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Abstract

The problem of the cardinality of the set of nhon-homeomorphiadic manifolds is solved. It
is proved that there exist*2 pairwise non-homeomorphic non-metrizable one-dimensiprediic
analytic manifolds of weight1. This contrasts with the single isomorphism class of metrizable
manifolds of the same weight. Further, we prove that for 2, there are ® pairwise non-
isomorphic non-metrizable manifolds of weight, which are homeomorphic.

To demonstrate the wide variety of non-metrizalpleadic manifolds, and contrast with the
situation for real analytic manifolds, we construct a range of ‘pathological’ non-metrizabtiic
manifolds.
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1. Introduction

The central aims of this paper are to demonstrate the huge variety of non-metrizable
p-adic analytic manifolds in comparison with the paucity of metrizgiladic analytic
manifolds; and to contrast the topological behavioup€fdic analytic manifolds with that
of real manifolds. (Here and beloy,is a prime number).

Roughly speaking, g-adic analytic manifold of dimension, is a space locally
homeomorphic to Cantor spacgs”)”, which are joined together by smooth maps. They
are the analogues for the complete fieldpefdic numbers, of real analytic manifolds for
the field of real numbers, and complex analytic manifolds for the field of complex numbers.
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Analytic manifolds over various fields have been intensively studied in the context of Lie
algebras and Lie groups. Most modern introductions to Lie groups and algebras (especially
those with an algebraic slant) develop the general theory for arbitrary complete fields,
specialising to the three most important cases, real, compleyattic, at a later stage.
Thus, for further information omp-adic analytic manifolds, the reader is referred to the
books of Bourbaki [2] and Serre [8] on Lie algebras and Lie groups. The brief exposition
below of analytic manifolds over complete fields is taken from the latter text.

Complete fields

Let £ be a field. An absolute value dnis a function| - | :k — [0, oo) satisfying (1)
x| =0ifandonly ifx =0, (2) |xy| = |x||y], () |1] =1, and (4)|x + y| < |x| + |y|. Every
absolute value induces a metric bngiven byd(x, y) = |x — y|. The absolute value is
called complete it/ is complete. The real®, and complex number§;, with their usual
absolute values are complete fields.

An important family of complete fields (one for each pripgis the family of p-adic
numbers, denote@,. Fix a primep, and letQ be the field of rational numbers. For any
a€Q, a#0, writea = p"-(r/s) wherer ands are integers prime tp, and define
lal, = 1/p". ThenQ, is the completion ofQ, | - |,); its absolute value is also denoted
|- |,. DefineZ,, the p-adic integers, to b € Q,: |al, < 1}. ThenZ, is a compact, open
subring ofQ,. It is naturally homeomorphic tp® (and so homeomorphic to the Cantor
set).

Analytic functions

Let k£ be a field with complete absolute value,|. For anyx € k, andr € (0, 00),
define the open disc of radiusaboutx to be D(x,r) = {y € k: |x — y| < r}. A function
f:U — k, whereU is an open subset @&f, is analytig if for each pointx in U, there is
anr > 0, so thatf can be represented as a power series convergéntin-). A function
f:U — k", whereU is an open subset &f", is analytic if the coordinate functions of
are analytic.

k analytic manifolds

In the following, k is a complete field, and is a fixed integeg= 1. Let X be a space.
A chartonX is apair(U, ¢) consisting of an open subsét, of X, and a homeomorphism,
¢, of U ontog (U) an open subset &f. A pair of charts(U, ¢) and(V, ¢), are compatible
if, settingW = U NV, the functions) o (¢~ 1|¢(W)) andg o (v ~L|y(W)) are analytic. An
atlas,A, is a family of charts which covex and whose members are mutually compatible.
The full atlas, denoted (X), generated bw, is the family of all charts orX compatible
with every chartinA. The full atlas is an atlas. Two atlasésandA’ on X, are compatible
if A(X)= A'(X). Compatibility of atlases is an equivalence relation, and a sjaaith
an equivalence class of atlases is callédaalytic manifold, of dimension Whenk = R,
then X is a real analytic manifold; wheh = C, thenX is a complex analytic manifold;
and whenk = Q,, thenX is a p-adic analytic manifold.
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Morphisms

Let A; be an atlas for thé analytic manifoldX; (i = 1, 2). A function f: X1 — Xz is
amorphismor analytic functionif f is continuous and, whenev@r;, ¢;) € A; (i =1, 2)
then, setting = U1 N f~1(U>), the mapgs o f o ¢1~ is analytic when restricted to
$1(W). Isomorphisms are defined in the natural way.

Open submanifolds

Let X be ak analytic manifold with full atlasA(X), and letU be an open subset of
X. DefineAy ={(V,¥): V CU}. ThenAy is an atlas orU, andU with this k& analytic
structure is called an open submanifoldf

Topology ofp-adic analytic manifolds

Recall that thep-adic integersZ,,, form a compact and open subring@f,. Thus for
every pointx of a p-adic analytic manifold X, of dimensionu, there is a chartU, ¢)
such thatr is in U, and¢ is a homeomorphism o/ with Z7. In particular, Hausdorff
p-adic analytic manifolds have inductive dimension 0, and are locally compact and locally
metrizable. The structure of metrizableadic manifolds is completely understood:

Theorem 1.1 (Serre [8,9]).Let X be a p-adic analytic manifold of dimensiom. Then
X is metrizable if and only if it is isomorphic to a disjoint sum of copiesZf say
X=@icaZ)y

Suppos« is metrizable, and define

clasgX) = min{|A|: X is isomorphic to@Z’;}.
reA
Then(1) the cardinal number clag¥) classifiesX up to isomorphism, an(?) the image
ofclasg-)is{1,2,..., p — 1} U{«k: « is an infinite cardina}.

Note that for X a metrizablep-adic analytic manifoldw(X) = clasgX).RXg, and
X is compact if and only if clagX) is finite. Note also that ifX and Y are non-
compact metrizablg-adic analytic manifolds, of the same dimension, theandY are
homeomorphic if and only if they are isomorphic.

In [9] Serre gives an example, which he attributes to George Bergman, of a non-
metrizablep-adic analytic manifold. The example is essentially ghadic analogue of
the long ray.

Constructingp-adic manifolds
For later convenience, we state three simple lemmas which will aid us in the construction
of non-metrizablgy-adic manifolds. The first is immediate from the definitions.

Lemmal.2. LetX be atopological space. Suppo¥e= | J, . ,Ux, where
(1) eachU, is open inX,
(2) on eachU, there is ap-adic analytic manifold structure, and
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(3) for all x, u, the p-adic analytic manifold structures o&i, N U, induced by the
p-adic analytic manifold structure oty;, andU,,, agree.
Then X has a uniquep-adic analytic manifold structure, with thé/,s as open
submanifolds.

Lemma 1.3. Let M be a one dimensionap-adic analytic manifold isomorphic to
DB,co(Zp)n, and supposeV is the one point compactification 8f. ThenN admits the
structure of a one dimensiongatadic analytic manifold, such tha¥ is isomorphic tdzZ,,
and M is an open submanifold a¥.

Proof. Clear from the fact thaZ, \ {0} is isomorphic to®,, ., (Zp)n. O

Lemma 1.4. If X is a o-compact non-compagt-adic manifold of dimensiom, then X
is isomorphic tad,, ., (Z}) )n-

Proof. A o-compact p-adic analytic manifold is separable metrizable. So the claim
follows from Serre’s result. O

2. Homeomor phism and isomor phism classes

In contrast to the single isomorphism class of one dimensional metrizaleic
analytic manifolds of weightti, there are the maximal possible numbe¥: 2nany,
pairwise hon-homeomorphic one dimensional non-metrizakéelic analytic manifolds
of weightg.

In addition, there is a family of ®2 pairwise non-isomorphic one dimensiona
adic analytic manifolds of weight1, which are all mutually homeomorphic. Recall that
homeomorphic non-compact metrizabpladic analytic manifolds, of the same dimension,
are isomorphic. Also recall S. Donaldson’s famous result that there®anga2rwise non-
isomorphic (real!) analytic structures @f.

Both constructions are based on an idea of Nyikos [4].

Definition 2.1. A spaceX is of type | if it is the union of anw;-sequencgUy }y <, Of
open subspaces such tiigt C U, wheneve < «, Uy = g, Up for & limit, and such
thatU, is Lindelof for all .

Let X be atype | space. Any:-sequencéU, }q <« Witnessing thak is type |, is called
a canonical sequence fa.

It is easy to see that every type | manifold (realpeadic analytic) is of weigh& R;.
Any two canonical sequences agree on a closed unbounded set of indices:

Lemma 2.2. If a type | spaceX has two canonical sequences = {Xy}q<», and
2 ={X]}a<w,, thenthe se€ = {« € w1: X, = X, } is closed unbounded ia;.
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It is well known thatw1 can be partitioned int@; stationary sets. Fix such a partition
{Ag}acw, (SO UaewlAa = w1, the A,’s are pairwise disjoint, and every, has non-empty
intersection with every closed unbounded subsei)f

Theorem 2.3. There are 2% pairwise non-homeomorphic one dimensionaiadic
analytic manifolds of weight.

Proof. For eachr : w1 — {0, 1}, we will define a type | one dimensionatadic analytic
manifold M° with a canonical sequen¢a/ }, ., of open submanifolds such that

Mg =17, forasuccessor, Mj =@H(Zy), forxlimit, and,

o
new

1 ifo()=0, o
oMy | = { _ for A limit,
p ifo) =1,
where¢ is unique such that € Ag.

Assuming, for the moment, we have thgsadic manifolds, suppose+ t, o, t: w1 —

{0, 1}. We claim M? is not homeomorphic ta/*. Well, suppose for a contradiction,
that there is a homeomorphisin: M® — MT®. Sinceo # t, there isé € w; such that
(with out loss of generality) 8o (§) #t(§) = 1. Now C = {« € w1: « is a limit and
M} =y (M)} is closed unbounded. Hence we can pick A¢ N C. Theny carrieso Mg
ontod M, but, by construction, the two boundaries have differing cardinalities.

It remains to show that we can construét® with canonical sequence of open
submanifolds{M{ }oc,, @s above. In fact, once we have defined Mgs then we
can defineM? as the union of the/J s with the direct limit topology and unique one
dimensionalp-adic analytic structure given by Lemma 1.2.

We proceed by transfinite recursion an< w;. There are three cases. Suppose, first,
thata is a limit. Let M be the space with underlying sL(_ajﬁ<a Mg, direct limit topology,
and unique one dimensionadadic analytic structure guaranteed by Lemma 1.2. THén
must be isomorphic witkp,, . ,(Z,,), (by Lemma 1.4).

Now supposex = B + 1, and 8 is a successor. TheMdg = Z,. Define MJ =
EB{’:l(Z,,)i, and identifyMg with the first copy ofZ,. Note thatM is isomorphic to
Z,, and all the other hypotheses are satisfied.

The last and most interesting case is whes A + 1, wherex is a limit. We know that
M =@, c,(Zp)n. If 0(§) =0, then letM? be the one point compactification 817,
with analytic structure of Lemma 1.3.4f(£) = 1, then writeM = @f’zl(@new(zp)n)i.
One point compactify each of the copies @, (Z,)., to yield MJ, with analytic
structure of Lemma 1.3. Observe thif? is isomorphic top copies ofZ,, and so is
isomorphictdZ,, and, sincé/y is closed and open i, the desired boundary properties
of My hold. O

Theorem 2.4. For p > 3. There are2®1 pairwise non-isomorphic one dimensionahdic
analytic manifolds of weight,, which are all homeomorphic.
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Proof. For eachr : w1 — {0, 1}, we will define a type | one dimensionatadic analytic
manifold N° with a canonical sequendeV] }4 <, Of open submanifolds such that for
a=A+1,Axlimit

N — Z, if 0(§) =0,
*\Z,®Z, ifo)=1,

where¢ is unique so thak € A¢. The manifoldV° will have the direct limit topology and
analytic structure induced by thé7's. We will also ensure thaty_ , is the closure oV},
for all limit A, and that the topology and underlying sets of Nfgs do not depend oa.
The last condition, of course, ensures that all the manifdl@isare homeomorphic.

Similarly to the proof of Theorem 2.3, i, 7:w1 — {0,1}, o # 7, but ¥ is an
isomorphism of N with N7, then for some limitA, we havey(NJ) = N;. Hence
Y (N 4) = ¥(NY) = Ny =N ,,. SON{,, and N}, are isomorphic, when, by con-
struction they are non-isomorphic.

Fix o, and let us construct th€? s by transfinite recursion an < w;. Four cases arise.
Suppose first that = g 4 1, whereg is a successor. Then defin] = N7 & Z,. Next
suppose thak = A, A a limit. Define N = Uﬂd Ng with the direct limit topology and
unique one dimensional analytic structure guaranteed by Lemma 1.2.

The final two cases are when= 1 + 1, for 1 a limit. Note thatNy = @, ., (Z),. If
o(§) =0, then embeaVy in N7, = Z, by the standard embedding of Lemma 1.3. On
the other hand, it () = 1, then writeNy = (Zp,)o ® @n>1(2p)n. Embed@n>1(2p)n
in Z,, by the standard embedding of Lemma 1.3, &fdin Ny, = (Zp)o ® Z,, in the
natural manner.

Observe that in both the two preceding cases, ; is the one point compactification
of NY. Thus both the analytic and topological conditions are satisfied by the construc-
tion. O

3. Comparison with real manifolds

Probably the two most important results on the general topology of non-metrizable real
manifolds are the following.

Theorem 3.1 (Rudin and Zenor [7], Rudin [6])t is consistent and independent that every
perfectly normal real manifold is metrizable.

Theorem 3.2 (Reed and Zenor [5])Every (perfectly normal Moore real manifold is
metrizable.

Two other, minor but attractive, results concerning real manifolds are (1) a real manifold
with regularG s diagonal is metrizable, and (2) a real manifold witf diagonal is a Moore
space. From the first of these, it follows that submetrizable real manifolds are metrizable.

All these results depend crucially on the local connectedness of real manifolds, and not
at all on the manifold structure. This is exposed by Examples 3.5-3.7 below which are
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counter-examples to the natugaladic analogues of the positive results for real manifolds
above.

Our first example, however, demonstrates how to adapt the techniques for constructing
pathological real manifolds to the constructiongefdic analytic manifolds with similar
properties.

Lemma 3.3. Let 7, 0 be topologies on a seX, such thato C 7, (X, o) is hereditarily
separable and for every countable subggtof X, |B° \ BT| < Rg. Then (X, 1) is
hereditarily separable.

Proof. Take anyY contained inX. As (X, o) is hereditarily separable, there is a countable
subsetA of ¥ such thatd D Y. Let D = (A \ AT)NY, andB = A U D (note thatB is
countable). TheB™ 2 ATU D 2 A° D Y. Thus,B is t-dense inY. O

Example 3.4 (CH). There is a spac& which is Hausdorff, submetrizable, hereditarily
separable, but not Lindel6f, which has the structure of a one dimengieadic analytic
manifold.

Construction Let X = (D,,c,,(Zp)n) ® Z,. Write um for the ultra-metric topology
on X. AssumeCH and let{xy}, <y o, €NuMerateZ,. Define X, = @, ., (Zp)n, Yo =
{xg: B <a}andletX, =X, UY,. Let{B,}«<w, €numerate all countably infinite subsets
of X. DefineBg ={B,: vy < B, B, C Xp, xg € W} and enumerate eachs as
{C(s,n): n € w}, where eaclB e Bg appears infinitely often in the enumerationy.

We will construct a sequende, },<o <o, Of topologies and a sequentéy },<a<w, Of
atlases, where, is a topology onX,,, A, is an atlas for a one dimensionaladic analytic
manifold structure oriX,, 7,) such that

(1) =, is a O-dimensional topology refining the ultra-metric topologyXon

(2) If B <«a,then(Xg, 18, Ag) isisomorphic top, ., Z,, and is an open submanifold

of (Xy, Ta, Aa).

(3) If B <@ andB € Bg, thenxg € BT+,

Suppose we have suahs andA,s. LetX have topology with basisJ, ., 7« Then,
by Lemma 1.2 X has a unique one dimensionaladic manifold structure, with atlas.
The topologyr on X, refines the usual ultra-metric topology, and hence is Hausdorff and
submetrizable. The sel§, are all open ink, and no countable subcollection covers. Hence
X is not Lindelof.

It remains to show thatX, t) is hereditarily separable. We do this by checking that
(X, 7) satisfies the hypotheses of Lemma 3.3. So take any countably infinite #ubs&t.
ThenB = B, for somey. As B, is countable, there is By > y such thatB, € Xg,. We
aim to show thaBi™ \ BT is contained ir¥s,1. If x5 € B4™, > fo > y, then we need to

new

show.xs € B. For that, pick any > § + 1. ThenB, € By and by(3), x4 € B)’** C BJ.
Supposex € X, andx € By, ThenX, is an open subspace @X, r) and has theim
topology. Hencer € B7.

To complete the proof we need to construct the topologiesnd atlasesA, by
transfinite recursion.
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Casea=p+1.

Pick a sequenciy, } < closed and discrete iKig, such that, € Cg , and the distances
betweerng andy, forms a sequence converging to zero (this is possible becauékg tfse
enumeratd3g and if B is in Bg, thenxg € B“™). Then, for each, pick pairwise disjoint
Ug.n, Open in the ultra-metric topology, so thate Ug ,. Choose an isomorphism &fg
with @,,c.,(Zp);, ® B, (Zp)n sSuch thaty, € (Z,), S Ug,p.

Define Vg = {xg} U Un>k(Zp)n, for k € w. A basis for(Xq, 7o) is 18 U {Vg k }icw-
Thus (X4, 7o) is homeomorphic t&p,,.,(Z,), and the one point compactification of
PB,co(Zp)n. Using Lemma 1.3, we giv&(y, = B, (Zp);, ® D,1c, (Zp)n U {xg}, the
manifold structure, so tha, is isomorphic ted, ., (Zp);, ® Z,, andXg is a dense open
submanifold. Letd, be an atlas for this structure.

By constructiong, andA, satisfy (1) and(2). We check(3) from the list of inductive
hypotheses. Suppoge+ 1 <«, y < B, B, € Xg, andxg € B;. Requirexg € B;“.

SinceB, e Bg, B, appears infinitely often in the listingg,,, so infinitely many of the
y»S (used in the definition of the topology.a$) are inB,,. So every basic neighbourhood,
Vi, of xp hits (infinitely many) of they,s in B, thusxg € By, as required.

Case« is a limit.

Then letz, have basi¢ J;_, 75. By Lemma 1.2, there is a unique manifold structure
on X, induced by the manifold structures on the open sulisgists, Ag). Let A, be an
atlas for this structure. It is easy to check that the induction hypotheses hold.

In the following example we use the fact thAf can be naturally identified with all
formal power series of the forf_ > o x, - p", Wherex, € {0,1,..., p — 1} (n € ®). The
valuation orZ, is given by|Y 2 o x, - p"| = 1/ p™, wherem is minimal such that,, # 0.
Addition and multiplication are given by formal addition (respectively, multiplication) of
the corresponding formal power series.

Example 3.5. There is a spacé& which is submetrizable, Moore, separable, but not
metrizable, which has the structure of a one dimensipradlic analytic manifold.
Construction We give the construction fgs = 2, but it is clear that the technique can
be extended to any prinpe The space& has underlying séf, x (v + 1).
We define a topology on X, refining the usual metrizable topology, and check it has
the required properties. Then we define chartg#rr), and show they are compatible.
Define, for eachx € Z, andm € w,

U(x,m) = (D (((ilx .2") + 2" -Zg) x {n}> U {(x,a))}) N (Z2 x [m, w]).

n=0 i=0
TopologiseX so thatZ; x w has the product topology, and eaoh w) has local basis
{U (x, m)}new- Denote this topology by. Thus(X, ) is similar to the famous tangent
disc space.
Clearly, (X, t) is submetrizable, and separabl& (x w is second countable, and dense
in X). It is also developable, as we now establish. [&t},c, be a development for
the metrizable spacg; x w. DefineH,, = {U(x,n): x € Zp} U G,. Then theH,s are
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open covers ofX, and st(x, w), H,) = U(x,n) (for all n > 0), while s{(x,m), H,) =
st((x, m), G,) forn > m.

It remains to specify compatible charts forming an atlas of a one dimensieadic
analytic manifold structure oX. The family{U (x, 0): x € Z5} is an open cover oX. Fix
an isomorphismy, betweerdp,,_, (2" - Z2 x {n}) andZ \ {0}. For eachx in Zp, define
¢, from U (x, 0) ontoZ; by

¢x((x,0)) =0, ¢x<(}§xi 242 -y,n)) =v((2"y.n)).

i=0

new

The ¢,s are continuous, s@(U (x, 0), ¢x): x € Zp} is a family of charts. Further, if
X,y € Z2, then, settingV = U (x,0) N U (y, 0), we have

by 0 (5 Hdx (W) =idg,w) and ¢ o (¢ py (W) =idg, w) -

Thus, both transition maps are (trivially) representable as power series.

For our next two examples, observe that if we remove any set of pointsZsom{w}
in the preceding example, then what remains is an open submanif&ld of

Example 3.6 (MA + —CH). There is a spacg which is separable, (perfectly) normal,
submetrizable and Moore, but not metrizable, which has the structure of a one dimensional
p-adic analytic manifold.

ConstructionUnder MA+ —CH, any subset &, of sizeX is a Q-set (so every subset
of that set is &). Fix such aQ-set, Q say, inZy x {w}. Remove all points 0%, x {w}
(considered as a subspace of the preceding example) which are@obienote byY the
resulting one dimensional-adic analytic manifold. Thelr is separable, submetrizable,
and Moore. Mimicking the well known proof for the tangent disc space, one can check that
Y is normal.

Example 3.7. There is a spac& which is submetrizable, quasi-developable, separable,

but not perfect, which has the structure of a one dimensipradic analytic manifold.
ConstructionLet B be a Bernstein subset @ and let{ B, }o <2~ be an enumeration of

all countable subsets df such thatB#™ is uncountable. For eaeh< 2, pick

Xo € Bam\ (B U {xﬁ}ﬂ<a)

and pick pointsc(y, ) € By such that the sequenéey, ) }meo CONVerges ta, in Z, with
the ultra-metric topology.

Let Xo = (Z2 x w) U (B x {w}). Considen Xg, 7o) as an open submanifold of the space
in Example 3.5. LeZ = Xo U {(x4, w)}o<20. We will give Z a topologyr, and manifold
structure, so that:

(1) Xo is an open dense submanifold.

(2) 7 refines thaum topology.

(3) Z N (Zz x {w}) is (naturally) homeomorphic to Gruenhage’s example [3, Exam-

ple 2.171].
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First we describe the topologyon Z. A basis fort is 1o U {V (x4, n): @ € 2°, n € w},
whereV (xq, n) = (U(xq, 0) U (U,1co U X (ayn), 0) N [ Dy (X, 1/m) x [m, w]l, U(x, m)

as defined in Example 3.5 am),,,, (x,, 1/m) is the open disc of radiug/ #z aboutx in the
metrizable topology o, x (w + 1). Clearly,(Z, t) is submetrizable, separable, and not
perfect (Z, t) contains a homeomorphic copy of Gruenhage’s space, which is not perfect).
It is also quasi-developable, as we now establish.{Ugt,c, be a development for the
metrizable spac&, x w. DefineH,, = {V(xq,n): « € 2°} and 7, = {U(x,n): x € B}.
Then{G,}new U {Hulneo U {Jn}new iS @ countable collection of open families, which form

a quasi-development fox. To see this, it suffices to note that@st,, w), H;) = V (x4, n)

and st(x, w), J,) =U(x,n) (x € B).

It remains to give(Z, t) a p-adic manifold structure. Recall théXg, o) already has
a one dimensiongb-adic manifold structure and is an open subspacgZot). For each
(xq,w) IN R =Z \ Xo, note thatV (x4, 0) is an open set, meeting only at (x,, w). By
Lemma 1.2(Z, t) has a one dimensionatadic analytic structure, provided we can give
V (x«, 0) @ one dimensiongh-adic analytic structure compatible with that &g.

Fix xo. Note thatV = V (x4, 0) is the one point compactification f* = V (x4, 0) \
{(xa, w)}. HenceV* is an open submanifold dfp isomorphic tod,, ., (Z,),. Therefore,
we may giveV the manifold structure ofZ, via Lemma 1.3, withV* as an open
submanifold.

4. Open problems, and dimension

All of the examples constructed above are one dimensional;adic manifolds. It is
clear that the constructions could be modified to give examples of any desired analytic
dimension.

Some results pertaining to real (analytic) manifolds depend on dimension. For example,
Rudin and Balogh [1] show that every monotonically normal manifold of dimension at
least two is metrizable. It would be interesting to know whether monotonically ngsmal
adic analytic manifolds odnalyticdimension two (or more) are necessarily metrizable. If
true this would give an example of the analytic structure influencing the general topology
of a p-adic analytic manifold.
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