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Abstract

The problem of the cardinality of the set of non-homeomorphicp-adic manifolds is solved. It
is proved that there exist 2ℵ1 pairwise non-homeomorphic non-metrizable one-dimensionalp-adic
analytic manifolds of weightℵ1. This contrasts with the single isomorphism class of metrizable
manifolds of the same weight. Further, we prove that forp > 2, there are 2ℵ1 pairwise non-
isomorphic non-metrizable manifolds of weightℵ1, which are homeomorphic.

To demonstrate the wide variety of non-metrizablep-adic manifolds, and contrast with the
situation for real analytic manifolds, we construct a range of ‘pathological’ non-metrizablep-adic
manifolds.
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1. Introduction

The central aims of this paper are to demonstrate the huge variety of non-metrizable
p-adic analytic manifolds in comparison with the paucity of metrizablep-adic analytic
manifolds; and to contrast the topological behaviour ofp-adic analytic manifolds with that
of real manifolds. (Here and below,p is a prime number).

Roughly speaking, ap-adic analytic manifold of dimensionn, is a space locally
homeomorphic to Cantor spaces(pω)n, which are joined together by smooth maps. They
are the analogues for the complete field ofp-adic numbers, of real analytic manifolds for
the field of real numbers, and complex analytic manifolds for the field of complex numbers.
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Analytic manifolds over various fields have been intensively studied in the context of Lie
algebras and Lie groups. Most modern introductions to Lie groups and algebras (especially
those with an algebraic slant) develop the general theory for arbitrary complete fields,
specialising to the three most important cases, real, complex andp-adic, at a later stage.
Thus, for further information onp-adic analytic manifolds, the reader is referred to the
books of Bourbaki [2] and Serre [8] on Lie algebras and Lie groups. The brief exposition
below of analytic manifolds over complete fields is taken from the latter text.

Complete fields
Let k be a field. An absolute value onk is a function| · | : k → [0,∞) satisfying (1)

|x| = 0 if and only ifx = 0, (2)|xy| = |x||y|, (3) |1| = 1, and (4)|x +y| � |x|+ |y|. Every
absolute value induces a metric onk, given byd(x, y) = |x − y|. The absolute value is
called complete ifd is complete. The reals,R, and complex numbers,C, with their usual
absolute values are complete fields.

An important family of complete fields (one for each primep) is the family ofp-adic
numbers, denotedQp . Fix a primep, and letQ be the field of rational numbers. For any
a ∈ Q, a �= 0, write a = pn · (r/s) wherer and s are integers prime top, and define
|a|p = 1/pn. ThenQp is the completion of(Q, | · |p); its absolute value is also denoted
| · |p. DefineZp , thep-adic integers, to be{a ∈ Qp: |a|p � 1}. ThenZp is a compact, open
subring ofQp. It is naturally homeomorphic topω (and so homeomorphic to the Cantor
set).

Analytic functions
Let k be a field with complete absolute value,| · |. For anyx ∈ k, and r ∈ (0,∞),

define the open disc of radiusr aboutx to beD(x, r) = {y ∈ k: |x − y| < r}. A function
f : U → k, whereU is an open subset ofk, is analytic, if for each pointx in U , there is
anr > 0, so thatf can be represented as a power series convergent inD(x, r). A function
f : U → kn, whereU is an open subset ofkm, is analytic, if the coordinate functions off
are analytic.

k analytic manifolds
In the following,k is a complete field, andn is a fixed integer� 1. Let X be a space.

A chart onX is a pair(U, φ) consisting of an open subset,U , of X, and a homeomorphism,
φ, of U ontoφ(U) an open subset ofkn. A pair of charts,(U, φ) and(V , ψ), are compatible
if, settingW = U ∩V , the functionsψ ◦(φ−1|φ(W)) andφ◦(ψ−1|ψ(W)) are analytic. An
atlas,A, is a family of charts which coverX and whose members are mutually compatible.
The full atlas, denotedA(X), generated byA, is the family of all charts onX compatible
with every chart inA. The full atlas is an atlas. Two atlasesA andA′ onX, are compatible
if A(X) = A′(X). Compatibility of atlases is an equivalence relation, and a spaceX with
an equivalence class of atlases is called ak analytic manifold, of dimensionn. Whenk = R,
thenX is a real analytic manifold; whenk = C, thenX is a complex analytic manifold;
and whenk = Qp, thenX is ap-adic analytic manifold.
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Morphisms
Let Ai be an atlas for thek analytic manifoldXi (i = 1, 2). A functionf : X1 → X2 is

a morphismor analytic functionif f is continuous and, whenever(Ui, φi) ∈ Ai (i = 1, 2)

then, settingW = U1 ∩ f −1(U2), the mapφ2 ◦ f ◦ φ1
−1 is analytic when restricted to

φ1(W). Isomorphisms are defined in the natural way.

Open submanifolds
Let X be ak analytic manifold with full atlasA(X), and letU be an open subset of

X. DefineAU = {(V , ψ): V ⊆ U}. ThenAU is an atlas onU , andU with this k analytic
structure is called an open submanifold ofX.

Topology ofp-adic analytic manifolds
Recall that thep-adic integers,Zp , form a compact and open subring ofQp . Thus for

every pointx of a p-adic analytic manifold,X, of dimensionn, there is a chart(U, φ)

such thatx is in U , andφ is a homeomorphism ofU with Zn
p . In particular, Hausdorff

p-adic analytic manifolds have inductive dimension 0, and are locally compact and locally
metrizable. The structure of metrizablep-adic manifolds is completely understood:

Theorem 1.1 (Serre [8,9]).Let X be a p-adic analytic manifold of dimensionn. Then
X is metrizable if and only if it is isomorphic to a disjoint sum of copies ofZn

p , say
X =⊕

λ∈Λ Zn
p .

SupposeX is metrizable, and define

class(X) = min

{
|Λ|: X is isomorphic to

⊕
λ∈Λ

Zn
p

}
.

Then(1) the cardinal number class(X) classifiesX up to isomorphism, and(2) the image
of class(·) is {1, 2, . . . , p − 1} ∪ {κ : κ is an infinite cardinal}.

Note that for X a metrizablep-adic analytic manifold,w(X) = class(X).ℵ0, and
X is compact if and only if class(X) is finite. Note also that ifX and Y are non-
compact metrizablep-adic analytic manifolds, of the same dimension, thenX andY are
homeomorphic if and only if they are isomorphic.

In [9] Serre gives an example, which he attributes to George Bergman, of a non-
metrizablep-adic analytic manifold. The example is essentially thep-adic analogue of
the long ray.

Constructingp-adic manifolds
For later convenience, we state three simple lemmas which will aid us in the construction

of non-metrizablep-adic manifolds. The first is immediate from the definitions.

Lemma 1.2. Let X be a topological space. SupposeX =⋃
λ∈ΛUλ, where

(1) eachUλ is open inX,
(2) on eachUλ there is ap-adic analytic manifold structure, and
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(3) for all λ, µ, the p-adic analytic manifold structures onUλ ∩ Uµ, induced by the
p-adic analytic manifold structure onUλ andUµ, agree.

Then X has a uniquep-adic analytic manifold structure, with theUλs as open
submanifolds.

Lemma 1.3. Let M be a one dimensionalp-adic analytic manifold isomorphic to⊕
n∈ω(Zp)n, and supposeN is the one point compactification ofM. ThenN admits the

structure of a one dimensionalp-adic analytic manifold, such thatN is isomorphic toZp ,
andM is an open submanifold ofN .

Proof. Clear from the fact thatZp \ {0} is isomorphic to
⊕

n∈ω(Zp)n. ✷
Lemma 1.4. If X is a σ -compact non-compactp-adic manifold of dimensionm, thenX

is isomorphic to
⊕

n∈ω(Zm
p )n.

Proof. A σ -compactp-adic analytic manifold is separable metrizable. So the claim
follows from Serre’s result. ✷

2. Homeomorphism and isomorphism classes

In contrast to the single isomorphism class of one dimensional metrizablep-adic
analytic manifolds of weightℵ1, there are the maximal possible number, 2ℵ1 many,
pairwise non-homeomorphic one dimensional non-metrizablep-adic analytic manifolds
of weightℵ1.

In addition, there is a family of 2ℵ1 pairwise non-isomorphic one dimensionalp-
adic analytic manifolds of weightℵ1, which are all mutually homeomorphic. Recall that
homeomorphic non-compact metrizablep-adic analytic manifolds, of the same dimension,
are isomorphic. Also recall S. Donaldson’s famous result that there are 2ℵ0 pairwise non-
isomorphic (real!) analytic structures onR4.

Both constructions are based on an idea of Nyikos [4].

Definition 2.1. A spaceX is of type I if it is the union of anω1-sequence{Uα}α<ω1 of
open subspaces such thatUβ ⊆ Uα wheneverβ < α, Uλ =⋃

β<λ Uβ for λ limit, and such

thatUα is Lindelöf for all α.
Let X be a type I space. Anyω1-sequence{Uα}α<ω1 witnessing thatX is type I, is called

a canonical sequence forX.

It is easy to see that every type I manifold (real orp-adic analytic) is of weight� ℵ1.
Any two canonical sequences agree on a closed unbounded set of indices:

Lemma 2.2. If a type I spaceX has two canonical sequencesΣ = {Xα}α<ω1 and
Σ ′ = {X′

α}α<ω1, then the setC = {α ∈ ω1: Xα = X′
α} is closed unbounded inω1.



P.M. Gartside, A.M. Mohamad / Topology and its Applications 125 (2002) 323–333 327

It is well known thatω1 can be partitioned intoω1 stationary sets. Fix such a partition
{Aα}α∈ω1 (so

⋃
α∈ω1

Aα = ω1, theAα ’s are pairwise disjoint, and everyAα has non-empty
intersection with every closed unbounded subset ofω1).

Theorem 2.3. There are 2ℵ1 pairwise non-homeomorphic one dimensionalp-adic
analytic manifolds of weightℵ1.

Proof. For eachσ : ω1 → {0, 1}, we will define a type I one dimensionalp-adic analytic
manifoldMσ with a canonical sequence{Mσ

α }α<ω1 of open submanifolds such that

Mσ
α = Zp for α successor, Mσ

λ =
⊕
n∈ω

(Zp)n for λ limit , and,

∣∣∂Mσ
λ

∣∣= {
1 if σ(ξ) = 0,

p if σ(ξ) = 1,
for λ limit,

whereξ is unique such thatα ∈ Aξ .
Assuming, for the moment, we have thesep-adic manifolds, supposeσ �= τ, σ, τ : ω1 →

{0, 1}. We claim Mσ is not homeomorphic toMτ . Well, suppose for a contradiction,
that there is a homeomorphismψ : Mσ → Mτ . Sinceσ �= τ , there isξ ∈ ω1 such that
(with out loss of generality) 0= σ(ξ) �= τ (ξ) = 1. Now C = {α ∈ ω1: α is a limit and
Mτ

α = ψ(Mσ
α )} is closed unbounded. Hence we can pickα ∈ Aξ ∩C. Thenψ carries∂Mσ

α

onto∂Mτ
α , but, by construction, the two boundaries have differing cardinalities.

It remains to show that we can constructMσ with canonical sequence of open
submanifolds{Mσ

α }α∈ω1, as above. In fact, once we have defined theMσ
α s then we

can defineMσ as the union of theMσ
α s with the direct limit topology and unique one

dimensionalp-adic analytic structure given by Lemma 1.2.
We proceed by transfinite recursion onα < ω1. There are three cases. Suppose, first,

thatα is a limit. LetMσ
α be the space with underlying set

⋃
β<α Mσ

β , direct limit topology,
and unique one dimensionalp-adic analytic structure guaranteed by Lemma 1.2. ThenMσ

α

must be isomorphic with
⊕

n∈ω(Zp)n (by Lemma 1.4).
Now suppose,α = β + 1, and β is a successor. ThenMσ

β = Zp . Define Mσ
α =⊕p

i=1(Zp)i , and identifyMσ
β with the first copy ofZp . Note thatMσ

α is isomorphic to
Zp , and all the other hypotheses are satisfied.

The last and most interesting case is whenα = λ + 1, whereλ is a limit. We know that
Mσ

λ =⊕
n∈ω(Zp)n. If σ(ξ) = 0, then letMσ

α be the one point compactification ofMσ
λ ,

with analytic structure of Lemma 1.3. Ifσ(ξ) = 1, then writeMσ
λ =⊕p

i=1(
⊕

n∈ω(Zp)n)i .
One point compactify each of the copies of

⊕
n∈ω(Zp)n, to yield Mσ

α , with analytic
structure of Lemma 1.3. Observe thatMσ

α is isomorphic top copies ofZp , and so is
isomorphic toZp , and, sinceMσ

α is closed and open inMσ , the desired boundary properties
of Mσ

λ hold. ✷
Theorem 2.4. For p � 3. There are2ℵ1 pairwise non-isomorphic one dimensionalp-adic
analytic manifolds of weightℵ1, which are all homeomorphic.
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Proof. For eachσ : ω1 → {0, 1}, we will define a type I one dimensionalp-adic analytic
manifold Nσ with a canonical sequence{Nσ

α }α<ω1 of open submanifolds such that for
α = λ + 1, λ limit

Nσ
α =

{
Zp if σ(ξ) = 0,
Zp ⊕ Zp if σ(ξ) = 1,

whereξ is unique so thatα ∈ Aξ . The manifoldNσ will have the direct limit topology and
analytic structure induced by theNσ

α s. We will also ensure thatNσ
λ+1 is the closure ofNσ

λ ,
for all limit λ, and that the topology and underlying sets of theNσ

α s do not depend onσ .
The last condition, of course, ensures that all the manifoldsNσ are homeomorphic.

Similarly to the proof of Theorem 2.3, ifσ, τ : ω1 → {0, 1}, σ �= τ , but ψ is an
isomorphism ofNσ with Nτ , then for some limitλ, we haveψ(Nσ

λ ) = Nτ
λ . Hence

ψ(Nσ
λ+1) = ψ(Nσ

λ ) = Nτ
λ = Nτ

λ+1. So Nσ
λ+1 and Nτ

λ+1 are isomorphic, when, by con-
struction they are non-isomorphic.

Fix σ , and let us construct theNσ
α s by transfinite recursion onα < ω1. Four cases arise.

Suppose first thatα = β + 1, whereβ is a successor. Then defineNσ
α = Nσ

α ⊕ Zp . Next
suppose thatα = λ, λ a limit. DefineNσ

α =⋃
β<λ Nσ

β with the direct limit topology and
unique one dimensional analytic structure guaranteed by Lemma 1.2.

The final two cases are whenα = λ + 1, for λ a limit. Note thatNσ
λ =⊕

n∈ω(Zp)n. If
σ(ξ) = 0, then embedNσ

λ in Nσ
λ+1 = Zp by the standard embedding of Lemma 1.3. On

the other hand, ifσ(ξ) = 1, then writeNσ
λ = (Zp)0 ⊕⊕

n�1(Zp)n. Embed
⊕

n�1(Zp)n

in Zp by the standard embedding of Lemma 1.3, andNσ
λ in Nσ

λ+1 = (Zp)0 ⊕ Zp in the
natural manner.

Observe that in both the two preceding cases,Nσ
λ+1 is the one point compactification

of Nσ
λ . Thus both the analytic and topological conditions are satisfied by the construc-

tion. ✷

3. Comparison with real manifolds

Probably the two most important results on the general topology of non-metrizable real
manifolds are the following.

Theorem 3.1 (Rudin and Zenor [7], Rudin [6]).It is consistent and independent that every
perfectly normal real manifold is metrizable.

Theorem 3.2 (Reed and Zenor [5]).Every (perfectly) normal Moore real manifold is
metrizable.

Two other, minor but attractive, results concerning real manifolds are (1) a real manifold
with regularGδ diagonal is metrizable, and (2) a real manifold withG∗

δ diagonal is a Moore
space. From the first of these, it follows that submetrizable real manifolds are metrizable.

All these results depend crucially on the local connectedness of real manifolds, and not
at all on the manifold structure. This is exposed by Examples 3.5–3.7 below which are
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counter-examples to the naturalp-adic analogues of the positive results for real manifolds
above.

Our first example, however, demonstrates how to adapt the techniques for constructing
pathological real manifolds to the construction ofp-adic analytic manifolds with similar
properties.

Lemma 3.3. Let τ, σ be topologies on a setX, such thatσ ⊆ τ , (X, σ) is hereditarily
separable and for every countable subsetB of X, |Bσ \ Bτ | � ℵ0. Then (X, τ) is
hereditarily separable.

Proof. Take anyY contained inX. As (X, σ) is hereditarily separable, there is a countable
subsetA of Y such thatAσ ⊇ Y . Let D = (Aσ \ Aτ ) ∩ Y , andB = A ∪ D (note thatB is
countable). ThenBτ ⊇ Aτ ∪ D ⊇ Aσ ⊇ Y . Thus,B is τ -dense inY . ✷
Example 3.4 (CH). There is a spaceX which is Hausdorff, submetrizable, hereditarily
separable, but not Lindelöf, which has the structure of a one dimensionalp-adic analytic
manifold.

Construction. Let X = (
⊕

n∈ω(Zp)n) ⊕ Zp . Write um for the ultra-metric topology
on X. AssumeCH and let{xα}ω�α<ω1

enumerateZp . DefineXω =⊕
n∈ω(Zp)n, Yα =

{xβ : β < α} and letXα = Xω ∪ Yα . Let {Bα}α<ω1 enumerate all countably infinite subsets
of X. Define Bβ = {Bγ : γ < β, Bγ ⊆ Xβ, xβ ∈ Bum

γ } and enumerate eachBβ as
{C(β,n): n ∈ ω}, where eachB ∈ Bβ appears infinitely often in the enumeration ofBβ .

We will construct a sequence{τα}ω�α<ω1 of topologies and a sequence{Aα}ω�α<ω1 of
atlases, whereτα is a topology onXα , Aα is an atlas for a one dimensionalp-adic analytic
manifold structure on(Xα, τα) such that

(1) τα is a 0-dimensional topology refining the ultra-metric topology onXα .
(2) If β < α, then(Xβ, τβ, Aβ) is isomorphic to

⊕
n∈ω Zp , and is an open submanifold

of (Xα, τα, Aα).
(3) If β < α andB ∈ Bβ , thenxβ ∈ Bτα+1.
Suppose we have suchταs andAαs. LetX have topology with basis

⋃
α∈ω1

τα . Then,
by Lemma 1.2,X has a unique one dimensionalp-adic manifold structure, with atlasA.
The topologyτ on X, refines the usual ultra-metric topology, and hence is Hausdorff and
submetrizable. The setsXα are all open inX, and no countable subcollection covers. Hence
X is not Lindelöf.

It remains to show that(X, τ) is hereditarily separable. We do this by checking that
(X, τ) satisfies the hypotheses of Lemma 3.3. So take any countably infinite subsetB of X.
ThenB = Bγ , for someγ . As Bγ is countable, there is aβ0 > γ such thatBγ ⊆ Xβ0. We
aim to show thatBum

γ \Bτ
γ is contained inYβ0+1. If xβ ∈ Bum

γ , β > β0 > γ , then we need to

showxβ ∈ Bτ
γ . For that, pick anyα > β + 1. ThenBγ ∈ Bβ and by(3), xβ ∈ B

τβ+1
γ ⊆ Bτ

γ .

Supposex ∈ Xω, andx ∈ Bum
γ . ThenXω is an open subspace of(X, τ) and has theum

topology. Hencex ∈ Bτ
γ .

To complete the proof we need to construct the topologiesτα and atlasesAα by
transfinite recursion.
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Case. α = β + 1.
Pick a sequence{yn}n∈ω closed and discrete inXβ , such thatyn ∈ Cβ,n and the distances

betweenxβ andyn forms a sequence converging to zero (this is possible because theCβ,ns
enumerateBβ and if B is in Bβ , thenxβ ∈ Bum). Then, for eachn, pick pairwise disjoint
Uβ,n, open in the ultra-metric topology, so thatyn ∈ Uβ,n. Choose an isomorphism ofXβ

with
⊕

n∈ω(Zp)′n ⊕⊕
n∈ω(Zp)n such thatyn ∈ (Zp)n ⊆ Uβ,n.

DefineVβ,k = {xβ} ∪⋃n�k(Zp)n, for k ∈ ω. A basis for(Xα, τα) is τβ ∪ {Vβ,k}k∈ω.
Thus (Xα, τα) is homeomorphic to

⊕
n∈ω(Zp)n and the one point compactification of⊕

n∈ω(Zp)n. Using Lemma 1.3, we giveXα = ⊕
n∈ω(Zp)′n ⊕ ⊕

n∈ω(Zp)n ∪ {xβ}, the
manifold structure, so thatXα is isomorphic to

⊕
n∈ω(Zp)′n ⊕ Zp , andXβ is a dense open

submanifold. LetAα be an atlas for this structure.
By construction,τα andAα satisfy(1) and(2). We check(3) from the list of inductive

hypotheses. Supposeβ + 1 < α, γ < β , Bγ ⊆ Xβ , andxβ ∈ Bum
γ . Requirexβ ∈ B

τα
γ .

SinceBγ ∈ Bβ , Bγ appears infinitely often in the listingCβ,n, so infinitely many of the
yns (used in the definition of the topology atxβ ) are inBγ . So every basic neighbourhood,

Vβ,k, of xβ hits (infinitely many) of theyns in Bγ , thusxβ ∈ B
τα
γ , as required.

Case. α is a limit.
Then letτα have basis

⋃
β<α τβ . By Lemma 1.2, there is a unique manifold structure

on Xα induced by the manifold structures on the open subsets(Xβ, τβ, Aβ). Let Aα be an
atlas for this structure. It is easy to check that the induction hypotheses hold.

In the following example we use the fact thatZp can be naturally identified with all
formal power series of the form

∑∞
n=0 xn · pn, wherexn ∈ {0, 1, . . . , p − 1} (n ∈ ω). The

valuation onZp is given by|∑∞
n=0 xn · pn| = 1/pm, wherem is minimal such thatxm �= 0.

Addition and multiplication are given by formal addition (respectively, multiplication) of
the corresponding formal power series.

Example 3.5. There is a spaceX which is submetrizable, Moore, separable, but not
metrizable, which has the structure of a one dimensionalp-adic analytic manifold.

Construction. We give the construction forp = 2, but it is clear that the technique can
be extended to any primep. The spaceX has underlying setZ2 × (ω + 1).

We define a topologyτ on X, refining the usual metrizable topology, and check it has
the required properties. Then we define charts for(X, τ), and show they are compatible.

Define, for eachx ∈ Z2 andm ∈ ω,

U(x, m) =
( ∞⋃

n=0

(((
n−1∑
i=0

xi · 2i

)
+ 2n · Z2

)
× {n}

)
∪ {(x, ω)

})∩ (Z2 × [m, ω]).
TopologiseX so thatZ2 × ω has the product topology, and each(x, ω) has local basis

{U(x, m)}m∈ω. Denote this topology byτ . Thus(X, τ) is similar to the famous tangent
disc space.

Clearly,(X, τ) is submetrizable, and separable (Z2 × ω is second countable, and dense
in X). It is also developable, as we now establish. Let{Gn}n∈ω be a development for
the metrizable spaceZ2 × ω. DefineHn = {U(x, n): x ∈ Z2} ∪ Gn. Then theHns are
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open covers ofX, and st((x, ω),Hn) = U(x, n) (for all n � 0), while st((x, m),Hn) =
st((x, m),Gn) for n > m.

It remains to specify compatible charts forming an atlas of a one dimensionalp-adic
analytic manifold structure onX. The family{U(x, 0): x ∈ Z2} is an open cover ofX. Fix
an isomorphism,ψ , between

⊕
n∈ω(2n · Z2 × {n}) andZ2 \ {0}. For eachx in Z2, define

φx from U(x, 0) ontoZ2 by

φx

(
(x, ω)

)= 0, φx

((
n−1∑
i=0

xi · 2i + 2n · y, n

))
= ψ

((
2n · y, n

))
.

The φxs are continuous, so{(U(x, 0), φx): x ∈ Z2} is a family of charts. Further, if
x, y ∈ Z2, then, settingW = U(x, 0) ∩ U(y, 0), we have

φy ◦ (φ−1
x |φx(W)

)= idφx(W) and φx ◦ (φ−1
y |φy(W)

)= idφy (W) .

Thus, both transition maps are (trivially) representable as power series.

For our next two examples, observe that if we remove any set of points fromZ2 × {ω}
in the preceding example, then what remains is an open submanifold ofX.

Example 3.6 (MA + ¬CH). There is a spaceY which is separable, (perfectly) normal,
submetrizable and Moore, but not metrizable, which has the structure of a one dimensional
p-adic analytic manifold.

Construction. Under MA+ ¬CH, any subset ofZ2 of sizeℵ1 is aQ-set (so every subset
of that set is aGδ). Fix such aQ-set,Q say, inZ2 × {ω}. Remove all points ofZ2 × {ω}
(considered as a subspace of the preceding example) which are not inQ. Denote byY the
resulting one dimensionalp-adic analytic manifold. ThenY is separable, submetrizable,
and Moore. Mimicking the well known proof for the tangent disc space, one can check that
Y is normal.

Example 3.7. There is a spaceZ which is submetrizable, quasi-developable, separable,
but not perfect, which has the structure of a one dimensionalp-adic analytic manifold.

Construction. Let B be a Bernstein subset ofZ2 and let{Bα}α<2ω be an enumeration of
all countable subsets ofB such thatBum

α is uncountable. For eachα < 2ω, pick

xα ∈ Bum
α \ (B ∪ {xβ}β<α

)
and pick pointsx(α,m) ∈ Bα such that the sequence{x(α,m)}m∈ω converges toxα in Z2 with
the ultra-metric topology.

Let X0 = (Z2 × ω) ∪ (B × {ω}). Consider(X0, τ0) as an open submanifold of the space
in Example 3.5. LetZ = X0 ∪ {(xα, ω)}α<2ω . We will give Z a topologyτ , and manifold
structure, so that:

(1) X0 is an open dense submanifold.
(2) τ refines theum topology.
(3) Z ∩ (Z2 × {ω}) is (naturally) homeomorphic to Gruenhage’s example [3, Exam-

ple 2.17].
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First we describe the topologyτ on Z. A basis forτ is τ0 ∪ {V (xα, n): α ∈ 2ω, n ∈ ω},
whereV (xα, n) = (U(xα, 0) ∪ (

⋃
n∈ωU(x(α,n), 0)) ∩ [Dum(xα, 1/m) × [m, ω]], U(x, m)

as defined in Example 3.5 andDum(xα, 1/m) is the open disc of radius 1/m aboutx in the
metrizable topology onZ2 × (ω + 1). Clearly,(Z, τ ) is submetrizable, separable, and not
perfect ((Z, τ ) contains a homeomorphic copy of Gruenhage’s space, which is not perfect).
It is also quasi-developable, as we now establish. Let{Gn}n∈ω be a development for the
metrizable spaceZ2 × ω. DefineHn = {V (xα, n): α ∈ 2ω} andJn = {U(x, n): x ∈ B}.
Then{Gn}n∈ω ∪{Hn}n∈ω ∪{Jn}n∈ω is a countable collection of open families, which form
a quasi-development forX. To see this, it suffices to note that st((xα, ω),Hn) = V (xα, n)

and st((x, ω),Jn) = U(x, n) (x ∈ B).
It remains to give(Z, τ ) a p-adic manifold structure. Recall that(X0, τ0) already has

a one dimensionalp-adic manifold structure and is an open subspace of(Z, τ ). For each
(xα, ω) in R = Z \ X0, note thatV (xα, 0) is an open set, meetingR only at (xα, ω). By
Lemma 1.2,(Z, τ ) has a one dimensionalp-adic analytic structure, provided we can give
V (xα, 0) a one dimensionalp-adic analytic structure compatible with that onX0.

Fix xα . Note thatV = V (xα, 0) is the one point compactification ofV ∗ = V (xα, 0) \
{(xα, ω)}. HenceV ∗ is an open submanifold ofX0 isomorphic to

⊕
n∈ω(Zp)n. Therefore,

we may giveV the manifold structure ofZp via Lemma 1.3, withV ∗ as an open
submanifold.

4. Open problems, and dimension

All of the examples constructed above are one dimensional, asp-adic manifolds. It is
clear that the constructions could be modified to give examples of any desired analytic
dimension.

Some results pertaining to real (analytic) manifolds depend on dimension. For example,
Rudin and Balogh [1] show that every monotonically normal manifold of dimension at
least two is metrizable. It would be interesting to know whether monotonically normalp-
adic analytic manifolds ofanalyticdimension two (or more) are necessarily metrizable. If
true this would give an example of the analytic structure influencing the general topology
of a p-adic analytic manifold.
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