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The interrelations between (upper and lower) Minkowski contents and (upper and lower)
surface area based contents (S-contents) as well as between their associated dimensions
have recently been investigated for general sets in R

d (cf. Rataj and Winter (in press) [6]).
While the upper dimensions always coincide and the upper contents are bounded by
each other, the bounds obtained in Rataj and Winter (in press) [6] suggest that there is
much more flexibility for the lower contents and dimensions. We show that this is indeed
the case. There are sets whose lower S-dimension is strictly smaller than their lower
Minkowski dimension. More precisely, given two numbers s, m with 0 < s < m < 1, we
construct sets F in R

d with lower S-dimension s + d − 1 and lower Minkowski dimension
m + d − 1. In particular, these sets are used to demonstrate that the inequalities obtained
in Rataj and Winter (in press) [6] regarding the general relation of these two dimensions
are best possible.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

For a bounded set A ⊂ R
d and r � 0, let

Ar :=
{

x ∈ R
d: inf

a∈A
|x − a| � r

}
be the r-parallel set (or r-neighbourhood) of A. Write V (Ar) := λd(Ar) for the volume of Ar and Hd−1(∂ Ar) for the surface
area of its boundary. (λd is the Lebesgue measure and Ht the t-dimensional Hausdorff measure.) Recall that the s-
dimensional lower and upper Minkowski contents of A are defined by

Ms(A) := lim inf
r→0

V (Ar)

κd−srd−s
and Ms(A) := lim sup

r→0

V (Ar)

κd−srd−s
,

where κt := π t/2/�(1 + t
2 ). For integers t , κt is the volume of the unit ball in R

t . If Ms(A) = Ms(A), then the common
value Ms(A) is the s-dimensional Minkowski content of A. Denote by

dimM A := inf
{

t � 0: Ms(A) = 0
}

and dimM A := inf
{

t � 0: Ms(A) = 0
}

the lower and upper Minkowski dimension of A. If both numbers coincide, the common value dimM A is the Minkowski
dimension of A. It is well known that the Minkowski dimension coincides with the box counting dimension, cf. for instance
[1] or [5]. See also the beginning of Section 4 for alternative definitions of dimM .
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Minkowski contents and Minkowski dimension have many applications, for instance in the theory of fractal strings
and sprays, where the spectral properties of a domain have been shown to be deeply connected with the Minkowski
content of its boundary, see [2] and the references therein; and in the study of singular integrals, cf. [11]. Box counting
methods are widely used in the applied sciences to estimate the fractal dimension, i.e. dimM , of ‘rough’ objects, cf. [1].
Some variant of the Minkowski content has been proposed as a texture parameter (lacunarity) for finer classifications,
cf. [4]. It seems therefore of vital interest to illuminate further the geometric meaning and the mathematical properties of
Minkowski contents, for instance by providing alternative definitions and studying related concepts.

One of these is the notion of S-content (or surface area based content), arising when in the definition of the Minkowski
content the volume V (Ar) is replaced with the surface area Hd−1(∂ Ar). It was studied in [6]. For 0 � s < d, let

S s(A) := lim inf
r→0

Hd−1(∂ Ar)

(d − s)κd−srd−1−s
and S s(A) := lim sup

r→0

Hd−1(∂ Ar)

(d − s)κd−srd−1−s

denote the lower and upper s-dimensional S-content of A. If both numbers coincide, the common value S s(A) is
the (s-dimensional) S-content of A. For convenience, we set S d(A) := 0 (which is well motivated by the fact that
limr→0 rHd−1(∂ Ar) = 0, cf. [6, p. 4]). The numbers

dimS A := inf
{

t � 0: S t(A) = 0
}

and dimS A := inf
{

t � 0: S t(A) = 0
}

are the lower and upper S-dimension of A, respectively, and, if they coincide, the common value dimS A will be called S-
dimension of the set A.

The S-content is not only a natural counterpart to the Minkowski content. Both contents appear as special cases in
the framework of fractal curvatures. More precisely, Minkowski content and S-content are (up to normalization) the fractal
curvatures of order d and d − 1, whenever the respective limits exist. Fractal curvature measures have been introduced
as a generalization of curvature measures to very singular sets by means of approximation with parallel sets. The fractal
curvatures are the total masses of these measures. They form a set of d + 1 parameters characterizing the geometry of
fractal sets beyond dimension, see [8–10] for definitions and more details.

Based on the fundamental observation that the boundary surface area of Ar is the derivative of its volume, cf. Sta-
cho [7], it has been investigated in [6] under which assumptions Minkowski content and S-content coincide. In particular,
the following results have been obtained regarding the general relation between Minkowski contents and S-contents.

Theorem 1.1. (See [6, Corollaries 3.2 and 3.6].) Let A ⊂ R
d be a compact set with V (A) = 0. Then, for 0 � s � d,

d − s

d
S s(A) � Ms(A) � S s(A). (1.1)

Consequently, dimS A = dimM A.

Note that the left inequality in (1.1) remains valid for sets A with V (A) > 0, while the right inequality may fail in this
case and the upper S-dimension may be strictly smaller than the upper Minkowski dimension. The inequalities obtained
in [6] for the lower contents and dimensions are much weaker:

Theorem 1.2. (See [6, Corollary 3.2 and Proposition 3.7].) Let A ⊂ R
d be a compact set with V (A) = 0. Then, for 0 � s � d,

c
(

Ms d
d−1 (A)

) d−1
d � S s(A) � Ms(A), (1.2)

where c is an (explicitely known) constant depending only on d and s. Consequently,

d − 1

d
dimM A � dimS A � dimM A. (1.3)

Combining the above theorems, it follows immediately, that the existence of the S-content implies the existence of
the Minkowski content and both notions coincide (for sets in R

d with V (A) = 0). If lower and upper S-content differ,
the situation is more delicate. In [6, cf. Example 3.3], the Sierpinski gasket has been discussed, which shows that the lower
S-content can be strictly smaller than the lower Minkowski content. The lower dimensions coincide in this case, in fact,
the dimensions exist and coincide. However, the inequalities in (1.3) suggest that either they can be improved (to equality for
the lower dimensions) or there are sets whose lower S-dimension is strictly smaller than their lower Minkowski dimension.
This was one of the most pressing questions left open in [6, cf. the second remark on p. 10].

In this note we show that for any d ∈ N there exist sets A ⊂ R
d with dimS A < dimM A and, moreover, that the lower

S-dimension can assume any value between the upper and the lower bound given in (1.3), showing, in particular, that
these bounds are optimal. The essential construction is done for d = 1 using the concept of fractal strings, which goes back
to [3], see also the monograph [2]. The result in higher dimensions is based on a Cartesian product argument. The paper
is organized as follows. In the next section, the sets are constructed and the main results are stated. The proof for d = 1 is
discussed in Section 3 and for d � 2 in Section 4, where also some more general statements regarding the S-dimension of
product sets are derived.
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2. Main results

Let two numbers s,m be given with 0 < s < m < 1. Set q := 1 + 1
s − 1

m . Let L = L(s,m) = (l j)
∞
j=1 be the fractal string (i.e.,

a nonincreasing sequence of nonnegative real numbers; cf. [2, p. 1]) containing [2qk+1·s] times the “length” 2−qk
, k = 1,2, . . . ,

where [x] denotes the integer part of a number x ∈ R. Observe that

L :=
∞∑
j=1

l j =
∞∑

k=1

[
2qk+1·s] · 2−qk �

∞∑
k=1

2qk+1·s · 2−qk =
∞∑

k=1

2qk(q·s−1) < ∞,

since q · s = 1 + s − s
m < 1. Hence L has a geometric realization as a union of disjoint open intervals I j of lengths l j in R

such that the total length λ1(�) of � := ⋃∞
j=1 I j is finite. For simplicity, we assume that the I j are all subsets of some open

interval I of length L. (Note that the term fractal string is also frequently used for the set �, cf. e.g. [2, p. 9].)
Let F = F (s,m) denote the boundary of (an arbitrary but fixed) geometric realization � of L in I , i.e., F = ∂�. Note that

the latter assumption implies I = � ∪ F and λ1(F ) = 0.

Theorem 2.1. For 0 < s < m < 1, the set F = F (s,m) ⊂ R has lower S-dimension dimS F = s and lower Minkowski dimension
dimM F = m. Moreover, the upper Minkowski and S-dimension of F are given by

dimM F = dimS F = s · q = 1 + s − s

m
.

For d = 1,2, . . . , let Fd = Fd(s,m) := F (s,m) × [0,1]d−1 ⊂ R
d be the Cartesian product of the set F and the (d − 1)-

dimensional unit cube [0,1]d−1.

Theorem 2.2. For 0 < s < m < 1 and d ∈ N, the set Fd = Fd(s,m) ⊂ R
d has lower S-dimension dimS Fd = s + d − 1 and lower

Minkowski dimension dimM Fd = m + d − 1. The upper Minkowski and S-dimension of Fd are given by

dimM Fd = dimS Fd = s · q + d − 1 = d + s − s

m
.

The proofs of Theorems 2.1 and 2.2 are given in Sections 3 and 4, respectively. In the course of the proof of Theorem 2.1
we will also derive the precise expressions for the upper and lower contents of the sets F (s,m). The proof of Theorem 2.2
is based on some more general statements on the Minkowski and S-dimension of product sets.

Now recall from (1.3) that, for arbitrary compact sets A ⊂ R
d , we have

d − 1

d
dimM A � dimS A � dimM A.

The above results clearly show that the lower S-dimension can be strictly smaller than the lower Minkowski dimension, i.e.,
the right-hand side inequality can be strict. This is in sharp contrast to the situation for the upper dimensions, which do
always coincide. Moreover, the above theorems show that the constant d−1

d for the lower bound is optimal:

Corollary 2.3. For any d ∈ N and any constant c such that d−1
d < c � 1 there exists a set A ⊂ R

d such that c · dimM A = dimS A.

Proof. The case c = 1 is not covered by the class of sets above, however, examples of such sets are known. For instance, if
F is any non-arithmetic self-similar set in R

d satisfying the open set condition and with similarity dimension D < d, then,
by [6, Theorem 4.5], dimS F = dimM F = D .

Fix d ∈ N and c such that d−1
d < c < 1. Set s := c − d−1

d and m := 1
c ((1 − c)(d − 1) + s). Then 0 < s < m < 1 (since

m > mc = (1 − c)(d − 1) + s > s and mc = (1 − c)(d − 1) + s < d−1
d + s = d−1

d + c − d−1
d = c) and so, by Theorem 2.2, the set

A := Fd(s,m) has dimS A = s + d − 1 and dimM A = m + d − 1. Hence

c · dimM A = c(d − 1 + m) = c(d − 1) + (1 − c)(d − 1) + s = d − 1 + s = dimS A,

i.e., the set A satisfies the desired equality. �
Remark 2.4. The class of sets discussed does not provide examples for the case c = d−1

d , i.e., sets A for which the lower
bound in (1.3) is sharp. Thus the following question remains open: Does there exist a set A ⊂ R

d for which dimS A =
d−1

d dimM A? Another open question is, whether dimS A = dimM A implies dimM A = dimM A or vice versa, i.e., whether the
equivalence of the lower dimensions is related to the existence of the Minkowski dimension in some way. The examples
considered so far suggest such a relation, at least they do not disprove it.
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We notice that it is also possible to prescribe lower and upper S-dimension and find a set with these S-dimensions
within the class of sets discussed.

Corollary 2.5. Let 0 < s < u < 1. There exists a set A ⊂ R
d such that dimS A = s + d − 1 and dimS A = u + d − 1.

Proof. Set m := s
1+s−u and note that s < m < 1. Let A := Fd(s,m). We have q = 1 + 1

s − 1
m = 1 + 1

s − 1+s−u
s = u

s . Hence, by

Theorem 2.2, dimS A = s + d − 1 and dimS = qs + d − 1 = u + d − 1. �
Corollary 2.5 shows that the difference between the upper and the lower S-dimension of a set in R

d may be any number
between 0 and 1. For d = 1 this implies that the trivial lower bound 0 = 0 · dimS A � dimS A for dimS in terms of dimS is
the best possible for general compact sets in R. However, this is also an immediate consequence of the well-known fact
that there exist sets A in R with dimM A = 0 and dimM A = 1 (taking into account Theorems 1.1 and 1.2). Hence there is
no general restriction on the difference between upper and lower S-dimension for sets in R apart from the trivial ones. It
remains open whether this difference can be larger for sets in R

d , d � 2.
For completeness, we remark that similarly as in Corollary 2.5 one can also prescribe dimM and dimM within (d − 1,d)

and find a set in R
d (within the class of sets discussed) with these Minkowski dimensions.

Corollary 2.6. Let 0 < m < u < 1. There exists a set A ⊂ R
d such that dimM A = m + d − 1 and dimM A = u + d − 1.

We leave the simple proof as an exercise, also because results of this type are known, cf. for instance [5, Section 5.3,
p. 77] and [11]. A better result is obtained in [11, Theorem 1.2], which is in fact optimal: It is possible to prescribe numbers
d � d in [0,d] and find a set A ⊂ R

d such that dimM A = d and dimM A = d.
We note that fractal strings of a similar type as the ones used here to construct the sets F (s,m) appear in [3, cf.

Examples 3.12–3.14], where they are used to demonstrate that certain implications in connection with one-sided (lower)
estimates generalizing the modified Weyl–Berry conjecture are nonreversible, in general; see [3, Theorem 3.11] for more
details. It is an interesting question whether (lower) S-contents play a role in this context.

3. Proof of Theorem 2.1

For a fractal string L = (l j)
∞
j=1, let (rk)

∞
k=1 be the (ordered) sequence of the lengths occuring in L, i.e., r1 > r2 > r3 >

· · · > 0 and {l j: j ∈ N} = {rk: k ∈ N}. For k = 1,2, . . . , let

Nk := #{ j � 1: l j = rk},
denote the multiplicity of the k-th length rk in L. For convenience, we set N0 := 1 and r0 := ∞.

Let 0 < s < m < 1 and let F = F (s,m) as defined in Section 2. Recall that q = 1 + 1
s − 1

m . For the fractal string L = (l j)
∞
j=1

associated with F we have Nk = [2qk+1·s] and rk = 2−qk
, k = 1,2, . . . . For the computation of the upper and lower S-content

of F (s,m) we require the following simple fact.

Lemma 3.1. Let a,b > 1 and ε > 0. There exists a number k0 = k0(a,b, ε) such that for k � k0

k∑
i=1

abi � (1 + ε)abk
.

Proof. Since abk(1−b) · k → 0 as k → ∞, it is possible to choose k0 such that

abk0 (1−b) · (k0) < ε.

If necessary, enlarge k0 such that the sequence (abk(1−b) · k)k�k0 is monotone decreasing. Then

abk−1
< abk · ε

k − 1
for k � k0,

and, since (abi
)i∈N is monotone increasing,

abi
< abk · ε

k − 1
for k � k0, i = 1, . . . ,k − 1.

Now the assertion follows by summing up over i = 1, . . . ,k. �
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Proposition 3.2. For F = F (s,m),

S s·q(F ) = (1 − sq)−1κ−1
1−sq21−s·q.

Hence, in particular, dimM F = dimS F = s · q.

Proof. Let t > 0. For 2r ∈ [rk, rk−1), k = 1,2, . . . , we have

rt H0(∂ Fr) = rt2
k−1∑
i=0

Ni �
(

rk−1

2

)t

2
k−1∑
i=0

Ni,

since the function f (x) = xt is monotone increasing. Hence

(1 − t)κ1−t S t(F ) = lim sup
r→0

rt2
k−1∑
i=0

Ni = lim sup
k→∞

21−trt
k−1

k−1∑
i=0

Ni . (3.1)

Since Ni = [2qi+1·s] � 2qi+1·s , for i = 1,2, . . . , and N0 = 1 < 2q1·s we have

2qk·s � 1 + Nk−1 �
k−1∑
i=0

Ni �
k−1∑
i=0

2qi+1·s. (3.2)

Applying Lemma 3.1 with a = 2s > 1 and b = q > 1, we infer that for each ε > 0 there exists a k0 = k0(ε) such that

k−1∑
i=0

2qi+1·s � (1 + ε) · 2qk·s, (3.3)

for each k � k0. Thus, on the one hand,

(1 − t)κ1−t S t(F ) � lim sup
k→∞

21−t2−qk−1·t2qk·s = 21−t lim
k→∞

2qk−1(qs−t),

and on the other hand

(1 − t)κ1−t S t(F ) � lim sup
k→∞

21−t2−qk−1·t(1 + ε)2qk ·s = 21−t(1 + ε) lim
k→∞

2qk−1(qs−t).

Since the latter holds for each ε > 0, we conclude

S t(F ) =

⎧⎪⎨
⎪⎩

0 if t > sq,

(1 − sq)−1κ−1
1−sq21−sq if t = sq,

∞ if t � sq.

Since the upper dimensions coincide, cf. Theorem 1.1, this implies in particular dimM F = dimS F = s · q. �
Remark 3.3. Theorem 1.1 implies that

(1 − sq)S sq(F ) � Msq(F ) � S sq(F ).

With slightly more effort one can show that, in fact, Msq(F ) = S sq(F ) holds.

A similar argument allows to compute the lower S-content of F .

Proposition 3.4. For F = F (s,m),

S s(F ) = (1 − s)−1κ−1
1−s21−s.

Hence, in particular, dimS F = s.

Proof. Let t > 0. A similar argument as for (3.1) shows that

(1 − t)κ1−t S t(F ) = lim inf
r→0

rt2
k−1∑

Ni = lim inf
k→∞

21−trt
k

k−1∑
Ni .
i=0 i=0
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Taking into account (3.2) and (3.3), we infer that on the one hand

(1 − t)κ1−t S t(F ) � lim inf
k→∞

21−t2−qk·t2qk·s = 21−t lim
k→∞

2qk(s−t),

and on the other hand, for each ε > 0,

(1 − t)κ1−t S t(F ) � lim inf
k→∞

21−t2−qk·t(1 + ε)2qk·s = 21−t(1 + ε) lim
k→∞

2qk(s−t).

This implies S s(F ) = (1 − s)−1κ−1
1−s21−s and dimS F = s as asserted. �

The computation of the lower Minkowski content is more involved. We will employ the following two simple statements.

Lemma 3.5. For L, M > 0 and 0 < D < 1, the function h = hM,L,D : (0,∞) → R, defined by

h(x) = xD M + xD−1L,

has its global minimum at xmin = xmin(M, L, D) := (1−D)L
DM . Moreover,

h(xmin) =
(

(1 − D)D

D D
+ (1 − D)D−1

D D−1

)
LD M1−D = D−D(1 − D)D−1LD M1−D .

Lemma 3.6. Let a,b > 1 and ε > 0. There exists a number k0 = k0(a,b, ε) such that for k � k0

∞∑
i=k

a−bi � (1 + ε)a−bk
.

Proposition 3.7. For F = F (s,m),

Mm(F ) = κ−1
1−mm−m(1 − m)m−1.

Hence, in particular, dimM F = m.

Proof. Let 0 < t < 1. For 2r ∈ [rk, rk−1), k = 1,2, . . . , we have

rt−1λ1(Fr) = rt2
k−1∑
i=0

Ni + rt−1
∞∑

i=k

Niri .

Setting Mk := 2
∑k−1

i=0 Ni and Lk := ∑∞
i=k Niri , we infer from Lemma 3.5, that the global minimum of the function

hMk,Lk,t(x) = xt Mk + xt−1Lk is

xk = 1 − t

t

Lk

Mk
= 1 − t

t

∑∞
i=k Niri

2
∑k−1

i=0 Ni

.

We claim that there exists a number k′ ∈ N such that, for all k � k′ ,

rk < 2xk < rk−1, (3.4)

i.e., the global minimum of hMk,Lk,t is contained in the interval (rk/2, rk−1/2).
For a proof of (3.4), fix some ε > 0. Observe that there exists k0 ∈ N such that

2−qk(1−qs) − 2−qk � Lk � (1 + ε)2−qk(1−qs), (3.5)

for k � k0. Indeed, setting a := 21−qs > 1 and b := q > 1, by Lemma 3.6, there is a k0 such that for k � k0

Lk �
∞∑

i=k

2qi+1·s · 2−qi =
∞∑

i=k

(
2(1−qs))−qi =

∞∑
i=k

a−bi � (1 + ε)a−bk = (1 + ε)2−qk(1−qs).

The lower bound for Lk follows immediately, from Nkrk � Lk and Nk = [2qk+1·s] � 2qk+1·s − 1.
Recall from (3.2) and (3.3) that there exists k0 such that Mk is bounded as follows for k � k0:

2qk·s � Mk � (1 + ε) · 2qk·s. (3.6)

2
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It is obvious that k0 can be chosen such that both inequalities (3.5) and (3.6) hold for k � k0. We infer that

2xk

rk
= 1 − t

t

2Lk

Mkrk
� 1 − t

t

(2−qk(1−qs) − 2−qk
)

(1 + ε)2qk·s · 2−qk

= 1 − t

t

1

1 + ε

(
2qk·s(q−1) − 2−qk·s) → ∞ as k → ∞,

since q > 1. Hence rk < 2xk for k sufficiently large. Similarly, we obtain

2xk

rk−1
= 1 − t

t

2Lk

Mkrk−1
� 1 − t

t

(1 + ε) · 2−qk(1−qs)

2qk·s · 2−qk−1

= 1 − t

t
(1 + ε)2−qk−1·(q(1−qs)+qs−1) → 0 as k → ∞,

since (q − 1)(1 − qs) > 0. Hence 2xk < rk−1 for k sufficiently large. This completes the proof of (3.4).
The inequalities in (3.4) imply that the lower t-dimensional Minkowski content of F is given by

κ1−t Mt(F ) = lim inf
r→0

rt−1λ1(Fr) = lim inf
k→∞

hMk,Lk,t(xk).

By Lemma 3.5, we have

hMk,Lk,t(xk) = t−t(1 − t)t−1Lt
k M1−t

k .

Therefore, it remains to compute

Xt := lim inf
k→∞

Lt
k · M1−t

k . (3.7)

Using again (3.5) and (3.6), we infer that on the one hand

Xt � lim inf
k→∞

(1 + ε)t(2−qk(1−qs))t · (1 + ε)1−t(2qk·s)1−t

= (1 + ε) lim
k→∞

2−qk(t−qst−s+st)

= (1 + ε) lim
k→∞

2−qk·s( t
m −1),

for each k � k0, where we took into account that sq = 1 + s − s
m . On the other hand,

Xt � lim inf
k→∞

(
2−qk(1−qs) − 2−qk)t(

2qk·s)1−t

= lim
k→∞

((
2−qk(1−qs) − 2−qk) · 2qk· s

t (1−t))t

= lim
k→∞

(
2−qk·s( 1

m − 1
t ) − 2−qk(1+s− s

t )
)t

.

Since the above estimates hold for each ε > 0, we conclude for the choice t = m that Xm = 1 and thus

κ1−m Mm(F ) = m−m(1 − m)m−1.

Hence Mm(F ) is positive and finite, which implies dimM F = m. �
Remark 3.8. It has been pointed out by the referee that the function x �→ hMk,Lk,t(x) used in the proof above is essentially
equal to the function ε �→ LD(ε, j) (with j = k) used in the proof of [3, Theorem 4.1, cf. the first equation on p. 41]. This
is natural since in both cases Minkowski contents are computed. However, the arguments given in [3] do not apply to the
situation here. While for the sets considered in [3, Theorem 4.1] (or, more precisely, for the corresponding fractal strings)
the Minkowski content exists, this is no longer true for the sets F (s,m) studied here. Nevertheless, it might be interesting
to study more deeply the connections between the arguments in both cases.
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4. Proof of Theorem 2.2

We will first discuss a number of statements regarding the upper and lower dimensions of product sets. The assertions of
Theorem 2.2 will be an easy consequence. Before we start with the Minkowski dimensions we recall some useful alternative
definitions of Minkowski and S-dimension and clarify some notational problem regarding parallel sets in Remark 4.1.

It is well known and easily verified, that if the Minkowski dimension of a compact set A ⊂ R
d exists, it is equivalently

given by

dimM A = d + lim
r→0

logλd(Ar)

− log r
. (4.1)

Similarly, lower and upper Minkowski dimensions are given by the same expression with the lim replaced by lim inf and
lim sup, respectively, see for instance [1, Proposition 5.1]. In the same way, lower and upper S-dimension can be defined
using a log–log ratio. The lower S-dimension of a compact set A ⊂ R

d is given by

dimS A = d − 1 + lim inf
r→0

log Hd−1(∂ Ar)

− log r
(4.2)

and dimS A by the same expression with lim inf replaced by lim sup. Finally, we recall the definition of the box counting
dimension dimB , which is well known to coincide with the Minkowski dimension. For r > 0, let Nr(A) denote the minimum
number of boxes of side length r needed to cover a set A ⊂ R

d . Then

dimB A := lim inf
r→0

log Nr(A)

− log r
and dimB A := lim sup

r→0

log Nr(A)

− log r
.

Below we will switch between the different definitions of the dimensions and use whatever is most convenient.

Remark 4.1. The notion of parallel set of a set A depends on the ambient space in which A is considered and the notation
Ar does not take care of this. For instance, for an interval I in R

2, i.e., the convex hull of two points in R
2, the r-parallel set

with respect to the affine hull of I is still an interval while the r-parallel set with respect to R
2 is a two-dimensional set.

Usually it is clear from the context what the ambient space is. However, for product sets A × B , A ⊆ R
n , B ⊆ R

m as occuring
in the proofs below, the notation Ar may cause irritations, since A may be viewed as a subset of R

n but also naturally as
a subset of R

n × R
m . To avoid any confusion, we will use the convention to denote by Ar the parallel set in R

n and by
(A × {0})r the parallel set in R

n × R
m .

Lemma 4.2. Let A ⊂ R
n and B ⊂ R

m be compact sets. Then

(i) dimM(A × B) � dimM A + dimM B,
(ii) dimM(A × B) � dimM A + dimM B.

Proof. (i) is well known, cf. for instance [1, Lemma 7.3]. (ii) follows by a similar argument: Recall that Nr(C) denotes the
minimum number of boxes of side length r needed to cover a set C ⊂ R

d . Observe that

Nr(A × B) � Nr(A) · Nr(B).

Hence

dimM(A × B) = lim inf
r→0

log Nr(A × B)

− log r
� lim inf

r→0

log Nr(A) + log Nr(B)

− log r

× lim inf
r→0

log Nr(A)

− log r
+ lim sup

r→0

log Nr(B)

− log r
= dimM A + dimM B,

as asserted. �
Proposition 4.3. Let A ⊂ R

n and B ⊂ R
m be compact sets with λm(B) > 0. Then

(i) dimM(A × B) = dimM A + m,
(ii) dimM(A × B) = dimM A + m.

Proof. Note that dimM B = m. Hence the “�”-relation in (i) and (ii) follows immediately from Lemma 4.2. For the reversed
inequalities recall formula (4.1) from above. Observe that

λn(Ar) · λm(B) � λn+m
(
(A × B)r

)
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which follows from the set inclusion

Ar × B ⊆ (A × B)r

and Fubini. Hence, for 0 < r < 1,

log λn+m((A × B)r)

− log r
� logλn(Ar) + logλm(B)

− log r
.

Taking the limes superior as r → 0, we get

dimM(A × B) = (n + m) + lim sup
r→0

logλn+m((A × B)r)

− log r

� m + n + lim sup
r→0

logλn(Ar)

− log r
= m + dimM A,

proving (i). The inequality dimM(A × B) � dimM A + m follows analogously by taking the limes inferior. �
Now we turn our attention to the S-dimensions. Note that assertion (i) of Lemma 4.2 holds similarly with dimM replaced

by dimS provided λn(A) = λm(B) = 0, since both dimensions coincide in this case, see Theorem 1.1. Unfortunately, this is
not useful in the situation of Theorem 2.2, since the set [0,1]d−1 occuring in Fd = F × [0,1]d−1 has Lebesgue measure 1.
However, for the equivalence dimS (A × B) = dimM(A × B) it is sufficient that one of the sets A, B has zero Lebesgue
measure, since this implies Lebesgue measure zero for the product set. Clearly, the counterpart of Proposition 4.3(i) for
dimS is also valid under this additional hypothesis.

Corollary 4.4. Let A ⊂ R
n and B ⊂ R

m be compact sets with λn(A) = 0. Then dimS(A × B) = dimM(A × B). If, additionally,
λm(B) > 0 then dimS (A × B) = dimS A + m.

The situation for the lower S-dimension is more delicate. Curiously and in contrast to the situation for the other three
dimensions considered, for the lower S-dimension, the lower bound is easier to establish than the upper bound.

Proposition 4.5. Let d � 2 and let F ⊂ R and B ⊂ R
d−1 be compact sets with λd−1(B) > 0. Then

dimS(F × B) � dimS F + d − 1.

Proof. Recall (4.2). For each of the finitely many points x ∈ ∂ Fr we have {x}× B ⊂ ∂(F × B)r . Since Hd−1({x}× B) = λd−1(B),
we get

H0(∂ Fr)λd−1(B) � Hd−1(∂(F × B)r
)
.

Hence

log Hd−1(∂(F × B)r)

− log r
� log H0(∂ Fr)

− log r
+ logλd−1(B)

− log r
,

for 0 < r < 1. Taking the limes inferior as r → 0 (and noting that second term on the right-hand side vanishes), we obtain

dimS(F × B) = d − 1 + lim inf
r→0

log Hd−1(∂(F × B)r)

− log r

� d − 1 + lim inf
r→0

log H0(∂ Fr)

− log r
= d − 1 + dimS F ,

as claimed. �
We will now show that the reversed inequality in Proposition 4.5 does also hold at least in the special case B = [0,1]d−1.

Proposition 4.6. Let F ⊂ R be compact. Then

dimS
(

F × [0,1]d−1) = dimS F + d − 1.
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Proof. In view of Proposition 4.5, it remains to prove the ‘�’-relation. Let L = (l j)
∞
j=1 be the fractal string associated to F

encoding the lengths of the bounded complementary intervals I j of F . Clearly, we have L := ∑∞
j=1 l j = λ1(I \ F ) < ∞, where

I is the convex hull of F . Recall that by definition of L, l1 � l2 � l3 � · · · � 0. We can assume that there are infinitely many
l j ’s different from zero. Otherwise F is a finite union of intervals and singletons and the statement is obvious.

To illustrate the idea, we will first discuss the case d = 2. The proof in higher dimensions is similar and will be addressed
afterwards. First observe that the boundary length of (F × [0,1])r ⊂ R

2 does only depend on L (and on λ1(F )) but not on
the set F itself. Indeed, this is easily seen by slicing R

2 in the direction of the second coordinate and computing the measure
of ∂(F × [0,1])r in each slice separately. We have the disjoint union

R
2 = (F × R) ∪ (R \ I × R) ∪

∞⋃
j=1

(I j × R).

In the slices of this decomposition we have, for each r > 0,

H1(∂(
F × [0,1])r ∩ (F × R)

) = 2λ1(F ), (4.3)

H1(∂(
F × [0,1])r ∩ (

Ic × R
)) = 2 + 2πr (4.4)

and

H1(∂(
F × [0,1])r ∩ (I j × R)

) =
{

2 + 2πr if l j > 2r,

4r arcsin(
l j
2r ) if l j � 2r.

(4.5)

Since arcsin(x) � π
2 x for x ∈ [0,1], the last expression is bounded from above by π l j . Hence, writing F̃ := F × [0,1], we get

H1(∂ F̃r) = H1(∂ F̃r ∩ (F × R)
) + H1(∂ F̃r ∩ (

Ic × R
)) +

∑
j: l j>2r

H1(∂ F̃r ∩ (I j × R)
) +

∑
j: l j�2r

H1(∂ F̃r ∩ (I j × R)
)

� 2λ1(F ) + 2(1 + πr) +
∑

j: l j>2r

2(1 + πr) + π
∑

j: l j�2r

l j.

Now observe that H0(∂ Fr) = 2 + 2 · #{ j: l j > 2r} and that H0(∂ Fr) → ∞ as r → 0, which is due to the assumption that
infinitely many l j ’s are non-zero. Moreover, the last sum is bounded from above by π L. Hence

H1(∂ F̃r) � H0(∂ Fr)(1 + πr) + 2λ1(F ) + π L

� 3H0(∂ Fr),

provided r is sufficiently small (namely such that πr � 1 and H0(∂ Fr) � 2λ1(F ) + π L). Taking logarithms and dividing by
− log r, we get

log H1(∂ F̃r)

− log r
� log H0(∂ Fr) + log 3

− log r
.

Thus

dimS
(

F × [0,1]) = 1 + lim inf
r→0

log Hd−1(∂(F × [0,1])r)

− log r

� 1 + lim inf
r→0

log H0(∂ Fr)

− log r
= 1 + dimS F ,

which completes the proof for the case d = 2.
For d > 2, the formulas (4.3)–(4.5) are different, but the arguments are essentially the same. Setting F̃ := F × [0,1]d−1,

for r > 0, we have

Hd−1(∂ F̃r ∩ (
F × R

d−1)) = Hd−2(∂([0,1]d−1)
r

) · λ1(F ), (4.1′)

Hd−1(∂ F̃r ∩ (
Ic × R

)) = Hd−1(∂({0} × [0,1]d−1)
r

)
, (4.2′)

Hd−1(∂ F̃r ∩ (I j × R)
) = Hd−1(∂({0} × [0,1]d−1)

r

)
if l j > 2r, (4.3′)

and

Hd−1(∂ F̃r ∩ (I j × R)
)
� Hd−2(∂([0,1]d−1) )

π l j if l j � 2r. (4.3′′)
r
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It is now important to note that all these expressions are bounded from above by constants which depend on d (and F )
but not on r ∈ (0,1]. More precisely, (4.1′) is bounded by some constant c1 = c1(d, F ), (4.2′) and (4.3′) by some constant
c2 = c2(d) and (4.3′′) by c3 · l j for some constant c3 = c3(d). Hence

Hd−1(∂ F̃r) � c1 + c2 +
∑

j: l j>2r

c2 + c3

∑
j: l j�2r

l j

� c2

2
H0(∂ Fr) + c1 + c3L

�
(

c2

2
+ 1

)
H0(∂ Fr),

provided r is sufficiently small. From this inequality, the assertion for d � 3 follows as in the case d = 2 above. �
Proof of Theorem 2.2. Combining Proposition 4.3 and Theorem 2.1, we conclude that the set Fd = Fd(s,m) ⊂ R

d has
dimM Fd = q · s + d − 1 and dimM Fd = m + d − 1. Since λ1(F ) = 0, Corollary 4.4 implies immediatly that also dimS Fd =
q · s + d − 1. Finally, from Proposition 4.6, we get dimS Fd = s + d − 1, which completes the proof. �
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