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a b s t r a c t

In this paper we study dualities of graphs and, more generally,
relational structures with respect to full homomorphisms, that
is, mappings that are both edge- and non-edge-preserving. The
research wasmotivated, a.o., by results from logic (concerning first
order definability) and Constraint Satisfaction Problems. We prove
that for any finite set of objectsB (finite relational structures) there
is a finite duality with B to the left. It appears that the surprising
richness of these dualities leads to interesting problems of Ramsey
type; this is what we explicitly analyze in the simplest case of
graphs.

© 2009 Elsevier Ltd. All rights reserved.

0. Introduction

Wewill illustrate the motivation and the type of results to be presented on the simple example of
finite binary relations (which may be thought of as directed graphs). Given such relations G = (X, R)
and G′ = (X ′, R′) a mapping f : X → X ′ is said to be a homomorphism G→ G′ if

(x, y) ∈ R⇒ (f (x), f (y)) ∈ R′.

Homomorphisms capture many combinatorial properties of graphs and relations, see [8]. Thus for
instance the k-colorability of a graph can be reformulated as the existence of a homomorphism
G→ Kn where Kn is the complete symmetric graph without loops.
The classes

{G | there is a homomorphism f : G→ B} (∗)
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with a fixed B are of particular interest (one often speaks of B-colorings). More generally, one can
consider n-ary relations R, R′ and the homomorphisms satisfying

(x1, . . . , xn) ∈ R⇒ (f (x1), . . . f (xn)) ∈ R′ (∗∗)
or the relational structures (Rt)t∈T , (R′t)t∈T (see 1.2 below), and the homomorphisms f satisfying (∗∗)
for the relations Rt , R′t , t ∈ T . The set (∗) represents the Constraint Satisfaction Problem (briefly, CSP
— see, e.g. [7,9] and literature quoted there). This is why we use the notation

CSP(B) for {G | there is a homomorphism f : G→ B}.
The class CSP(B) can be represented in a complementary way by forbidding homomorphisms,

namely as
Forb(A) = {G | there is no homomorphism f : A→ Gwith A ∈ A}

(it suffices to take A = {A | there is no homomorphism f : A → B}). We are interested in the cases
where such aA can be chosen finite.
If we have such a finiteAwe speak of a finite duality (first defined in [15])

Forb(A) = CSP(B).
Finite dualities in binary relations (graphs) and standard homomorphisms do not always exist
(consider for example the class of all 3-colorable graphs: the set of minimal forbidden relations is
necessarily infinite and coincides with that of the so called 4-critical graphs).
They have been recently studied from the logical point of view, and also in the optimization (mostly

CSP) context. The following has been proved (as a combination of results of [2,16]):

Theorem. Let B be a finite binary relation. Then the following statements are equivalent.
(i) The class CSP(B) is first order definable;
(ii) B has finite duality; explicitly, there exists a finite set A such that Forb(A) = CSP(B);
(iii) Forb(A) = CSP(B) for a finite set A of finite oriented trees.
Similar theorems hold more generally. Finite dualities for finite relational structures are well

characterized, and it can be shown that they are abundant (see e.g. [5,11,16,17], or [10]).
The constraints can be sometimes determined by another choice of special maps like for instance

the full homomorphisms satisfying
(x1, . . . , xn) ∈ R⇔ (f (x1), . . . , f (xn)) ∈ R′

(these are what we will be concerned with in this paper; it should be noted that the CSP for full
homomorphisms of binary relations has been discussed in the already mentioned [7], and in [4]).
Let us note that the problem of finite dualities of algebras and their homomorphisms has a

negative answer: there is no non-trivial one [12]. Therefore it may come as a surprise that for the
full homomorphisms of relational systems, on the contrary, the answer is always positive (although
homomorphisms of algebras seem to be structurally similar: for instance if f is a one–one mapping,
then the requirement to be a homomorphism is equivalent to

x = αi(x1, . . . , xni)⇔ f (x) = α
′

i(f (x1), . . . , f (xni)).
That is, we will prove (Theorem 3.3) that for every finite system of relational objects (sets with
relational structures of a finite type)B there is a finite systemA of relational objects such that

Forbfull(A) = CSPfull(B)

(where the subscript ‘‘full’’ emphasizes that we are concerned with full homomorphisms).
For binary relations such a result appeared already in [4] and [7] (in [7] one forbids subgraphs

instead of homomorphisms, but these two types of prohibition are closely related).
The paper is organized as follows. In Section 1 we review the basic definitions. We treat the

problems in a fairly general categorical setting; this also explains our detailed exposition in this
introduction. In Section 2 we consider the dualities still in the abstract way, and in Section 3 we prove
ourmain result (Theorem 3.3). In Sections 4 and 5we deal with the binary relations and thenwith the
even more special classes of undirected graphs; in particular we have here a procedure that produces
(albeit not very effectively) finite ‘‘left-hand sides’’ to the CSP (B)’s.
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1. Preliminaries

1.1

Wewill be concerned with very special categories of a combinatorial nature. In particular, we will
typically assume the following properties.
(bi-LocFin) The category is bi-locally finite, that is, for any object A there are (up to isomorphism) only

finitely many monomorphisms B→ A and only finitely many epimorphisms A→ B.
(wFac) The category has aweak (epi-mono) factorization, that is, every morphism f can be written

as f = m · ewithm a monomorphism and e an epimorphism.
(Ch) The category has choice, that is, every epimorphism is a retraction.

Monomorphisms B → A, or just the B in such monomorphisms, will be sometimes referred as
subobjects of A.
Only basic facts and notions from category theory (monomorphisms, epimorphisms, retractions

and coretractions, products) are assumed; see, for instance, the opening chapters of [13].

1.2

An n-ary relation on a set X is a subset R ⊆ Xn, and a mapping f : X → Y is a homomorphismwith
respect to R, S if

(x1, . . . , xn) ∈ R ⇒ (f (x1), . . . , f (xn)) ∈ S.

The mappings with the (much) stronger property

(x1, . . . , xn) ∈ R ⇔ (f (x1), . . . , f (xn)) ∈ S

will be called full homomorphisms.
A (finite) type is a finite collection∆ = (nt)t∈T of natural numbers, and a relational structure of type

∆ on X is a collection R = (Rt)t∈T where the Rt are nt-ary relation on X; (X, R) is then referred to as a
relational object. A (full) homomorphism f : (X, R = (Rt)t∈T )→ (Y , S = (St)t∈T ) is a mapping that is a
(full) homomorphism with respect to Rt , St for each t ∈ T .
The category of all relational objects of type∆ and full homomorphisms will be denoted by

Relfull(∆).
The category of undirected graphs (resp. connected undirected graphs)with full homomorphismswill
be viewed as a full subcategory of Relfull((2)); that is, the set of edges is represented as a symmetric
antireflexive binary relation. It will be denoted by

Graphfull resp. ConnGraphfull.

Note that the mentioned categories satisfy all the properties from 1.1.

1.3

With a category C we will associate the preordered class C̃ = (̃C,→) of the objects from C with
the preorder

A→ B ≡df ∃f : A→ B in C.

Thus, for a setA of objects of C we have the increasing and decreasing sets

↑ A≡df {C ∈ C | ∃A ∈ A A→ C}, ↓ A≡df {C ∈ C | ∃A ∈ A C → A}.

We will write

A ∼ B if A→ B and B→ A

and speak of∼-equivalence classes or simply of equivalence classes.
The fact that there is no f : A→ Bwill be indicated by

A B.
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1.4

An object A of a category C is said to be a core if each f : A→ A is an isomorphism.

Lemma. Let C satisfy (bi-LocFin), (wFac), and (Ch). Then
1. the sets C(A, B) of morphisms A→ B are (up to isomorphism) finite, and
2. an object A in C is a core iff there is no proper (that is, non-isomorphic) retraction out of A.

Proof. 1 is trivial.
2: If A is a core and r : A → B is a retraction, with r · m : B → B identical, then we have that

m · r : A→ A is an isomorphism and hence also r .
Now suppose that f : A→ A is not an isomorphism. If the e in the decomposition f = me (mmonic

and e epic) is not an isomorphism then we have found a proper retraction with source A. So suppose
that e is an isomorphism, so that f is a monomorphism. By 1 there are integers n, k > 0 such that f n+k
is equivalent to f n, say f nh = f n+k for an isomorphism h. Since f n is a monomorphism, f k = 1. But
then f is both the left factor of an epimorphism and the right factor of a monomorphism, and hence
it is itself both. And in a category with (Ch), this implies that f is an isomorphism. �

Proposition 1.5. If a category C satisfies (bi-LocFin), (wFac), and (Ch) then each ∼-equivalence class
contains (up to isomorphism) exactly one core.

Proof. If two cores A and B are equivalent then they are, trivially, isomorphic.
Now let A be any object. Consider the classM of all the coretractions m : Am → A and (pre)order

it by m ≺ n iff there is an f such that m = nf . By (bi-LocFin),M is, up to isomorphism, finite and
hence there is anm ∈Mminimal in≺. Then Am cannot admit a proper retraction Am → B, for such a
Bwould be smaller in≺, and hence it is a core by 1.4. �

Proposition 1.6. Let C satisfy (bi-LocFin), (wFac) and (Ch). Then
1. if A is a core then every A→ B is a monomorphism, and
2. for every A and every property P satisfied by A there exists an A0 → A minimal in→ such that it

still satisfies P .

Proof. 1. Set, by (wFac),

f = (A
e

−−−−→ C
m

−−−−→ B).

By (Ch) e is a retraction an by 1.4 it is an isomorphism.
2. By 1 and (bi-LocFin) we have, in→, under each object only finitely many ∼-classes. Hence we

have minimal objects with any property Q(B) that is satisfied by some object (here: Q(B) ≡‘‘B→ A
and P (B)’’). �

Remark 1.6.1. Note that in the categories from 1.2, monomorphisms are precisely the embeddings of
induced objects. Thus, searching for objects smaller then a given one can be restricted to its subobjects.

2. Dualities and Ramsey lists

In this section, C is a fixed category. Starting with 2.3.1 we will require some special properties;
this will be then explicitly stated.

2.1

LetA be a subclass of the class of objects of C. Write

X → A for ∃A ∈ A, X → A,
A→ X for ∃A ∈ A, A→ X,
X A for ∀A ∈ A, X A,
A X for ∀A ∈ A, A X .
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Set
Forb(A) = {X | A X}, CSP(B) = {X | X → B} and N (A) = {X | X A}.

A finite duality in C is a coupleA,B of finite subsets of objects of C such that
A X iff X → B, that is, Forb(A) = CSP(B).

Proposition 2.2. We have

N (B) X iff X → B

and

A X iff X → Forb(A).

In other words,

Forb(N (B)) = CSP(B) and Forb(A) = CSP(Forb(A)).

Proof. The desired conditionA X iff X → B coincides in the general setting of a preordered class
(P,≤)with the equality

P\ ↑ A =↓ B.

Now we have Forb(A) = P \ A and N (B) = P\ ↓ B. Thus P \ (↑ N (B)) = P \ (P\ ↓ B) =↓ B,
and P\ ↑ A =↓ (P\ ↑ A) =↓ Forb(A). �

2.3

An object Awill be called criticalwith respect to a class of objectsB if
• it is a core,
• A B, and
• if A′ → A A′ then A′ → B.

Thus, since we can restrict ourselves to cores, by 1.6 the third condition amounts to requiring that
for every proper subobject A′ of A there is a B ∈ B with A′ → B.
Set

N0(B) = {X ∈ N (B) | X critical w.r.t.B}.
We have

Proposition 2.3.1. If C is a category satisfying (bi-LocFin), (wFa) and (Ch), then

N0(B) X iff X → B.

Proof. Use 2.2 and 1.6.1: there is an A ∈ N (B)with A→ X iff there is such an A inN0(B). �

2.4

The Propositions in 2.2 and 2.3.1 are not necessarily finite dualities, since neither Forb(A) nor
N (A) nor N0(A) is necessarily finite just because A is finite. However, we will see that in the
categories we are interested in, a finite B can always be extended to a finite duality Forb(A) =
CSP(B). This leads to the following definition.

2.5

A collection of coresA = {A1, . . . , An} is said to be a Ramsey list, or, briefly, to be Ramsey, if there
is a finite setF of objects of C such that for each core X that is not isomorphic with an object fromF ,
some of the Ai is isomorphic to a subobject of X . (The reader can consult [14,6] for general background
of Ramsey theory.)
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Proposition 2.5.1. Let C satisfy (bi-LocFin), (wFac) and (Ch). Then a finiteA is Ramsey iff there is a finite
duality

A X iff X → B.

Proof. If there is such a duality then it suffices to take for F the set of all subobjects of the elements
ofB.
On the other hand, ifA is Ramsey thenA X iff

X → Forb(A) = X → {X | A X} = X → {X | A X and X ∈ F }. �

Note. Recall that a down-set in a preordered set (X,≤) is anM ⊆ X such that x ≤ y ∈ M implies
x ∈ M . Proposition 2.5.1 can be reformulated by stating thatA is Ramsey iff the downset Forb(A) in
(C,→) is finitely generated.

3. The category of relational systems

3.1. Convention

In this section we will deal with the finite dualities in Relfull(∆). Just to avoid too many indices we
will present the proof in 4.3 as if for one n-ary relation. If one reads nt for n and Rt for every relation
constituting the relational system, and if one does everything simultaneously, one obtains correctly
the general result.

3.2

If B = (X, R) is an object of Relfull(∆)write X = XB, R = RB.

Proposition. Let B be a finite set of objects of Relfull(∆). Let ∆ = (nt)t∈T and let m > maxt nt . Then,
with possibly finitely many exceptions, every A critical with respect to B can be embedded into an object
of Relfull(∆) carried by Xm where

X = XB ∪ {ω}

for some B ∈ B and ω 6∈ XB.

Proof. Consider anA criticalwith respect toB. For every a ∈ A there is aBa ∈ B such thatA\{a} → Ba.
If A is sufficiently large, there are distinct a1, . . . , am such that the Bai coincide. Denote B = Bai the
common value.
Since A is a core, it suffices to find a full homomorphism from A into an object as stated.
Recall the convention 3.1. For every i = 1, . . . ,m there is a full homomorphism

fi : A \ {ai} → B.

Set

XB+i = X (= XB ∪ {ω}) and XA+i = XA

and define

f +i : XA+i → XB+i

by setting f +i (x) = fi(x) if x 6= ai, and f
+

i (ai) = ω.
Now put

(y1, . . . , yn) ∈ RB+i iff either (y1, . . . , yn) ∈ RS or at least one of the yj’s is ω.

Further define the relation for A+i by

(x1, . . . , xn) ∈ RA+i iff (f +i (x1), . . . , f
+

i (xn)) ∈ RB+i ,
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thus making each

f +i : A
+

i → B+i
a full homomorphism. Furthermore, it is obvious that the maps

f̃i : A→ B+i
defined by the same formula are homomorphisms, albeit not full, and hence we have a homomor-
phism

f : A→
m∏
i=1

B+i

defined by requiring pi · f = f̃i for the natural projections.
Now this f is full. Indeed, let (f (x1), . . . , f (xn)) be in the relation of the product. Then for every i,

(f +i (x1), . . . , f
+

i (xn)) = (pif (x1), . . . , pif (xn)) ∈ RB+i .

Sincem > n there exists an i such that none of the xj’s is ai, hence

(f +i (x1), . . . , f
+

i (xn)) = (fi(x1), . . . , fi(xn)) ∈ RB.

Since fi is full, the statement follows. �

3.3

Thus,N0(B) is finite and we obtain as an immediate consequence

Theorem. In Relfull(∆) there exists for every finite set of objectsB a finite system of objectsA and a finite
duality

A X iff X → B.

3.4

Let us briefly discuss the inverse problem: given a finite A, does there exists a finite B such that
Forb(A) = CSP(B)? The answer is in general negative. For instance, in connected graphs there are
only four suchA containing less then three objects — see 5.3.1 and 5.4.
Nevertheless, we can isolate a necessary condition. The key to this is a definition of an ‘‘unavoid-

able’’ set of ‘‘complete systems’’.
Let (X, <) be a linearly ordered set. Let (a1, . . . , ak), (b1, . . . , bk) be two k-tuples of elements of

X . We say that these tuples are equivalent if there exists a monotone (with respect to <) mapping
ι : {a1, . . . , ak} −→ {b1, . . . , bk} such that ι(ai) = bi for every i = 1, . . . , k. This equivalence will
be denoted by∼. The equivalence classes of∼ are called types (of the arity k). A type σ ′ is the mirror
image of σ if σ ′ corresponds to the tuple (ak, . . . , a1).
Let Σ be a set of order types (a type-set). By KΣn we denote the following relational object (X, R):

X = {1, . . . , n} and the relation structure consists of all tuples of X with a type σ ∈ Σ (with respect
to natural ordering of X). KΣn is called a complete object (with type setΣ).
The type-set Σ and the complete object KΣn are said to be trivial if (for every n) the object K

Σ
n is

full homomorphism equivalent to the singleton complete object KΣ1 . Note that there are many trivial
type-sets (2|T | in Relfull(∆)with |∆| = |T |).

Lemma. Let Σ,Σ ′ be sets of types. Then KΣm −→ KΣ
′

n iff one of the following possibilities occur:
(i) Σ = Σ ′ is a trivial type-set;
(ii) m ≤ n and either Σ = Σ ′ or Σ ′ is the mirror image of Σ .

Proof. This follows by observing that from any non-trivial type-setΣ we can reconstruct the ordering
of X (for any complete object KΣX on X). �
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Finally, we say that a set Ξ of type sets is a majorizing set (in Relfull(∆)) if for every non-trivial
type-setΣ (of relations in Relfull(∆)) there exists a setΣ ′ ∈ Ξ such that eitherΣ = Σ ′ orΣ ′ is the
mirror image ofΣ .
We have the following

Proposition. For a finite set A of objects of Relfull(∆) the following holds:
(i) If there exists B ∈ Relfull(∆) such that Forb(A) = CSP(B); then A contains a set of non-trivial
complete objects with majorizing set of set-types.

(ii) For every set A with majorizing order types there exists a finite set A′ of non-trivial objects such that
Forb(A ∪A′) = CSP(B) for some B.

Proof. (i): Suppose to the contrary. This equivalently means that there exists a type set Σ distinct
from all the non-trivial set-types of all complete (arbitrarily ordered) objects in A. As any subobject
of any complete object KΣn is again a complete object with the same set-type we obtain that, using
preceding lemma, that there is no finite duality withB.
(ii): LetΞ be amajorizing set of set-types. Let n be themaximal order (universum size) of an object

in A. Assume Forb(A) is non-empty and let B ∈ Forb(A). Put A′ = N0(B). A′ is a finite set by 3.3
and clearly Forb(A ∪A′) = CSP(B). �

Remark. We may choose B as the disjoint union of nontrivial complete objects KΣn−1 for K
Σ
n ∈ A to-

getherwith the trivial forbidden objects inA. Then the complete objects in Forb(A) and Forb(A∪A′)
coincide. The structure of the non-complete Ramsey lists is more complex and it will be investigated
in the next sections.

On the other side, by iterating Ramsey’s theoremwe see easily that every large object of Relfull(∆)
contains a large complete subsystem. The condition (i) of the Lemma is responsible for the difficulty
in characterizing Ramsey lists. Let us finally remark that the properties of classes Forb(A) are closely
related to the intensively studied Ramsey-type problems, particularly to Erdős–Hajnal problem;
see [1].

4. One binary relation

The proof of Proposition 3.2 presents a finite system of objects containing the desirable N0(B). It
is, however, very large; listing the actualN0(B) seems to be in general very hard.
In this section we will consider the simple (but important) case of one binary relation. Here, the

listing is more feasible. In the next paragraphwewill then discuss Ramsey lists in classical graphs and
provide several concrete examples.
It should be noted that the case of symmetric graphs (not necessarily connected) has been studied

in [4]. Among other results the authors have proved that Forb(B) can consist of graphs A with
|A| ≤ |B| + 1 which (together with other data) is a good start. Allowing the disconnectedness is
essential, though: see 5.11 below.

4.1

Wewill write Relfull for Relfull((2)). The objects of Relfull can be interpreted as oriented graphs with
possible loops.

4.2. The object B+

Let B be an object of Relfull. Choose two distinct elements ω,ω′ 6∈ XB × {∅, {0}, {1}, {0, 1}} and set
XB+ = (XB × {∅, {0}, {1}, {0, 1}}) ∪ {ω,ω′},
RB+ = {(xu, yv) | xRBy, u, v ⊆ {0, 1}} ∪ {(ω′, ω′)}
∪ {(x{0}, ω), (x{0}, ω′) | x ∈ XB}
∪ {(ω, x{1}), (ω′, x{1}) | x ∈ XB}
∪ {(x{0, 1}, ω), (ω, x{0, 1}), (x{0, 1}, ω′), (ω′, x{0, 1}) | x ∈ XB}.
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Proposition 4.3. Let A ∈ N0(B) in Relfull. Then there is a B ∈ B such that A→ B+ (and A is isomorphic
to a subobject of B+).
Proof. Choose an a ∈ XA and consider the object C carried by XA \{a}, with the relation inherited from
A. Then, as A is a core, C is in→ strictly smaller than A and hence there is a B ∈ B and a morphism

f : C → B.

Define a mapping

g : A→ B+

by setting

g(a) =
{
ω′ if aRBa,
ω otherwise,

and for x ∈ C ,

g(x) =


f (x)∅ if x 6∈ aRA ∪ RAa,
f (x){0} if x ∈ RAa \ aRA,
f (x){1} if x ∈ aRA \ RAa,
f (x){01} if x ∈ RAa ∩ aRA.

Let xRAy. If x, y 6= a then f (x)RBf (y) and hence g(x)RB+g(y). If xRAa then g(x) is f (x){0} or f (x){0, 1},
in both cases · · · RB+ω = g(a) or · · · RB+ω′ = g(a). Similarly for aRAy.
Now let g(x)RB+g(y). If g(x), g(y) 6= ω,ω′ then x, y 6= a and f (x)uRB+f (y)v, hence f (x)RBf (y) and

finally xRAy. Let g(x) = ω or g(x) = ω′ (so that x = a) and g(y) 6= ω,ω′. Then g(y) = zu with 0 ∈ u,
and xRAa. Similarly if g(x) = ω or g(y) = ω′ and g(x) 6= ω,ω′. When g(x) = zuwith 1 ∈ u, and aRAx.
The only remaining case is g(x) = g(y) = ω′; then x = y = a and aRAa. �

4.4

The object B+ thus constructed can be applied to determining the Ramsey lists of finite B in
categories such as
• Graphfull of classical graphs, that is, symmetric antireflexive (X, R),
• ConnGraphfull of connected classical graphs,
• OrGraphfull of oriented graphs, that is, antisymmetric antireflexive (X, R),
• Tourfull of tournaments, that is, antisymmetric antireflexive (X, R) in which for any two distinct
x, y either xRy or yRx,
• Posetfull of posets, that is, transitive antisymmetric (X, R),
and their variants with xRx allowed.
In fact, we typically do not even need to search the whole of the B+ since (unlike B+ itself) the

images g[A] stay in the category in question. Thus,
• in the antireflexive cases we can drop the ω′,
• in the symmetric case we can make do with XB × {∅, 2} instead of the whole of XB ×P(2),
• in the antisymmetric cases the XB × {∅, {0}, {1}}will do.

The object B+ from 4.2 typically does not stay in the category C in question but this does not
impede the validity of the reasoning in 4.4 — with one exception. This concerns ConnGraphfull: while
the properties of the whole of B+ are not relevant, it is essential that the object C = A \ {a} does stay
in C. Now unlike all the other categories above, ConnGraphfull does not have the property that every
subset of an object carries an object. But luckily enough, in every connected A with more than one
vertex there is an a such that A \ {a} is connected. Thus, we can use the proof of 4.3 again, only the
a ∈ A cannot be chosen arbitrarily.
Consequently we have

Proposition 4.4.1. Let C be any of the categories from 4.1. Let A ∈ N0(B) in C. Then there is a B ∈ B
such that A is isomorphic to a subobject of B+.
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4.5. Note

Already in 3.3 (resp. 3.2) we had a finite collection of objects containing all the elements ofN0(B)
as subobjects. Thus, one can say that we could list N0(B) by means of a finite search; but of course
the number of cases and individual checkings is prohibitive and one can seldom expect satisfactory
results obtained by brute force. Thementioned result from [4] (stating that the size of each A ∈ N0(B)
is at most |B| + 1 in the symmetric not necessarily connected case) makes the search easier, but even
there the existence of an efficient search procedure is an open problem.

5. Ramsey lists in symmetric graphs

5.1

First, observe that in the cases of Graphfull and ConnGraphfull the B+ from 4.2 and 4.3 can be a core
to the B+′ defined as follows.
Choose an element ω 6∈ B× {0, 1} and set

XB+′ = (B× {0, 1}) ∪ {ω},
RB+′ = {(xi, yj) | xRBy, i, j = 0, 1} ∪ {(x1, ω), (ω, x1) | x ∈ XB}.

5.1.1
Now we can find all the elements ofN0(B) in among the subgraphs of the B+with B ∈ B. Such a

search is not very effective, and requires a lot of checking. For simple B’s, however, it does yield the
lists fairly smoothly.
A more effective procedure remains an open problem.

5.1.2
Note that in our case an object is a core iff

Rx = Ry ⇒ x = y.

5.2. Some particular graphs

We will use the following symbols for particular graphs (here, ‘‘ij’’ indicates that ‘‘both (i, j) and
(j, i) are in the relation’’)

• Kn = ({0, 1, . . . , n− 1}, {ij | i 6= j}) is the complete graph with n vertices,
• Pn is the n-path ({0, 1, . . . , n}, {01, 12, . . . , (n− 1)n}),
• Cn is the n-cycle ({0, 1, . . . , n− 1}, {01, 12, . . . , (n− 1)0}),
• Y = ({0, 1, 2, 3}, {01, 12, 23, 13}),
• T = ({0, 1, 2, 3, 4, 5}, {01, 12, 23, 34, 25}),
• A = ({0, 1, 2, 3, 4, 5}, {01, 12, 23, 34, 45, 14}),
• and B = ({0, 1, 2, 3, 4, 5}, {01, 12, 23, 34, 45, 14, 05}).

Lemma 5.3. Every Ramsey list in ConnGraphfull contains a complete graph Kn and a path Pm.

Proof. Each complete graph is a core. Hence some of the Ai has to exclude a complete graph Kk. Thus,
Ai → Kk and hence Ai = Kn since all subgraphs of a complete graph are complete.
Similarly with the paths, where all connected subgraphs of paths are paths, and the only one that

is not a core is P2. �

Corollary 5.3.1. In ConnGraphfull, the only one-element Ramsey lists are {K1} (={P0}) and {K2} (={P1}).

Proposition 5.4. There are only two two-element Ramsey lists in ConnGraphfull, namely {K3, P3} and
{K3, P4}.



116 R.N. Ball et al. / European Journal of Combinatorics 31 (2010) 106–119

Proof. By 5.3, a two-element list is a {Kn, Pm}with n,m ≥ 3. Consider the graphs

Sk = ({a, bi, ci | i = 1, . . . , k}, {abi, aci, bici | i = 1, . . . , k})

where a, b1, c1, b2, c2, . . . are distinct elements. Sn are cores and infinitely many, and if n ≥ 3 and
m ≥ 4 we have Kn, Pm Sk. Thus, {K3, P3} and {K3, P4} are the only alternatives left. The first is dual
to {P1} and the second to {P3, A}which is easy to check. �

5.5

While by 4.3 for every finiteB there is a finiteA such thatA X iff X → B, the reverse does not
hold, and indeed the finiteA for which we can have a finiteB to form a duality are rare.
Still, we have infinitely many three-element Ramsey lists.

Proposition. We have the duality in ConnGraphfull

{Kn+1, P3, Y } X iff X → Kn.

Proof. LetM → Kn+ be a minimal (core) such thatM Kn. DefineMi, i = 0, 1 by setting

Mi × {i} = M ∩ (Kn × {i})

(thus, the set of vertices ofM is (M0 × {0}) ∪ (M1 × {1}) ∪ {ω}).
I. LetM0 = ∅. ThenM1 = Kn andM ∼= Kn+1 (elseM ∼= Kk with k ≤ n andM → Kn).
IfM0 6= ∅ thenM1 6= ∅ as well, by connectedness.
II. Let M0 = {x}. Then we cannot have M0 ∩ M1 = ∅ since otherwise x ∼ ω and M is not a core.

Thus, x ∈ M1 and by connectedness there has to be another y ∈ M1 \ {x} and there is x0, y1, x1, ω
isomorphic to Y .
III. Let |M0| ≥ 2. If there exist distinct x, y, z with x, y ∈ M0 and z ∈ M1 we have x0, y0, z1, ω

isomorphic to Y .
Thus, we are left with M0 = {x, y} ⊇ M1 6= ∅, x 6= y, say, x ∈ M1. Then we have the path

x0, y0, x1, ω. �

Lemma 5.6. Every connected graph that contains C4, that does not contain C3, and that is a core contains
A or B (recall 5.2).

Proof. Represent the 4-cycle as ({1, 2, 3, 4}, {12, 23, 34, 41}). One of the vertices 1, 3, say 1, has to
be connected with an x not connected with the other, and to avoid a triangle, it cannot be connected
with 2 and 4 either. Similarly we can assume (by symmetry) a y connected just with 2. We cannot
have x = y in which case there would be a triangle. Now if x and y are not connected we have A, if
they are we have B. �

Lemma 5.7. Every tree that is a core is either a path or contains T .
Proof. If it is not a path then there is a vertex xwith degree at least three. If two of its neighbors were
leaves, they would be equivalent, and our tree would not be a core. �

Proposition 5.8. For paths we have the dualities

{P4, C3, A, C5} X iff X → P3,

and for n ≥ 4,

{Pn+1, T , C3, A, B, C5, . . . , Cn+2} X iff X → Pn.

Proof. For a core X , X Pn if and only if it either contains a cycle Ck with k 6= 4, or C4 extended to A
or B (recall 5.6), or is a tree that cannot be mapped into Pn. Since B contains P4 it is not minimal in the
case of P3 (which accounts for its absence there).
It remains to determine the acyclicminimalX Pn. There is, of course, Pn+1, and the only remaining

candidate is T , by lemma. Now T cannot be embedded into P3+, but it can be embedded into any Pn+
with n > 3. �
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5.9

By exactly the same reasoning we obtain

Proposition. For cycles we have the dualities

{P4, C3, A} X iff X → C5,

and for n ≥ 6,

{Pn−1, T , C3, A, B, C5, . . . , Cn−1} X iff X → Cn.

Remarks 5.10. 1. Note the similarities of the ‘‘left duals’’ of the paths and the cycles. Compare for
instance the dualities

{P5, T , C3, A, B, C5, C6} X iff X → P4
and

{P6, T , C3, A, B, C5, C6} X iff X → C7.

2. In the cycles we have started with the C5 (anomalous by the absence of T ) and proceeded with
themore regular Cn, n ≥ 6, in analogywith the equally anomalous P3 proceeded by the equally regular
Pn, n ≥ 4.
We have the extra cases of n = 3, 4. Now C3 has been dealt with in 5.5, since C3 = K3, and we

could say that C4 is of no interest since it is not a core. This is, however, just trying to escape the
tedious analysis of X → A and X → B: indeed, in all the formulas above, A is really the way to treat
(and prohibit) the four-cycles (see 5.6), and should be viewed as such.
3. The duality of X → C5 appeared as one of the characteristics of monochromes in exact Gallai

cliques in [3].

5.11. Another example

Tedious checking of the subgraphs of A+ (A from 5.2) yields the duality
{P4, C3, C5, E} X iff X → A.

E stands for ‘‘exotic’’. It is
({0, 1, 2, 3, 4, 5, 6, 7}, {01, 12, 23, 34, 45, 14, 17, 26, 46, 67}),

a relatively complex graph (in this context).

Remark 5.11.1. This seems to contradict the result of [4], as |E| = |A|+2. But it should not be forgot-
ten that our examples concern ConnGraphfull while the mentioned result speaks of general, not only
connected obstruction graphs.

5.12

In the larger categoryGraphfull the systemN0(Kn) is simpler than that of 5.5. It contains an element
smaller than both Y and P3, namely

P0 + P1,
where G+ H indicates (and will indicate in the sequel) the categorical sum (here, the disjoint union)
of the two graphs.
Consequently we obtain

Proposition. In Graphfull we have the dualities

{Kn+1, P0 + P1} X iff X → Kn.

Thus, in contrast with Proposition 5.4, if we consider disconnected graphs, there are infinitely many two-
element proper Ramsey lists.
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5.13. Duals of paths in Graphfull

While admitting disconnected graphs simplified the dual Ramsey lists of the complete graphs, in
the case of the paths the situation gets rather more complex. Let us see what happens.
The . . . , T , C3, A, B, C5, . . . , Cn+2 part of the Ramsey list from 5.8 remains intact: each proper

subgraph of any of the graphs, connected or not, can be mapped into Pn (for the case with n ≥ 6;
for the shorter paths, the P0 + P1 + P1 contained in T has to be discussed separately). Thus, we have
to analyze the (possibly disconnected)M ⊆ Pn+1 minimal with respect to the propertyM Pn.
We have the following obvious observations:

5.13.1
• both of the endpoints of Pn+1 are in A, and no two of the vertices in Pn+1 \ A are neighbors (else we
obtain a subgraph of Pn),
• none of the resulting connected intervals is isomorphic to P2 (else the resulting A could be mapped
into Pn),
• at most one of the resulting connected intervals consists of a single point,
• and the connected intervals constituting A can be arbitrarily permuted.

Denote by
S(n)

the collection of the (isomorphism types of) theM ⊆ Pn minimal with respect to the propertyM
Pn−1 (suchM ’s will be represented by means of sums of paths), and by

S0(n) resp. S1(n)
the sets of the elements of S(n) containing resp. not containing the summand P0.
Further denote by

S�(n)
the collection of theM ⊆ Pn minimal with respect to the combined property

M Pn−1 and M has not P0 for a summand.
Note that S�(n) is typically bigger than S1(n): for instance we have

P3 ∈ S�(3), P5 ∈ S�(5)
but not in S1(3) resp. S1(5).
From 5.13.1 we easily infer that (if n is sufficiently large)

S(n) = (P0 + S�(n− 2)) ∪ (P1 + S1(n− 3)),
S�(n) = (P1 + S�(n− 3)) ∪ (P3 + S�(n− 5)) ∪ (P5 + S�(n− 7))

(where P + S stands for {P + S | S ∈ S}).
Note. In the second formula one stops with the third summand since all the Pk with k ≥ 6 already
contain non-trivial sums without P0. In fact, it seems that for n sufficiently large one obtains all the
cases already in the first summand (the other two containing just repetitions).

As exampleswe can now compute theS(n) for small n (kG indicates

n-times︷ ︸︸ ︷
G+ · · · + G). An easy checking

yields:
S(1) = {P1} = S1(1) = S�(1), S0(n) = ∅,
S(2) = ∅ = S0(2) = S1(2) = S�(2),
S(3) = {P0 + P1} = S0(3), S1(3) = ∅, S�(3) = {P3},
S(4) = {2P1} = S1(4) = S�(4), S0(4) = ∅,
S(5) = {P0 + P3} = S0(5), S1(5) = ∅ S�(5) = {P5},
S(6) = {P0 + 2P1} = S0(6), S1(6) = ∅, S�(6) = {P1 + P3},
S(7) = {P0 + P5, 3P1}, S0(7) = {P0 + P5}, S1(7) = S�(7) = {3P1}.
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Further we can proceed by the formulas above

S(8) = {P0 + P1 + P3}, S�(8) = {P1 + P5, 2P3},
S(9) = {P0 + 3P1}, S�(9) = {2P1 + P3},
S(10) = {P0 + P1 + P5, P0 + 2P3, 4P1}, S�(10) = {4P1, P3 + P5},
S(11) = {P0 + 2P1 + P3}, S�(11) = {2P1 + P5, P1 + 2P3},
S(12) = {P0 + 4P1, P0 + P3 + P5}, S�(12) = {3P1 + P3, 2P5},
S(13) = {P0 + 2P1 + P5, P0 + P1 + 2P3, 5P1}, S�(13) = {5P1, P1 + P5, 3P3},
S(14) = {P0 + 3P1 + P3, P0 + 2P5}, S�(14) = {3P1 + P5, 2P1 + 2P3},
S(15) = {P0 + 5P1, P0 + P1 + P3 + P5, P0 + 3P3}

etc. Thus, the resulting Ramsey lists corresponding to the paths do not seem to be more transparent
than those in the connected case.

Note. After this paper was written we learned that some related results for graphs were
independently obtained by P. Hell and its collaborators. See [7] for a survey of these results.

Acknowledgements

The last two authors would like to express their thanks for support by the project 1M0545 of the
Ministry of Education of the Czech Republic.

References

[1] N. Alon, J. Pach, J. Solymosi, Ramsey-type theorems with forbidden subgraphs, Combinatorica 21 (2) (2001) 155–170.
[2] A. Atserias, On digraph coloring problems and treewidths duality, in: 20th IEEE Symposium on Logic in Computer Science,
LICS, 2005, pp. 106–115.

[3] R.N. Ball, A. Pultr, P. Vojtěchovský, Colored graphs without colorful cycles, Combinatorica 27 (4) (2007) 407–427.
[4] T. Feder, P. Hell, On realizations of point determining graphs and obstructions to full homomorphisms, Discrete Math. 308
(9) (2008) 1639–1652.

[5] J. Foniok, J. Nešetřil, C. Tardif, Generalized dualities andmaximal finite antichains in the homomorphismorder of relational
structures, European J. Combin. 29 (4) (2008) 881–899.

[6] R.L. Graham, J. Spencer, B.L. Rothschild, Ramsey Theory, Wiley, New York, 1980.
[7] P. Hell, From graph colouring to constraint satisfaction: There and back again, in: Topics in Discrete Mathematics, @6.
Algorithms and Combinatorics, Springer Verlag, 2006.

[8] P. Hell, J. Nešetřil, Graphs and Homomorphisms, Oxford University Press, Oxford, 2004.
[9] P. Hell, J. Nešetřil, Colouring, constraint satisfaction, and complexity, in: Comp. Sci. Rev., vols. 2, 3, University Press, 2008,
pp. 143–164.

[10] P. Komárek, Some new good characterizations for directed graphs, Čas. Pěst. Mat. 109 (1984) 348–354.
[11] G. Kun, J. Nešetřil, Forbidden lifts (NP and CSP for combinatorists), European J. Combin. 29 (4) (2008) 930–945.
[12] G. Kun, J. Nešetřil, Density and dualities for algrebras (submitted for publication).
[13] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, New York, 1971.
[14] J. Nešetřil, Ramsey theory, in: R.L. Graham, M. Grötschel, L. Lovász (Eds.), Handbook of Combinatorics, Elsevier, 1995,

pp. 1331–1403.
[15] J. Nešetřil, A. Pultr, On classes of relations and graphs determined by subobjects and factorobjects, DiscreteMath. 22 (1978)

287–300.
[16] J. Nešetřil, C. Tardif, Duality theorems for finite structures (characterizing gaps and good characterizations), J. Combin.

Theory B 80 (2000) 80–97.
[17] J. Nešetřil, C. Tardif, Short answers to exponentially long questions: Extremal aspects of homomorphism duality, SIAM J.

Discrete Math. 19 (4) (2005) 914–920.


	Dualities in full homomorphisms
	Introduction
	Preliminaries
	Dualities and Ramsey lists
	The category of relational systems
	Convention

	One binary relation
	The object  B + 
	Note

	Ramsey lists in symmetric graphs
	Some particular graphs
	Another example
	Duals of paths in  Graphfull 

	Acknowledgements
	References


