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Abstract

We are interested in the behaviour of the independent domination number i(G) of a graph
G under edge deletion, and in particular in i−-ER-critical graphs, i.e., graphs for which i(G)
decreases whenever an edge e is removed. If �(G) denotes the domination number of G, we
determine all the i−-ER-critical graphs G such that �(G) = 2 and i(G − e) = 2 for every edge
e of G. Di0erent classes of i−-ER-critical graphs such that i(G − e)¿�(G) for all or some
edges e are described. Finally, for a particular family of circulants, we 1nd the exact value of
i(G − e) for every edge e of the graphs of this family and obtain as a corollary the number of
automorphism classes of their edge sets.
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1. Introduction

We consider simple graphs G=(V (G); E(G)) of order |V (G)|=n and size |E(G)|=
m. The neighbourhood N (v) of a vertex v is {u∈V (G) : uv∈E(G)} and its closed
neighbourhood N [v] is {v} ∪ N (v). If X and Y are two subsets of V (G), we de1ne
N (X ) =

⋃{N (x) : x∈X }, NY (X ) = N (X ) ∩ Y and E(X; Y ) = {xy∈E(G) : x∈X
and y∈Y}. We refer the reader to [5] for domination-related concepts not de1ned
here. The minimum cardinality of a set X which is both independent and dominating
(or equivalently, maximal independent) is the independent domination number and is
denoted by i(G). An independent dominating set of order i(G) of G is called an i-set
of G. Recall that i(G)¿ �(G) for all graphs G, where as usual �(G) denotes the
domination number of G.
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For many graph parameters, such as those of connectedness, colouring or domination,
the study of critical, minimal or maximal graphs under vertex removal, edge removal or
edge addition (in this last case, the added edge belongs to the complementary graph DG
of G) is classical. For criticality with respect to domination related parameters, see for
instance [1–4,6] and the bibliography in [5]. When we remove an edge from a graph G,
the independent domination number i(G) can increase or decrease. For instance, if G is
a star K1;p then i(G)=1 and i(G−e)=2 for all e. If G is a double star formed by two
stars K1;p and an edge e joining their centers, i(G)=p+1 and i(G−e)=2. The graph
G is said to be i−-edge-removal-critical, i−-ER-critical for short, if i(G − e)¡i(G)
for every edge e∈E(G). Similarly, G is i-ER-critical if i(G − e)¿i(G)) for every
edge. Ao [1] proved that the class of i-ER-critical graphs consists of disjoint union
of stars. We have no similar description of i−-ER-critical graphs, which form a much
larger and more complicated class. Some of them have been described in [4] and we
continue this work here.
In Sections 2 and 3 we construct families of i−-ER-critical graphs with �(G) = 2

or 3. In Section 4 we completely determine the value of i(G − e) for every edge e
of a graph belonging to a particular family of circulants. As i(G) is an invariant, the
knowledge of i(G− e) gives interesting information on the classes induced in the edge
set E(G) by the automorphism group of G.
Let us begin with some easy observations on i−-ER-critical graphs:

O1. Since �(G − e)¿ �(G) for every graph G and every edge e∈E(G), i(G − e)¿
�(G) for every edge. Therefore if G is i−-ER-critical, then i(G)¿�(G).

O2. The graph G satis1es �(G) = 1 if and only if G contains a universal vertex, i.e.,
a vertex v such that N [v] = V (G), and in this case i(G) = �(G) = 1. Hence if G
is i−-ER-critical, then �(G)¿ 2.

O3. If G is not connected, say G = G1 ∪ G2 ∪ · · · ∪ Gp, then �(G) =
∑p

j=1 �(Gj),
i(G) =

∑p
j=1 i(Gj), and G is i−-ER-critical if and only if each nontrivial compo-

nent of G is i−-ER-critical. In particular, every i−-ER-critical graph with �(G)=2
(respectively with �(G) = 3 and without isolated vertices) is connected.

O4. No graph of order n6 5 is i−-ER-critical.
O5. If i(G−uv)¡i(G) for some edge uv of G, then {u; v} is contained in some i-set

of G − uv.

More generally, the next result improves Lemma 16 in [4].

Proposition 1. A graph G is i−-ER-critical if and only if for every uv∈E(G), G
has a dominating set D with |D|¡i(G) such that u and v are the only non-isolated
vertices in G[D].

Proof. Let uv be any edge of G. If G has a dominating set D with |D|¡i(G), where
uv is the unique edge of G[D], then D is an independent dominating set of G − uv
and thus i(G − uv)6 |D|¡i(G). Therefore G is i−-ER-critical.
Conversely, if G is i−-ER-critical, let uv be any edge of G and let I be an i-set of

G−uv. Then |I |= i(G−uv)¡i(G). If {u; v}* I , then I is an independent dominating
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set of G with fewer than i(G) vertices, a contradiction. Hence {u; v} ⊆ I and I is a
dominating set of G containing the unique edge uv.

2. i− -ER-critical graphs with domination number two

As seen in Observation O3, every i−-ER-critical graph with �(G) = 2 is connected.
We 1rst characterise the i−-ER-critical graphs such that i(G− e) = �(G) = 2 for every
edge e of G.

Theorem 2. The graph G is i−-ER-critical with �(G) = 2 and i(G − e) = 2 for every
e∈E(G) if and only if G is a complete multipartite graph Kn1 ;n2 ;:::;np with p¿ 2 and
nj¿ 3 for 16 j6p.

Proof. The suJciency is immediate since i(Kn1 ;n2 ;:::;np) = min{n1; n2; : : : ; np}¿ 3 and
i(Kn1 ;n2 ;:::;np − e) = 2 for every edge e.
Conversely let G be a graph satisfying �(G) = 2, i(G)¿ 3 and i(G − e) = 2 for

every edge e. By Proposition 1, this implies that for any pair x; y of vertices of G,
{x; y} is a dominating set of G if and only if xy is an edge of G. By Observation
O4, we know that n¿ 6 and we consider a �-set {x; y} of G (hence xy∈E(G)). Let
X = N (x) − N [y], Y = N (y) − N [x] and Z = N (x) ∩ N (y). Note that X 
= �, for
otherwise y dominates G, a contradiction. Similarly, Y 
= �. If G[X ] contains an edge
aa′, the set {a; a′} dominates G and in particular y, in contradiction to the de1nition
of X . Hence G[X ], and similarly G[Y ], is independent. Moreover, G[X; Y ] is complete
bipartite since for every vertex a of X , {a; x} dominates Y . We complete the proof by
induction on n¿ 6.
If n = 6 then, as i(G)¿ 3, x and y have degree at most 3 and necessarily Z = �,

|X |= |Y |= 2 and G ∼= K3;3.
For n¿ 7, if Z = � then G is the complete bipartite graph with bipartition (X ∪

{y}; Y ∪ {x}). If Z 
= � then for every vertex c of Z , {x; c} dominates Y and {y; c}
dominates X . Hence all the edges between Z and X , and between Z and Y , are in G,
whence every dominating set of G[Z] is a dominating set of G and thus �(G[Z])¿ 2
and i(G[Z])¿ 3. If Z is independent, the graph G is complete tripartite with partition
(X ∪{y}; Y ∪{x}; Z). Otherwise, for every edge cc′ of G[Z], {c; c′} dominates G, and
in particular Z , and therefore �(G[Z])= i(G[Z]− cc′)=2. By the induction hypothesis,
G[Z] is a complete multipartite graph with partition (Z1; : : : ; Zq). Hence G is also a
complete multipartite graph with partition (X ∪{y}; Y ∪{x}; Z1; : : : ; Zq). Since the value
of i(G) is the minimum order of the classes in the partition of V (G), each class has
at least three elements.

The next corollary is obvious since if G is i−-ER-critical with i(G)=3, then �(G)=2
and i(G − e) = 2 for every edge e of G.

Corollary 3. The i−-ER-critical graphs with independent domination number 3 are
the complete multipartite graphs Kn1 ;n2 ;:::;np with p¿ 2 and 3 = n16 n26 · · ·6 np.
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We now describe two families of i−-ER-critical graphs with �(G)=2 but for which
i(G−e)¿ 2 for some edges e of G. They can be seen as generalisations of the family
of Theorem 2.

The family F1: Let H1, H2; : : : ; Hp be disjoint i−-ER-critical graphs with i(Hj) =
q¿ 4 for 16 j6p and i(Hj−e)¿ �(Hj)¿ 3 for every edge of Hj. (The next section
contains proofs that such graphs exist for any value of q¿ 4.) We construct G by
adding all possible edges between the Hj. Then �(G) = 2 and i(G) = q since the only
independent dominating sets of G are independent dominating sets of some Hj. If
e∈E(Hj) for some j, then i(G − e) = i(Hj − e)¡i(Hj) = i(G). If e∈E(Hj; Hk) for
some j 
= k, then i(G − e) = 2¡i(G). Therefore G is i−-ER-critical with �(G) = 2
and i(G − e)¿ 2 for each edge e of the Hj’s.

The family F2: The graphs G of Family F2 are constructed as follows.

• V (G) = S1 ∪ S2 ∪ · · · ∪ Sp, where
(i) p¿ 3 and each Sj is independent,
(ii) min16j6p |Sj|= q¿ 4,
(iii) |Sj ∩ Sk |6 q− 3 for all 16 j 
= k6p,
(iv) if Sj ∩ Sk 
= � and Sj ∩ Sl 
= �, then Sk ∩ Sl = �,
(v) for at least one pair u, v of vertices, Su ∩ Sv =� for every set Su containing u

and every set Sv containing v.
• The set E(G) consists of all edges joining two vertices not contained in the
same Sj.

By (iv), each vertex belongs to at most two Sj’s and has degree at least one. The two
vertices u and v of (v) are adjacent and form a dominating set of G. Hence �(G)6 2
and since G has no universal vertex, �(G) = 2. The maximal independent sets of G
are the sets Sj and thus i(G) = q.
Let xy∈E(G). If Sx∩Sy=� for every set Sx (respectively Sy) containing x (respec-

tively y), then the set {x; y} dominates G and i(G − xy) = 2. If S = Sx ∩ Sy 
= � for
some Sx and Sy, then neither x nor y dominates S, hence i(G − xy)¿ 2 and by (iv),
w 
∈ Sj for every w∈ S and every Sj di0erent from Sx and Sy. Therefore {x; y} ∪ S,
which contains xy as its only edge, dominates G and thus i(G− xy)6 |S|+26 q− 1
by (iii). Hence 36 i(G − xy)¡i(G).
Therefore G is i−-ER-critical with �(G) = 2 and if the Sj’s are not all disjoint,

i(G − e) is not always equal to �(G). When Sj ∩ Sk = � for all j 
= k, the graph G is
a complete multipartite graph obtained in Theorem 2.

3. i-ER-critical graphs with domination number at least three

In this section we construct two families F3 and F4 of i−-ER-critical graphs with
�(G) = 3 and i(G) arbitrarily large. For the graphs G of F3, i(G − e) = 3 for every
edge of G while for the graphs G of F4, i(G − e)¿ 3 for every edge of G.
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Fig. 1. An array for the graphs in F3.

The family F3: Let Z+ denote the set of positive integers and consider an array A
of points (i; j) in Z+×Z+ whose rows Rj and columns Ci are of nonincreasing length
as j and i increase. Speci1cally (see Fig. 1 for an example), for i∈{1; : : : ; p}, p¿ 4,
we de1ne the columns Ci by

Ci = {(i; y)∈Z+ × Z+ : y∈{1; : : : ; ni}};
where n1¿ · · ·¿ np, n2 = n3 = n4¿ 4, and if ni 
= 1, then ni¿ 4. Let i′ be the largest
index such that ni′ 
= 1; note that i′ ∈{4; : : : ; i}. It follows that the rows Rj satisfy

|R1|= p;

|R2|= |R3|= |R4|= ni′ ¿ 4

(the choice of i′ implies that ni′ ¿ 4, ni = 1 if i¿ i′, and ni′ − ni′+1¿ 3, whence the
equalities) and

|Rj| 
= 1 ⇒ |Rj|¿ 4

since n2 = n3 = n4. Let j′ be the largest index such that |Rj′ | 
= 1.
Now let HA be the graph with vertex set

V (HA) = {(x; y) : (x; y)∈A}
and edge set

E(HA) = {{(x; y); (x′; y′)} : x 
= x′ and y 
= y′}
and let G be any graph isomorphic to HA. The family F3 consists of all graphs G
constructed in this way.
No vertex of G is universal. If u and v are two non-adjacent vertices of G, we may

suppose without loss of generality that u; v∈Ci for some i, and then Ci−{u; v} 
= � is
not dominated by {u; v}. If u and v are two adjacent vertices of G, say u= (i; j) and
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v=(k; l) with i¡ k and j 
= l, then (i; l) is not dominated by {u; v}. Hence �(G)¿ 2.
Since {(1; 1); (1; 2); (2; 1)} dominates G, �(G) = 3.
The maximal independent sets of G are the rows Rj and columns Ci of length

bigger than 1. Therefore i(G) = min(|Rj′ |; ni′)¿ 4. For any edge e = {(i; j); (k; l)} of
G with i¡ k and j 
= l, {(i; j); (i; l); (k; l)} is an independent dominating set of G− e.
Therefore 3 = �(G)6 i(G − e)6 3, that is, i(G − e) = 3. Hence the graphs G of F3

are i−-ER-critical with �(G) = 3 and i(G − e) = 3 for every edge e.

Remark. Note that if ni =p for all i∈{1; : : : ; p}, then G ∼= Kp × Kp. Then i(G) =p,
i(G− e) = 3 for every edge of G and i(G+ e) =p− 1 for every edge e∈E( DG). This
provides an example of graphs which are both i−-ER-critical and i−-EA-critical (i.e.,
i(G) decreases under any edge addition).

The family F4: Consider two complete bipartite graphs with respective bipartitions
(X; Y ) and (Z; T ). Let |X |=p, |Y |=q, |Z |= r, |T |= s, and suppose 46p¡q¡r¡s
and p + r ¿ s + 2. The graph G is obtained by joining an extra vertex w to all the
vertices in X ∪Z . Let x (y; z; t, respectively) be any vertex of X (Y; Z; T , respectively).
The automorphism group of G induces four orbits on the edge set of G, respectively,
formed by the edges of type wx; wz; xy; zt. Hence i(G− e) takes at most four di0erent
values. It is easy to check that {x; w; z} is a �-set of G, and that X ∪ Z (respectively
{w; x} ∪ T , {w; z} ∪ Y , {x; y} ∪ Z , {z; t} ∪X ) is an i-set of G (respectively of G−wx,
G−wz, G−xy, G−zt). Hence �(G)=3, i(G)=p+r, i(G−wx)=s+2, i(G−xy)=r+2,
i(G − wz) = q+ 2, i(g− zt) = p+ 2 and thus

�(G)¡i(G − zt)¡i(G − wz)¡i(G − xy)¡i(G − wx)¡i(G):

Therefore G is an i−-ER-critical graph with i(G − e)¿�(G) = 3 for every edge e of
G.
By starting with more than two complete bipartite graphs, the family F4 can be

generalised to i−-ER-critical graphs with higher values of �(G). For instance, the graph
G obtained from q¿ 2 complete bipartite graphs Kp;p with p¿ 3 by adding an extra
vertex w joined to all the vertices of one class of each Kp;p satis1es

�(G) = q+ 1; i(G − e) = (q− 1)p+ 2¿�(G)

for every edge e and

i(G) = pq¿ i(G − e):

Note that the graphs in the families F3 and F4 and its generalisation mentioned
above prove that given any two integers �¿ 3 and i¿ 4, there exists an i−-ER-critical
graph G with �(G) = � and i(G) = i.

4. The i− -ER-criticality of a family of circulants

In this section we determine the e0ect of the removal of an edge on the independent
domination number of the graphs of a particular family of circulants. This study was
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initiated in [4] and we complete it here by 1nding the value of i(G − e) for all the
edges e of G.

The family F5: The graphs G=Cn 〈1; 3; : : : ; 2r − 1〉 of F5 are de1ned as follows:
given the positive integers r; m; q, with m¿ 2, q odd and 16 q6 2r− 1, the order of
G is n = m(2r + 1) + q and its vertices are labelled v1; v2; : : : ; vn = v0. The edges of
G are vivi+1, vivi+3; : : : ; vivi+2r−1 with 16 i6 n, where the indices are taken modulo
n. The labelling of the vertices implicitly de1nes an orientation on the cycle C =
v0v1 · · · vn−1vn. The neighbours vi−1, vi−3; : : : ; vi−(2r−1) of the vertex vi are called its
negative neighbours while vi+1, vi+3; : : : ; vi+2r−1 are its positive neighbours. For two
vertices vi and vj of G, C[vi; vj] denotes the segment of C between vi and vj, respecting
its orientation, while CG[vi; vj] denotes the subgraph of G induced by {vi; vi+1; : : : ; vj}. If
S is a subset of vertices of G, we say that two of its vertices, vi and vj, are consecutive
on C if one of the two arcs vivi+1 · · · vj and vjvj+1 · · · vi of C contains no other vertex
of S.
We note that for any graph G in F5, n and m have di0erent parities, G is vertex-

transitive of degree 2r, and the automorphism group of G induces at most r orbits in
the edge set, each of them represented by an edge of the type v0vl, 16 lodd6 2r−1.

Lemma 4. Let r be a positive integer, C an arbitrarily oriented path or cycle of length
at least 2r + 3, and H the graph obtained from C by adding an edge between each
pair of vertices at distance 3; 5; : : : ; 2r − 1 on C. If S is an independent dominating
set of H, then any two consecutive vertices of S are at distance 2 or 2r + 1 on C.

Proof. The vertices of C are labelled 1; 2; : : : ; |V (C)| in accordance with its orientation.
Let a¡b be two vertices of S which are consecutive on C. Since S is independent,
b 
∈ {a+1; a+3; : : : ; a+2r−1}. Suppose b¿a+2. The vertex a+2 must be dominated
by S. All the negative neighbours (a + 2) − 1, (a + 2) − 3; : : : ; (a + 2) − (2r + 1) of
a + 2 in H , if they exist in the case of a path, are adjacent to a and thus are not
in S. Similarly, all the positive neighbours a + 3, a + 5; : : : ; a + 2r + 1 of a + 2, if
they exist, are adjacent to a and thus do not belong to S, except the last one. Hence
a+ 2r + 1∈ S. Moreover the set {a; a+ 2r + 1} dominates C[a; a+ 2r + 1] and thus
a+ 2r + 1 is the 1rst vertex of S after a in C. Therefore a+ 2r + 1 = b.

Note that, following the notation of Lemma 4, any pair {a; b} of vertices of C with
b−a odd and 36 b−a6 2r+1 dominates the whole set {a; a+1; a+2; : : : ; b−1; b}.
The values of the parameters �(G), i(G) and ,(G) for the graphs G of a family

of circulants more general than F5 were determined in [4]. Here we just need �(G)
and i(G) when G ∈F5. Theorem 5 gives a short proof to determine these values by
means of a technique, based on Lemma 4, which will be used repeatedly in the proof
of Theorem 6.

Theorem 5. Let r; m; q be positive integers such that m¿ 2 and 16 qodd6 2r − 1,
and let G be the circulant Cn 〈1; 3; : : : ; 2r−1〉 with n=m(2r+1)+q. Then �(G)=m+1
and i(G) = m+ r + 1

2(q− 1).
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Proof. (1) The graph G is 2r-regular and thus

�(G)¿
⌈

n
2r + 1

⌉
= m+

⌈
q

2r + 1

⌉
= m+ 1:

On the other hand, the set

D = {v0; v2r+1; v2(2r+1); : : : ; vm(2r+1)}
is a dominating set of m+ 1 elements. Indeed, as remarked above,

{vk(2r+1); v(k+1)(2r+1)}
dominates the set {vi : k(2r + 1)6 i6 (k + 1)(2r + 1)} for 06 k6m − 1, and
since q= n− m(2r + 1) is odd with q6 2r − 1, {vm(2r+1); vn} dominates the set {vi :
m(2r + 1)6 i6 n}. Hence �(G) = m+ 1.
(2) By Lemma 4, two vertices of an independent dominating set I of G which are

consecutive on the cycle C = v0v1 · · · vn are at distance 2 or 2r + 1 on this cycle. To
construct I as small as possible, we partition C into as many intervals of length 2r+1
as possible, and intervals of length 2. Since n=m(2r+1)+q=(m−1)(2r+1)+2r+1+q
with q odd, and thus 2r+1+ q even, the greatest number of intervals of length 2r+1
is m− 1 and the number of intervals of length 2 is 1

2 (2r + q+ 1). Hence

i(G) = m− 1 + 1
2 (2r + 1 + q) = m+ r + 1

2(q− 1):

For instance, the set

I1 = {v2r ; v2(2r+1)−1; : : : ; v(m−1)(2r+1)−1; v(m−1)(2r+1)+1; v(m−1)(2r+1)+3; : : : ; vn−3; vn−1}
is an i-set of G.

The following theorem determines the modi1cation of i(G) under the removal of
any edge of G.

Theorem 6. Let r; m; q be positive integers with m¿ 2, r¿ 2, q odd and 16 q6 2r−
1, and let n = (2r + 1)m + q. Let G be the circulant graph Cn 〈1; 3; : : : ; 2r − 1〉
and let el, with l odd, 16 l6 2r − 1, be any edge of G joining two vertices at
distance l on the cycle C = v0; v1; : : : ; vn. Then

i(G − el) =




m+ 1 +
q− l
2

if 16 lodd6 q;

m+ 1 +
q+ l
2

if q¡ 2r − 3 and q¡ lodd6 2r − 3;

m+ r +
q− 1
2

= i(G) if q¡ 2r − 1 and l= 2r − 1:

Proof. For each value of l, it is suJcient (by symmetry) to prove the result for one
particular edge el. The proof is illustrated in Figs. 2–6 for G = C38〈1; 3; 5; 7; 9〉, i.e.,
m= 3, r = 5 and q= 5.
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Fig. 2. C38〈1; 3; 5; 7; 9〉 with l = q = 5 and i(G − e5) = 4 = �(G).

First consider the case l= q (see Fig. 2). Let eq = v0vq. The set

D = {v0; v2r+1; v2(2r+1); : : : ; vm(2r+1)}
de1ned in the proof of Theorem 5, when rotated clockwise by q vertices, is an inde-
pendent dominating set of G − v0vq. Hence

i(G − eq)6m+ 1:

On the other hand,

i(G − eq)¿ �(G − eq)¿ �(G) = m+ 1

by Theorem 5, and thus

i(G − eq) = m+ 1:

Now consider lodd 
= q and the edge el = v0vl. Let us denote by T (respectively
by S) the set of the independent dominating sets of G − el not containing {v0; vl}
(respectively containing {v0; vl}). Then

i(G − el) = min{|T |; |S| : T ∈T and S ∈S}:
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: i-set of G and of G - e9

Fig. 3. C38〈1; 3; 5; 7; 9〉 with l = 9 = 2r − 1, S0 = {9; 20; 22; 24; 26; 28; 30; 32; 34; 36; 38}; |S0| = 11¿
i(G) = i(G − e9) = 10.

A set T in T is also an independent dominating set of G and thus |T |¿ i(G), so that
min{|T | : T ∈T}¿ i(G). Since for every lodd6 2r − 1, the i-set I1 of G given in
the proof of Theorem 5 is an independent dominating set of G − v0vl not containing
{v0; vl}, min{|T | : T ∈T}= i(G). Therefore

i(G − el) = min{i(G); |S| : S ∈S}:
Consider the case q¡ 2r−1, l=2r−1, the edge el=v0vl and the segment C[vl; v0]

of the cycle C. (See Fig. 3.) The independent dominating sets S of G − el containing
{v0; vl} are disjoint from {v1; v2; : : : ; vl−1} and are independent dominating sets of the
subgraph CG[vl; v0]. By Lemma 4, the distance on C between two vertices of such a
set S is 2 or 2r + 1. The segment C[vl; v0] contains n− (2r − 2) vertices determining

m(2r + 1) + q− 2r + 1= (m− 1)(2r + 1) + q+ 2

= (m− 2)(2r + 1) + q+ 2r + 3

intervals of length 1 on C. Since q− 2r + 1 is negative and q+ 2 is odd, the number
of intervals between two consecutive vertices of S is at least m − 2 + 1

2 (q + 2r + 3).
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n + l - 2r - 1

Fig. 4. C38〈1; 3; 5; 7; 9〉 ∈F5 with l = 1, S′′ = {12; 23; 25; 27}, i(G − e1) = 6.

Hence

|S|¿m− 2 + 1
2 (q+ 2r + 3) + 1 = m+ r + 1

2(q+ 1)¿i(G);

and thus i(G − el) = i(G). Note that the set

S0 = {vl; vl+(2r+1); vl+2(2r+1); : : : ; vl+(m−2)(2r+1); vl+(m−2)(2r+1)+2;

vl+(m−2)(2r+1)+4; : : : ; vl+(m−2)(2r+1)+q+2r+3};
where, since l=2r− 1, vl+(m−2)(2r+1)+q+2r+3 = vn, is an independent dominating set of
G − el containing {v0; vl} and of order exactly m+ r + 1

2(q+ 1).
In the remaining two cases q¿ 1 and 16 lodd ¡q, or q¡ 2r−3 and q¡ lodd6 2r−

3, we consider as previously the edge el = v0vl and the set S of the independent
dominating sets of G − el containing {v0; vl}. For each set S of S, the set S ′ = S −
{v0; vl} is equal to S ∩ C[v2r+1; vn+l−2r−1], where v2r+1 is the positive nonneighbour
of v0 at distance 2r + 1 from v0 on C and vn+l−2r−1 is the negative nonneighbour
of vl at distance 2r + 1 from vl on C. Let S ′′ be any independent dominating set of
CG[v2r+1; vn+l−2r−1]− NC[v2r+1 ;vn+l−2r−1]({v0; vl}). If l= 1 (see Fig. 4), then

NC[v2r+1 ;vn+l−2r−1]({v0; vl}) = �;



122 E.J. Cockayne et al. / Discrete Mathematics 276 (2004) 111–125

138 = 0

2
3

4

5

6

7

11 = 2r + 1

8

9

10

12

14

16

20

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
37

Fig. 5. C38〈1; 3; 5; 7; 9〉 with l = 3, S′′ = {14; 25; 27} and i(G − e3) = 5.

while if l¿ 1, then

NC[v2r+1 ;vn+l−2r−1](vl) = {v2r+2; v2r+4; : : : ; v2r−1+l}
and

NC[v2r+1 ;vn+l−2r−1](v0) = {vn−2r+1; vn−2r+3; : : : ; vn−2r+l−2}:
In the case q¿ 1 and 1¡lodd ¡q (Fig. 5), the set

S ′′ = {v2r+1+l; v2(2r+1)+l; v3(2r+1)+l; : : : ; v(m−1)(2r+1)+l; v(m−1)(2r+1)+l+2;

v(m−1)(2r+1)+l+4; : : : ; v(m−1)(2r+1)+l+(q−l)}
avoids the vertices of NC[v2r+1 ;vn+l−2r−1]({v0; vl}) and is a suitable set S ′. Its order is
|S ′′|= m− 1 + 1

2 (q− 1). Adding the two vertices v0 and vl to S ′′ gives

i(G − el)6m+ 1 + 1
2(q− 1):

It remains to prove that no set S ′ is smaller than S ′′. The vertices of S ′′ were chosen
such that (m − 1)(2r + 1) + l¡n − 2r + 1 (where n − 2r + 1 is the last neighbour
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n + l - 2r - 1 = 34

Fig. 6. C38〈1; 3; 5; 7; 9〉 with l = 7 = 2r − 3¿ 9, S′′ = {11; 22; 24; 26; 28; 30; 32; 34} and i(G − e7) = 10 =
|S′′| + 2 = i(G).

of v0 in C[v2r+1; vn+l−2r−1]), but vm(2r+1)+l is not in C[v2r+1; vn+l−2r−1] since m(2r +
1) + l¿n + l − 2r − 1. That is, assuming v2r+1+l ∈ S ′ and starting from this vertex,
we took as many vertices at distance 2r+1 on C as possible. So we cannot construct
a set S ′ containing v2r+1 and smaller than S ′′. If the set S ′ does not contain v2r+1+l
then, in order to dominate v2r+1, it contains v2r+1 itself or one of its neighbours v2r+1+j
with l + 26 jodd6 2r − 1, since the other neighbours of v2r+1 in C[v2r+1; vn+l−2r−1]
are in NC[v2r+1 ;vn+l−2r−1](vl). If S

′ contains one vertex v2r+1+j of the second type, then,
because of its independence, it cannot contain any neighbour of v2r+1+l and thus cannot
dominate v2r+1+l. Hence S ′ contains v2r+1. Starting from v2r+1, can we construct S ′

with more intervals of length 2r+1 between two consecutive vertices than in S ′′, that is
with at least m−1 intervals of length 2r+1? The answer is negative because the vertex
v2r+1+(m−1)(2r+1) = vn−q, and a fortiori any vertex vn−q+2k , is in NC[v2r+1 ;vn+l−2r−1](v0) or
is not in C[v2r+1; vn+l−2r−1]. Hence if S ′ does not contain v2r+1+l, then |S ′|¿ |S ′′|.
It follows that min{|S|; S ∈S} = m + 1 + 1

2(q − 1) and since this value is less than
i(G) = m+ r + (q− 1)=2,

i(G − el) = m+ 1 + 1
2(q− 1):



124 E.J. Cockayne et al. / Discrete Mathematics 276 (2004) 111–125

In the case q¡ 2r − 3 and q¡lodd6 2r − 3 (Fig. 6), the set

S ′′ = {v2r+1; v2(2r+1); : : : ; v(m−1)(2r+1); v(m−1)(2r+1)+2; v(m−1)(2r+1)+4;

: : : ; v(m−1)(2r+1)+q+l};
where v(m−1)(2r+1)+q+l= vn+l−2r−1, is a suitable set S ′ of order m−1+(q+ l)=2. Does
there exist any set S ′ smaller than S ′′? Since m(2r + 1) is at least n− 2r + 1 and has
the same parity as the neighbours of v0, the sets S ′ containing v2r+1 cannot contain
more vertices at distance 2r + 1 on C than S ′′ and thus are not smaller than S ′′. If
S ′ does not contain v2r+1 then it contains v2r+1+l, for otherwise, in order to dominate
both v2r+1 and v2r+l, it must contain two adjacent vertices. Starting from v2r+1+l, we
cannot include more vertices at distance 2r + 1 on C in S ′ than in S ′′, and thus S ′ is
not smaller than S ′′. Adding {v0; vl} to S ′′, we 1nd that the minimum cardinality of
an independent dominating set S of G − el containing {v0; vl} is m + 1 + (q + l)=2.
Since l6 2r − 3, this cardinality is at most m+ r + (q− 1)=2 = i(G) with equality if
and only if l= 2r − 3. Therefore

i(G − el) = m+ 1 + 1
2(q+ l):

Theorem 6 determines which graphs of F5 are i−-ER-critical.

Corollary 7. A circulant Cn 〈1; 3; : : : ; 2r − 1〉 belonging to the family F5 is i−-ER-
critical if and only if r¿ 2 and q= 2r − 1.

Proof. When r = 1, then G is simply the cycle Cn which is not i−-ER-critical since
i(Cn)= i(Pn)=�n=3�. When r¿ 2 we use Theorem 6. If q¡ 2r−1 then i(G−e2r−1)=
i(G) and thus G is not i−-ER-critical. If q= 2r − 1 then for all 16 lodd6 2r − 1,

i(G − el)6m+ 1 + 1
2(q− 1)¡m+ r + 1

2(q− 1) = i(G)

and thus G is i−-ER-critical.

This result provides an example of an i−-ER-critical graph satisfying �(G) = � and
i(G) = i for two given integers �¿ 3 and i¿ � with i + � even. Indeed, the graph G
of F5 de1ned by m=�−1, r=(i−�+2)=2 and q= i−�+1 satis1es these conditions.
Another by-product of Theorem 6 is the determination of all the orbits induced by

the automorphism group of G in its edge set.

Theorem 8. Let r; m; q be positive integers with m¿ 2, r¿ 2, q odd and 16 q6 2r−
1, and let n = (2r + 1)m + q and G = Cn 〈1; 3; : : : ; 2r − 1〉. Then the automorphism
group of G induces r classes in its edge set E.

Proof. In the circulant G, any two edges el of the same type belong to the same class
and thus the number of orbits in E is at most r. Now consider two edges el = v0vl
and el′ = v0vl′ with l 
= l′. If i(G − el) 
= i(G − el′), or if the minimum cardinality
of an independent dominating set of G − el containing {v0; vl} is di0erent from the
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minimum cardinality of an independent dominating set of G − el′ containing {v0; vl′},
then el and el′ do not belong to the same class.
For each edge el the value of i(G − el) is given in Theorem 6. If q = 2r − 1 then

i(G−el) takes r di0erent values, namely m+1 for l=2r−1, m+2 for l=2r−3; : : : ; m+r
for l = 1. If q = 2r − 3 then i(G − el) also takes r di0erent values, namely m + 1
for l = 2r − 3, m + 2 for l = 2r − 5; : : : ; m + r − 1 for l = 1, i(G) = m + 2r − 2 for
l= 2r − 1. If r¿ 3 and q¡ 2r − 3 then i(G − el) takes the r values m+ 1 for l= q,
m+2 for l= q− 2; : : : ; m+ (q+1)=2 for l=1, m+ q+2 for l= q+2, m+ q+3 for
l= q+4; : : : ; m+ r+ (q− 1)=2 for l=2r− 3, i(G) =m+ r+ (q− 1)=2 for l=2r− 1.
All these values are distinct except the last two ones. But in this case, as is shown in
the proof of Theorem 6, the minimum cardinality of an independent dominating set of
G− e2r−1 containing {v0; v2r−1} is m+ r+(q+1)=2 while the minimum cardinality of
an independent dominating set of G− e2r−3 containing {v0; v2r−3} is m+ r+(q−1)=2.
Hence e2r−1 and e2r−3 do not belong to the same class, which achieves the proof.
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