToilet ¢ A
tilc etPurchase —yp)usingToiIetlf HairDrying

c*ketPurchaSE/ hairDrying
Undressing r f el
J . Dressing
undressing)dressing
‘ L f]
StoringClothes °
4 ClothesReclaim
)st;ranCIoth><‘)cIothesRecIaim
Showering= T UsingToilet
—)Showering"\ /" —)usingToiIetZ
Swimming
'—)swimming
[*
o] Ijswim.ﬁlwm ‘
Oyswirr | proorry LifeguardRoom [EEIE SwimmingPool
1 { communicating, swimming }
frrrd 1ifeguard]{gom / LR swPoolRoom
rrrxA Toilets
A) \ oy Apparatus e Toilets :r-.': [usingToilet1}
IrA FirstAidRoom |1 {3} 11 H{ usingToilet2 } L] toilets1
[LrrEd apparatus Lt toilets?
| ke firstAidRoom /
prrr Hall ;,uuu;, EntranceHall
o Showers +— [{ communicating } 11 [{ communicating }
{-5 { showering } L hall [mrrd entranceHall

] changingCabins

P

; frrrrs MainEntrance
prrrry ChangingRoom { entry, exit}
F-F { clothesReclaim, dressing, storingClothes, undressing} [ie¥] entrance
ted commonChangingRoom

L] showers
. . e Ticket Desk
o ChangingCabins / {-s { ticketPurchase }
[l _H{ dressing, undressing) Lo ticketDesk

[

Fig. 1. The GraCAD graph editor for specifying the functional requirements of the building to be
designed

structure matching the defined room graph) is presented in section 3.

Fig. 1 shows the GraCAD graph editor (based on PROGRES UPGRADE)
used to specify the activity diagrams and room graphs for the designed build-
ing. The upper right window of GraCAD shows the activity (graph) diagram
for a swimming pool client. The lower right window contains the room graph
for a swimming pool. In the presented room graph of the swimming pool,
only the room accessibility relation is shown. For every room in the room
graph, the identifiers of activities attached to a given room are listed in brack-
ets. After specifying consistent functional requirements, the architect creates
a prototype design/floor layout of the building.

J. Szuba / Electronic Notes in Theoretical Computer Science 127 (2005) 141-156 145

Fig. 2 shows the prototype created in the ArchiCAD environment. The
rooms are marked with the ArchiCAD element zone and than mapped onto
room nodes from the room graph. Afterwards, based on the geometrical el-
ements of the prototype, the relations between zone elements are computed.
The left hand side part of Fig. 2 shows the zone graph for the swimming pool
presented on the right hand part of the picture. In the zone graph, room ac-
cessibility and room adjacency relations are displayed. Due to the mapping of
zones into room nodes it is possible to verify (by checkers) whether the design
matches the room structure specified in the graph of functional requirements.
Details concerning the GraCAD graph editor and the ArchiCAD part of the
GraCAD prototype can be found in section 4.

SwimmingPool
184

Zone
LifeguardRoom
163

Z0nRACC

zoneAd] zongAcc

Zone
ChangingRooms
151 ging

Zome sonaact_s] 267
TipetDesk WaEntrance

Fig. 2. The ArchiCAD swimming pool design and the PROGRES zone graph for this building
computed by the GraCAD add-on

3 New PROGRES for GraCAD Checkers

For prototyping the graph part of GraCAD we use the PROGRES system. In
this section we show an example of a checker implemented with new PRO-
GRES language constructs, i.e. packages and methods for node classes/node
types. These constructs were introduced to support the modularization of
PROGRES specifications and simplify the reuse of specification fragments.
On the basis of the UML package concept, a module concept for PRO-
GRES (called package as well) was developed [20]. The PROGRES packages
allow us to conceal the implementation of transformations, queries, paths or
other definitions and improve the readability of the specification. Basically,
a package represents a container for various declarations. These declarations

146 J. Szuba / Electronic Notes in Theoretical Computer Science 127 (2005) 141-156

can have visibility flags. With the help of visibility flags every declaration
can be characterised with regard to its accessibility from other packages. We
distinguish between three visibility flags: public (marked in PROGRES as
“+7), protected (“#”) and private (“-”). An element marked with the vis-
ibility public can be accessed from any other package. Elements which are
protected can only be accessed from specialising packages. Private elements
cannot be accessed at all from other packages. Packages can be put into a
relation to other packages, like specialisation and import relations. The import
relationship extends the name space of the importing package. It is possible
to reference declarations of other packages in the importing package as soon
as they are marked as public. The specialisation relationship can reference the
same elements as the import relationship as long as they are either marked
protected or public. Furthermore, it is possible to specialise node class decla-
rations, i. e. a node class defined in the specialising package may inherit from
a node class defined in the specialised package. The import and specialisation
relationship itself can also have different visibilities. Details concerning the
package relation visibilities can be found in [16].

Fig. 3 shows the PROGRES package diagram and class diagram for the
GraCAD graph specification. In the graph schema view mode of the PRO-
GRES system, classes and packages are visible at the same time on the graph
schema but for the sake of clarity we have divided the schema into the pack-
age diagram and the class diagram. For the same reason we displayed only
selected packages, classes and relations. In the package diagram the import
relationship is indicated by the dotted arrow between the packages and spe-
cialization by the solid one. In the class diagram abstract classes (called in
PROGRES node classes) are marked as rectangles, concrete classes (called in
PROGRES node types) as rectangles with rounded corners.

The classes displayed in Fig. 3 form three UML layers:

(i) standard UML language layer with the meta-model of UML activity dia-
grams (umlactdiag package)

(i) extended UML layer for architectural conceptual design in general. This
layer consists of an activity diagram for buildings (implemented in buil-
dactdiag package) and a room graph (roomgraph package) which define
the functionality of a given building (building package)

(iii) extended UML for architectural conceptual design specific layer for a given
type of building (in our case for a swimming pool). This layer is defined
in swpoolactdiag, swpoolroomgraph, swpoolbuilding packages.

For every layer, graph constraint checkers can be defined. The package
buildingchecker consists of checkers for the second layer and swpoolbuildchecker

J. Szuba / Electronic Notes in Theoretical Computer Science 127 (2005) 141-156 147

for the third one. In the next paragraph, the classes and packages are described
in detail.

In the GraCAD specification for the swimming pool the following packages

are defined:

basic - consists of an abstract class Object which is the base class for Activity,
ActivityDiag, Room, RoomGraph, Building, Error classes. The Object class
has the hasChecker attribute which is a set of nodes of a type Checker. This
attribute contains checkers which are appropriate for a given node/object.
Those checkers are instantiated based on the meta (static) attribute check-
erTypes, which is a set of node types derived from the type Checker. The
attribute checkerTypes is redefined in the classes derived from the class Ob-
ject. The package basic and the class Object are not shown in Fig 3.

checker - consists of the abstract class Checker that is the base class for all
checkers, and the abstract class Error - the base class for all classes used
for marking errors by checkers.

umlactdiag - contains classes and edges used for representing UML activity
diagram, i.e. the abstract class Activity, concrete classes Start and Stop de-
rived from Activity, the abstract class ActivityDiag, and edges: next between
two Activities, hasActivity between ActivityDiag and Activity (indicating
which activities belong to a given activity diagram).

roomgraph - contains classes and edges used for representing the room struc-
ture graph of the building to be designed, i.e. Room (the room of the build-
ing to be designed), RoomGraph (the graph of rooms of the designed build-
ing) and edges: hasRoom between RoomGraph and Room (indicating which
rooms belong to a given room graph), roomAccess between two Rooms (if
between rooms r; and 75 is the roomAccess edge it means that r, is directly
accessible from 7).

buildactdiag - contains classes and edges for representing the activity dia-
gram for the designed building, i.e. abstract classes: BuildingActivity (in-
herited from Activity) which represents the activity performed in the de-
signed building, BuildActDiagram representing the activity diagram for the
designed building, the concrete class Communicating which represents the
communicating activity and the edge performedIn between BuildingActivity
and Room (if between a building activity a and a room r is the performedIn
edge, it means that the activity a is performed in the room 7).

building - consists of the Building class representing the designed building,
the actDiag edge between Building and BuildActDiagram indicating which
building activity diagrams belong to a given building, and roomGraph edge
between Building and RoomGraph indicating which room graphs belong to

148

J. Szuba / Electronic Notes in Theoretical Computer Science 127 (2005) 141-156

a) Standard UML
wmnlactdiag checker
FAY A
UML adapted to architectural
conceptual design modeliing
buildingchecker domain
.* . ‘A‘
buildactdiag |.< [.> roomgraph
7% 7%
swpoolactdiag swpoolroomgraph |
.‘7

or
te,
e +

-y .,

pool)

Boailedi "
B

specific UML

¥ (swil
layer extended with
building type specific knowledge

swpoolbmildchecker |

I

>.Im1dncmiagram|_p>

RetivityDiag |

a® -
roomGraph

d buildactdiag
-

.
~a

.t w

building

SwPoolBuilding

swpoolbuilding

- hasRoom

L
roomhccess
SwPoolRoomBraph

e | |()
T [

SwPoolActDiag

swpoolactdiag

next

hasActivity

Stop

)

factdiag

swpoolroomgraph

Room
A

roomgraph

perfornedin i'lﬂing.nr'tivij
Ry 4 +, buildactdiag
Rk .

.
»

0. L] ‘.
T b
[Entranceﬁall ' | ‘-’Eicket]]esk J
: L3
' "

[Wﬁmiﬂgi'ool)[Shovers J

=))

* .

[Ti.ckctPurchase) [EntrﬂoBuilding

swpoolroomgraph

swpoolactdiag

checker

x ¥,

A v,
. *y

U

[}\ctivity]irrnr) [NextEdg'eErrorJ

.
+
Emmr,- -J[}mm ;)

buildingchecker

Fig. 3. GraCAD graph schema: a) packages b) classes

a given building.

e swpoolactdiag contains activities performed by users in a swimming pool
building like Swimming, Dressing, Undressing, etc. (inherited from Buildin-
gActivity) and SwPoolActDiag (activity diagram for swimming pool) inher-

ited from BuildActDiagram.

J. Szuba / Electronic Notes in Theoretical Computer Science 127 (2005) 141-156 149

e swpoolroomgraph contains rooms specific for a swimming pool like Bath-
room, ChangingRoom, SwimingPool, etc. (inherited from Room) and Sw-
PoolRoomGraph (room graph for swimming pool) inherited from Room-
Graph.

o swpoolbuilding contains SwPoolBuilding (swimming pool building) inherited
from the class Building.

* buildingchecker contains two checkers for a building activity diagram: Act-
PerfChecker (activity performance checker) checks whether users are able to
perform the activities comfortably (details in the following paragraph), Ac-
tivity Checker which validates whether to every activity a room is assigned.
ActivityError and NextEdgeError classes inherited from Error are used ac-
cordingly by ActPerfChecker and ActivityChecker to mark errors.

In the presented class diagram only 2 checkers are shown but others can
be defined as well, for instance checking the order of activities in the activity
diagram (cf. [23]).

In the following part of this section the mechanism of PROGRES methods
is described and explained by the example of ActPerfChecker. This checker
verifies whether users are able to perform the activities comfortably in the
order imposed by the activity graph if the building has a structure matching
the defined room graph. In other words, if the next edge is between two
activities a; and ap then it should be possible to reach “conveniently” from
every room 1y attached to a1, to one of the rooms attached to the activity as.
“Conveniently” means that: (a) room 7 should be one of the rooms attached
to the activity ag or (b) from r it should be possible to access directly one
of the rooms attached to ay or (c¢) from r; it should be possible to access
indirectly through the sequence of communication rooms one of the rooms
attached to ay (communication room is a room with attached the activity
of a type Communicating). Let us look at the example in Fig. 2. The
activity with the identifier swimming can be conveniently performed after the
showering activity because the condition (¢) is fulfilled, i.e. from the showers
room (attached to the showering activity) it is possible to access indirectly
through the communication room hall the room swPoolRoom (attached to
the swimming activity). The activity ticketPurchase cannot be conveniently
performed after the activity entry because from the room entrance it is not
possible to reach directly or indirectly (through communication rooms) any
of rooms attached to the ticketPurchase activity, and entrance room is not
attached to the ticketPurchase activity either.

Up to the PROGRES version 10.3, defining classes in the object-oriented
sense as abstract data types with operations on them was not possible. The
classes could have possessed only attributes but not methods. In the latest

150 J. Szuba / Electronic Notes in Theoretical Computer Science 127 (2005) 141-156

node class Checker

intrinsic
key checkerId : string := "";
methods

transfommation + walidate;
transformation + repairBction

skip
end H

end;
Fig. 4. GraCAD specification - the Checker node class

PROGRES (i.e. version 11, cf. [16]), methods for node classes have been in-
troduced to obtain completely featured object-oriented classes. The formal
syntax of methods introduced in the latest PROGRES is mainly based on the
syntax for transformations and queries from the previous version. A new key
word methods (cf. Fig. 4) was introduced. After this word, the definition of
methods for a given class follows. A transformation method has almost the
same syntax as a “classic” transformation in PROGRES. It starts with the
keyword transformation, followed by a visibility flag (the same as for node
classes), the transformation’s identifier (i. e. name), an optional formal pa-
rameter list, and a qualifier which indicates whether this transformation is
specified to be partial or total and which also allows for parallel execution of
transformations. Besides transformation methods, query methods are avail-
able as well. The syntax of the query methods is very similar to the syntax of
transformation methods (cf. [16]). The biggest difference to “classic” trans-
formations is the optional transformation body. For methods we have now the
possibility to define abstract transformations, which can be implemented, i. e.
refined, later in a subclass of the corresponding node class. Within methods it
is permitted to use the keyword self which designates the particular instance
of the node this method is applied to.

The class Checker (Fig. 4) from the GraCAD specification consists of
two transformation methods wvalidate and repairAction. The transformation
repairAction has a defined body, the method wvalidate is an abstract transfor-
mation which must be defined in Checker’s subclasses. Fig. 5 shows the
PROGRES node type ActPerfChecker which is a subclass of the node class
Checker. In the section methods, the private method checkNextEdge is defined.
After the name of this transaction, the qualifier “*” follows. This leads to the
application of this transaction to all its matches in parallel. In the imple-
mentation of checkNextFEdge a PROGRES path expression connected defined
between two Room classes is used (Path declaration defines a derived binary
relationship between nodes and has the same elements as an edge type dec-
laration.). Two rooms 7 and 7, are in the relation connected when rq is the
same as 73 or 7y is connected with r, by the sequence of communication rooms.

J. Szuba / Electronic Notes in Theoretical Computer Science 127 (2005) 141-156 151

The connected path declaration is not shown in the paper due to lack of space.
The left hand side of the transaction checkNextEdge finds two activities (‘3,
‘4) of a type BuildingActivitiy connected by the next edge. Those activities are
connected by hasActivity edges with a diagram of a type BuildActDiag which
is linked to the self node by the hasChecker edge (The self node indicates
the object for which the method is defined.). The activity ‘3 is linked by the
performedIn edge with a room (‘6) of a type Room. The activity ‘3, ‘4 and the
room ‘6 cannot be connected to a node of a type NeztEdgeError adequately
with edges: activityl, activity2, room. The room ‘6 can not be linked with
the activity ‘4 by the path expression “connected & <-performedIn-". If such
a sub-graph is found, then the right hand side of the transaction is applied,
i.e. a node of a type NextEdgeError is created and linked to the nodes ‘3,
‘6, ‘4 adequately with edges activityl, activity? and room. If we apply this
rule to the inconsistency from our example, i.e. to the activities entry and
ticketPurchase, and the room entrance, and for those nodes NextEdgeError
has not been inserted yet, then an instance of the NextEdgeFError node will be
created and linked appropriately with entry, ticketPurchase and entrance.
Fig. 6 shows the last part of the considered checker, i.e. the redefinition

node type ActPerfChecker : Checker
redef intrinsic
checkerId := "ActivityPerformanceChecker";
wethods
transformation - checkNextEdge *

. *2 : BuildActDiag |_J=ascheckﬂr+ :
H hashctivi ThasActivity '

|3 : Buildingactivity | >I‘4 : BuildingActivity

activity activity2 .
o :
oo :
connected .
6 : Roan <-performedin H
F e EEEEEEEsEEESsEESEEEssssEsssssssssssSEsssss=sssg
= CE s =
H hasActivity asActivity '
: next
. 3 ="3 > 4 =4
H activityl activi
. T
pexformedin |5 NextEdgeError I

Fig. 5. The PROGRES class ActPerfChecker with the method checkNextEdge

152 J. Szuba / Electronic Notes in Theoretical Computer Science 127 (2005) 141-156

section of the ActPerfChecker class. The Redefinition section was introduced
in PROGRES 11.0 and is used for redefining existing methods or implement-
ing abstract ones. The redefinition section of the class ActPerfChecker con-
sists of two methods: walidate, which implements the wvalidate method of the
Checker class and repairAction, which redefines the method repairAction of the
Checker class. The transaction checkNextEdge (presented above) and elimi-
nateNextEdgeError (not shown in the paper due to lack of space) are invoked
respectively in the validate and repairAction methods.
methods redef
redef transformation validate =
self.checkHextEdge
end;
redef transformation repairfction =
self.eliminatelNextEdgeError
end;
end;

Fig. 6. The PROGRES class ActPerfChecker - method redefinition section

4 New GraCAD Based on PROGRES UPGRADE

In GraCAD, the prototype for our method, the graph editor for specifying
functional requirements for the building to be designed (Fig. 1) is created
with the usage of the tool UPGRADE (Universal Platform for GRAph-
Based DEvelopment) [2] developed at the RWTH Aachen. UPGRADE is
a Java-based framework for developing visual applications which use PRO-
GRES graphs and graph transformations as their internal data model. Archi-
CAD 8.0, a commercial system for architects, serves as a CAD basis of our
prototype. The graph editor is integrated with an ArchiCAD add-on devel-
oped with ArchiCAD General Development Kit 4.3. The editor communicates
with this add-on using sockets. In the next couple of months in cooperation
with architects we are going to find useful checkers for use case diagrams and
implement them in the GraCAD prototype, too.

The right part of Fig. 2 (in section 2) shows a building designed in the
ArchiCAD environment. The rooms of this building are marked with zone
elements. The left part of the picture shows the graph of zones for this build-
ing. Relations between zones such as accessibility and adjacency are computed
within the add-on with the use of ArchiCAD Development Kit mechanisms
giving access to the geometrical properties of ArchiCAD elements. Then,
appropriate PROGRES transactions are invoked which create the graph of
ArchiCAD zones. Having the graph of zones we can check whether this graph
matches the room graph specified in the editor of functional requirements. In

J. Szuba / Electronic Notes in Theoretical Computer Science 127 (2005) 141-156 153

the near future we are going to specify the procedure for computing relations
between zones with the usage of PROGRES and evaluate if the PROGRES
system could be also useful in this field.

5 Related Work

Pioneered by N. Chomsky [6], the linguistic (grammar-based) approach to
world modelling has been applied in many areas. The core idea in this method-
ology is to treat certain primitives as letters of an alphabet and to interpret
more complex objects and assemblies as words or sentences of a language based
upon the alphabet. Rules governing the generation of words and sentences de-
fine the grammar of the considered language. In terms of words, modelling
such a grammar generates a class of objects that are considered to be plausible.
Thus, grammars provide a very natural knowledge representation formalism
for computer-based tools that should aid design.

Since G. Stiny [22] developed shape grammars, many researchers have
shown how such grammars allow the architect to capture essential features
of a certain style of buildings. However, the primitives of shape grammars
are purely geometrical, which restrict their descriptive power. Substantial
progress was achieved after graph grammars were introduced and developed
(cf. e.g. [19]). Graphs are capable to encode much more information than
linear strings or shapes. Hence, their applicability for CAD-systems was im-
mediately appreciated [10].

A special form of graph-based representation used for design purposes has
already been developed by E. Grabska [11] in 1994. Later on, Grabska’s model
served as the basic knowledge representation scheme in research reported at
conferences in Stanford [12], Ascona [4], and Wierzba [3]. It turned out that by
introducing an additional kind of functionality graphs into Grabska’s model,
conceptual solutions for the designed object can be conveniently reasoned
about. The additional functionality analysis of houses, as the starting point
for the conceptual design, has been proposed by several researchers (compare,
e.g. [5], [7]). Such a methodology allows the designer to detach himself from
details and to consider more clearly the functionality of the designed object
incorporating the constraints and requirements to be met, and the possible
ways of selecting optimum alternatives.

In the initial phase of the Polish-German project we have considered the
use of the FUJABA [9] and AGG [8] graph transformation systems. Finally,
in our research project we have decided to use PROGRES because of the
language constructs such as derived attributes, constraints and repair actions,
restrictions, and path expressions, which are available in PROGRES, but not

154 J. Szuba / Electronic Notes in Theoretical Computer Science 127 (2005) 141-156

in FUJABA and AGG, and are interesting for specifying graph checkers. PRO-
GRES also provides a backtracking mechanism (not available in the other two
tool mentioned above) which was used in the project for floor layout generation
[13].

The structure of all, or almost all, buildings is hierarchical, therefore, it
seems that for representing buildings, the graph transformation system using
hierarchical graphs would be useful. However none of the tools mentioned
above supports graph transformations on hierarchical graphs. In the past
the graph model of AGG was the graph structure of labelled and attributed
hierarchical graphs, but unfortunately this model was changed to directed
graphs.

In the research of the RWTH AAchen group concerning the usage of the
graph rewriting system PROGRES in the area of conceptual design of build-
ings ([14], [15]), the elicitation phase is skipped and the consistency of a de-
signed building is verified based on the parameterizable graph knowledge spec-
ified by a knowledge engineer. In our case we check whether the object to be
designed fulfills the graph of requirements specified by a designer in the elic-
itation phase. The consistency checks are not implemented in ArchiCAD (as
in [14], [15]), but are a part of the UPGRADE prototype (specified in PRO-
GRES). The main focus of our work is the transition from the knowledge about
the intended use of a building (use cases, activity diagrams, room graphs) to
the conceptual design (with the use of PROGRES). In [14] and [15] the main
focus is put on the specification of parameterizable graph knowledge for build-
ings. Therefore, at first glance those two approaches seem to complement each
other and it appears that they could be combined, but the differences on a tech-
nical level makes such a combination rather difficult (fixed domain knowledge
in our PROGRES specification versus generic parameterized specification).

6 Summary

New PROGRES constructs, i.e. packages and methods introduce modular-
ization, extensibility, and reusability of PROGRES graph specifications. The
specifications created with the usage of the mechanisms listed above are clearer
and simpler. The constructions like (1) constructors (2) method overloading
(3) function methods are currently not available. The reasons for not introduc-
ing 1-3 into PROGRES are discussed in detail in [16], but from the PROGRES
user’s point of view, introducing all four constructs would simplify creating
specifications in many cases. In comparison to the old tk/tcl based PROGRES
graph browser, which we used earlier, PROGRES UPGRADE Framework is
much more flexible and allows the creation of complex applications based

J. Szuba / Electronic Notes in Theoretical Computer Science 127 (2005) 141-156 155

on a PROGRES specification. But unfortunately the current version of UP-
GRADE does not support the recently introduced features of PROGRES, i.e.
it is not possible to call a transaction method for a given node displayed in
the application built with UPGRADE. Adding such functionality would sim-
plify creating UPGRADE applications considerably. The essential advantage
of UPGRADE is that the prototype of visual application generated by this
framework for a given PROGRES specification is Java-based. Thus, a user
familiar with the Java language can modify the prototype easily.

To summarize, we have presented how the recently introduced extensions
of the graph transformation system PROGRES, i.e packages and methods,
can be utilized for the specification of constraint checking tools, in particular
the conceptual design tool GraCAD. This style of specification, combining
object orientation and graph transformations, seems to be very intuitive and
useful for specifying graph checkers. The presented modelling method can
be adapted by other tools combining the above mentioned paradigms like
FUJABA or AGG too.

References

[1] ArchiCAD 8.0 Reference guide, Graphisoft, Budapest, 2002

[2] Bohlen, B., Jager, D., Schleicher, A., Westfechtel B.: UPGRADE: A Framework for Building
Graph-Based Interactive Tools, Proceedings International Workshop on Graph-Based Tools
(GraBaTs 2)0()2), Barcelona, Spain, Electronic Notes in Theoretical Computer Science, vol. 72,
no. 2 (2002

[3] Borkowski, A. (ed.): Artificial Intelligence in Structural Engineering, WNT, Warszawa (1999)

[4] Borkowski, A., Grabska, E.: Converting function into object. In: I. Smith, ed., Proc. 5th EG-
SEA-AI Workshop on Structural Engineering Applications of Artificial Intelligence, LNCS
1454, Springer-Verlag, Berlin (1998), 434-439

[5] Borkowski, A., Grabska, E., Hliniak, G.: Function-structure computer-aided design model,
Machine GRAPHICS & VISION, 9, Warszawa (1999), 367383

[6] Chomsky, N.: Aspects of Theory of Syntax, MIT Press, Cambridge (1965)

[7] Cole Jr., E.L.: Functional analysis: a system conceptual design tool, IEEE Trans. on Aerospace
& Electronic Systems, 34 (2), 1998, 354-365

[8] Ermel, C., Rudolf, M., Taentzer, G. The AGG Approach: Language and Enviroment, Handbook
of Graph Grammars and Computing by Graph Transformation, volume 2: Applications,
Languages, and Tools, chapter 14. World Scientific, Singapore (1999), 551 - 603

[9] Fischer, T., Niere, J., Torunski, L., Ztindorf, A.: Story diagrams: a new graph rewriting language
based on the Unified Modelling Language and Java, In: G. Rozenberg, ed., Proc. of TAGT 98
(Theory and Application of Graph Transformations), LNCS 1764, Springer-Verlag, Berlin,
1999, 296-309

[10] Gottler, H., Giinther, J., Nieskens, G.: Use graph grammars to design CAD-systems! 4th
International Workshop on Graph Grammars and Their Applications to Computer Science,
LNCS 532, Springer-Verlag, Berlin (1991), 396-410

156 J. Szuba / Electronic Notes in Theoretical Computer Science 127 (2005) 141-156

[11] Grabska E.: Graphs and designing. In: H. J. Schneider and H. Ehrig, eds., Graph
Transformations in Computer Science, LNCS 776, Springer-Verlag, Berlin (1994), 188-203

[12] Grabska, E., Borkowski, A.: Assisting creativity by composite representation, In: J. S. Gero and
F. Sudweeks eds., Artificial Intelligence in Design’96, Kluwer Academic Publishers, Dordrecht
(1996), 743-760

[13] Grabska, E., Palacz, W.: Floor layout design with the use of graph rewriting system Progres,
In: M. Schnellenbach-Held, H. Denk (Eds.), Proc. 9th Int. Workshop on Intelligent Computing
in Engineering, 180, VDI Verlag, Diisseldorf (2002), 149-157

[14] Kraft B., Meyer O., Nagl M.: Graph technology support for conceptual design in Civil
Engineering, In: M. Schnellenbach-Held, H. Denk (Eds.), Proc. 9th Int. Workshop on Intelligent
Computing in Engineering, 180, VDI Verlag, Diisseldorf (2002), 1-35

[15] Kraft, B., Nagl M.: Parameterizable Specification of Conceptual Design Tools in Civil
Engineering, in [18], 90-103

[16] Miinch, M.: Generic Modelling with Graph Rewriting Systems, Ph. D. thesis, RWTH Aachen,
Aachen (2002)

[17] Neufert, E.: Bauentwurfslehre, Vieweg & Sohn, Braunschweig-Wiesbaden (1992)

[18] Pfaltz, J. L., Nagl, M., Bohlen, B. (Eds.): Applications of Graph Transformation with Industrial
Relevance Proc. 2nd Intl. Workshop AGTIVE’03, Charlottesville, USA, 2003, LNCS 3062,
Heidelberg: Springer-Verlag (2004)

[19] Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation,
World Science, Singapore (1997)

[20] Schiirr, A., Winter, A. J.: UML Packages for Programmed Graph Rewriting Systems, in: Proc.
TAGT’98 - Theory and Application of Graph Transformations, Paderborn, Germany, Nov.
1998, LNCS, Berlin: Springer-Verlag (2000), 396-409

[21] Schiirr, A., Winter, A., Ziundorf, A.: Graph grammar engineering with PROGRES. Proc. 5th
European Software Engineering Conference (ESEC’95), W. Schéafer, P. Botella (Eds.), LNCS
989, Springer-Verlag, Berlin (1995), 219-234

[22] Stiny, G.: Introduction to shape and shape grammars, Environment and Planning B: Planning
and Design, 7, 1980, 343-351

[23] Szuba, J., Ozimek, A., Schiirr, A.: On Graphs in Conceptual Engineering Design, in [18], ,
75-89

[24] Szuba, J., Schiirr, A., Borkowski, A.: GraCAD - Graph-Based Tool for Conceptual Design, In:
A. Corradini, H. Ehrig, H.-J. Kreowski, G. Rozenberg eds., First International Conference on
Graph Transformation (ICGT 2002), LNCS 2505, Springer-Verlag, Berlin (2002), 363-377

	Introduction
	Graphs in Supporting Conceptual Design
	New PROGRES for GraCAD Checkers
	New GraCAD Based on PROGRES UPGRADE
	Related Work
	Summary
	References

