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Aggregation of a-synuclein is believed to play an important role in Parkinson's disease and in other
neurodegenerative maladies. Small molecule inhibitors of this process are among the most promising
drug candidates for neurodegenerative diseases. Dendrimers have also been studied for anti-fibrillation
applications but they can be difficult and expensive to synthetize. Here we show that RAFT polymeri-
zation can be used to produce a hyperbranched polyethylene glycol structure via a one-pot reaction. This
polymer included a dopamine moiety, a known inhibitor of a-synuclein fibril formation. Dopamine
within the polymer structure was capable of aggregation inhibition, although not to the same degree as
free dopamine. This result opens up new avenues for the use of controlled radical polymerizations as a
means of preparing hyperbranched polymers for anti-fibrillation activity, but shows that the incorpo-
ration of functional groups from known small molecules within polymers may alter their biological
activity.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The molecular basis of Parkinson's disease (PD) appears to be
tightly coupled to the aggregation of a-synuclein. Autosomal
dominant early-onset PD is induced as a result of six different
missense mutations in the a-synuclein gene [1e4] or as a result of
the overexpression of thewild type a-synuclein protein due to gene
triplication [5e7]. In addition, aggregates of a-synuclein were
found to be the major components of Lewy bodies and Lewy neu-
rites, the hallmarks of PD [8e12]. These in vivo results have been
supported by numerous studies that established that a-synuclein
aggregates into amyloid fibrils and oligomers under a variety of
e-containing polymer; PEG,
sible addition-fragmentation

).
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conditions including physiological [13e15].
In recent years, polymers and nanoparticles have been explored,

not only for the more established field of protein aggregate
detection, diagnosis and destruction [16,17], but also for the study
of protein fibril formation [18] and the prevention of fibrillation
[19,20]. Polymers have a variety of effects on protein fibrillation, as
some of them have been shown to accelerate fibrillation [18,21], yet
others retard the fibrillation process [22]. Dendrimers are a sub-
class of polymers, which have a symmetrical and well-ordered
tree-like structure. The high degree of control over the exact
structure has led to extensive investigation of their use as drug
delivery agents [23], gene delivery vectors [24], and, more recently,
as molecules to inhibit the fibrillation of a-synuclein [25]. However,
dendrimers are synthesized via a complex step-wise growth pro-
cess, which requires purification after each step and is therefore
costly. Alternatively, living polymerizations such as deactivation-
enhanced atom transfer radical polymerization and reversible
additionefragmentation chain transfer (RAFT) have recently been
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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shown to be capable of allowing highly branched (or hyper-
branched) soluble polymeric structures [26], or cyclized structures
[27,28] via simple one-pot reactions. Furthermore, they easily allow
the inclusion of an extensive range of functional monomers in the
co-polymerization reactions.

In this study, we show the proof-of-principle, that RAFT poly-
merization can be used to produce a hyperbranched poly (ethylene
glycol) (PEG) structure which contains a DOPA moiety hypothe-
sized to provide anti-fibrillation properties. We aimed to investi-
gate whether the inclusion of a DOPA molecule into a
hyperbranched structure would reduce, enhance or have no effect
on anti-fibrillation or aggregation behavior. For the synthesis of this
functionalized polymer, a DOPA analogue with a methacrylamide
group (to allow incorporation in living radical polymerizations) was
firstly synthesized and incorporated into a hyperbranched PEG via
co-polymerization. This polymer, DOPA-PEG polymer (henceforth
termed DP) was analyzed at different concentrations to assess its
effect on a-synuclein aggregation/fibrillation in vitro. We found
that, similar to dopamine itself, DOPA-modified polymer interfered
with the a-synuclein fibril formation promoting oligomer forma-
tion instead. However, effects of dopamine were significantly
moderated by its incorporation into a polymer, and it was no longer
capable of effectively disaggregating fibrils into oligomers. The ease
at which the polymer structure and composition can be varied al-
lows the potential to mechanistically study specific polymer/pro-
tein interactions in an attempt to find future therapeutic strategies
for diseases associated with protein misfolding.

2. Materials and methods

2.1. Materials

Dopamine hydrochloride, sodium bicarbonate, methacrylate
anhydride, sodium borate, sodium hydroxide, magnesium sulfate,
poly(ethylene glycol) methyletheracrylate (PEGMEA,
Mn ¼ 575 gmol-1), poly(ethylene glycol) diacrylate (PEGDA,
Mn ¼ 258 gmol-1), 2,2-dimethoxy-2-phenylacetophenone and
1,10-Azobis-cyclohexane-carbonitrile (ACHN) were purchased from
Sigma. Acetone 99.8þ%, tetrahydrofuran, hexane 95%, dime-
thylformamide (DMF), ethyl acetate, hydrochloric acid, and meth-
anol were purchased from Fisher Scientific. 4-Cyano-4-
[(ethylsulfanylthiocarbonyl)sulfanyl] pentanoic acid was obtained
as a kind gift from Dr. Hongyun Tai at Bangor University, UK. Other
chemicals and supplies were from Sigma, Fisher or VWR.

2.2. Polymer synthesis and characterization

The dopamine methacrylamide (DMA) monomer was prepared
via a previously reported protocol [29], and characterized as re-
ported previously [30]. The DP polymer was synthesized by RAFT
polymerization using ACHN as an initiator and 4-Cyano-4-[(ethyl-
sulfanylthiocarbonyl) sulfanyl] pentanoic acid as the RAFT agent as
described previously [30]. The solvent (DMF) and reagents were
added to a 100 mL round bottomed flask in the following mole
ratio: ACHN/Raft agent/DMA/PEGMEA/PEGDA ¼ 1: 2: 40: 40: 20
respectively. Oxygen was removed by bubbling nitrogen through
the rubber stopped sealed flask for 20 min. After 17 h reaction time
in at 70 �C (stirring at 700 rpm), the reaction was terminated by
exposing it to the air. The polymer was purified by dilution in
methanol followed by precipitation in diethyl ether, then dilution
in methylene chloride and further precipitation in diethyl ether.
The viscous brown polymer was finally dried in a vacuum oven. Gel
permeation chromatography (Agilent, PL-GPC50 with RI detector)
was used to analyze the polymer molecular weight as calibrated by
poly (methyl methacrylate) standards. 1H NMR was performed
using a 400 MHz Bruker NMR with Delta NMR processing software
with the chemical shifts referenced to chloroform (CDCl3).

2.3. Protein aggregation assays

Protein aggregation in the automated format was carried out in
a reaction volume of 0.1 mL in black, flat-bottomed 96-well plates
in the presence of 5 mM thioflavin T (ThT). Two teflon balls
(2.38 mm diameter, Precision Ball, Reno, PA) were placed into each
well of a 96-well plate. The reactionmixture containing protein and
ThT (320 ml) was split into three wells (100 ml into each well), the
plates were covered by Mylar septum sheets (Thermo), and incu-
bated at 40 �C with continuous orbital shaking at 280 rpm in an
Infinite M200 Pro microplate reader (Tecan, Austria). Reaction
conditions: 0.25 mg/mL (17.4 mM) a-synuclein in 20 mM Hepes
buffer (pH 7.5), 100 mM NaCl, 5 mM ThT and 50 mg/mL heparin. The
kinetics was monitored by top reading of fluorescence intensity
every 5 min using 444 nm excitation and 485 nm emission filters.
Data from replicate wells were averaged before plotting fluores-
cence vs. time. The data were fit to a sigmoidal equation (Eqn. (1))
using SigmaPlot (Systat, San Jose, CA).

F ¼ Aþ B=ð1þ expðk� ðt� tmÞÞÞ (1)

Here A is the initial level of ThT fluorescence, B is the difference
between the final level of ThT fluorescence and its initial level, k is
the rate constant of amyloid accumulation (h�1), and tm is the
midpoint of transition. The lag time (tl) of amyloid formation was
calculated as tl ¼ tm�2/k. Initiation rate was defined as the inverse
of lag time.

Fibril disaggregation assays were conducted in a similar manner
except preformed a-synuclein fibrils (0.05 mg/mL) were incubated
(20 mMHepes buffer, pH 7.5, 100 mMNaCl, 5 mM ThT and 50 mg/mL
heparin, 40 �C) in the presence of variable concentrations of either
dopamine or a dopamine-containing polymer (DP) in the plate
reader with shaking, and ThT fluorescence was monitored. Fibril
disaggregation was analyzed using the three parameter exponen-
tial decay equation using SigmaPlot (Systat, San Jose, CA).

2.4. Electron microscopy

5 ml aliquot of the protein solution was adsorbed onto pre-
washed 200 mesh formvar/carbon-coated nickel grids for 5 min.
The grid was washed with water (10 ml), stained with 2% uranyl
acetate (10 ml) for 2 min and washed with water again. The samples
were analyzed with a JEM 1400 transmission electron microscope
(JEOL) operated at 80 kV.

3. Results and discussion

3.1. Polymer synthesis

Fig. 1 shows the reaction scheme for the formation of the DOPA/
PEG containing polymer (DP) using three monomers. Dopamine
methacrylamide (DMA) was used as the functional monomer due
to its chatechol group, PEGMEAwas used to introduce PEG into the
structure (previously used for reducing toxicity), and PEGDA was
the branching monomer due to the di-vinyl functionality. After 17 h
reaction time, DP had a Mn of 11.75, Mw of 18.8 kDa, and a poly-
dispersity index of 1.6. The feed ratio of DOPA to the PEGmonomers
was 40% and the final DOPA content calculated from the 1H NMR
results (peak assignment shown in Fig. 1) was 42.8%. The amount of
PEGDA involved in branching was 6.5% of the total monomer
composition, with 4.6% present as free vinyl groups. The ease of
synthesis and the ability to accurately adjust the amount of DOPA in



Fig. 1. Schematic depiction of RAFT polymerization with 1H NMR peak assignment. RAFT co-polymerization of DMA, PEGDA and PEGMEA was carried out in DMF at 70 �C for 17 h to
produce a DOPA containing polymer of Mw 18.8 kDa for anti-fibrillation applications.
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the polymer structure makes RAFT polymerization an attractive
strategy for the preparation of polymers for such anti-fibrillation
applications. Furthermore, the presence of free-vinyl groups in
the structure could allow functionalization such as the addition of
antibodies or antibody fragments [31].
3.2. Effects of dopamine, PEG 12 and DP on a-synuclein aggregation

Earlier studies have shown that dopamine effectively promotes
formation of oligomeric aggregates of a-synuclein [32e36]. These
aggregates are resistant to further conversion to fibrils. This process
involves oxidation of methionine residues of a-synuclein due to the
ROS production by dopamine [37,38]. In addition, oxidized dopa-
mine can form covalent adducts with a-synuclein that further
stabilize mostly disordered a-synuclein oligomers [39]. Covalent
attachment of dopamine within the polymer structure was ex-
pected to interfere with the formation of covalent dopamine-a-
synuclein adducts but should have at least partially preserved the
effect of dopamine on a-synuclein aggregation due to the ROS
formation.

Neutral polymers are known to promote macromolecular
crowding, altering the kinetics of protein aggregation. For a-synu-
clein it has been shown [40e42] that compact, neutral polymers
accelerate its aggregation at high concentrations (above 10 mg/mL)
presumably by increasing effective protein concentration and sta-
bilizing more compact protein conformations. Here we have
included PEG 12 (polyethylene glycol, Mw 12 kDa) as a control to
account for the effect of the polymer support itself on a-synuclein
aggregation.

We examined the effects of moderate concentrations of our
dopamine-modified polymer (1e20 mg/mL) as well as dopamine
(0.5e10 mg/mL) and PEG 12 (1e20 mg/mL) on aggregation of a-
synuclein. We used the aggregation conditions close to physiolog-
ical that were previously shown to promote effective a-synuclein
aggregation (0.25 mg/mL a-synuclein, 20 mM Hepes, pH 7.5, 0.1 M
NaCl, 50 mg/mL heparin). Each experiment was run in triplicate, and
independent experiments were performed at least 3 times for each
data point.

We found that DOPA-modified polymer inhibited formation of
a-synuclein fibrils (Fig. 2 AeE). A longer lag phase was observed
even at the lowest concentration tested (0.025%) while at higher
concentrations (1e2%) the final levels of ThT fluorescence also
decreased, indicating a smaller quantity of fibrils. However, the
effect was modest with only ~50% inhibition even at the highest
concentrations tested. Electron microscopy (Fig. 2G) indicated that
more oligomeric a-synuclein aggregates were formed in the pres-
ence of the polymer although fibrils were still present.

Dopamine itself was significantly more effective as an inhibitor
of fibril formation. In the presence of dopamine the lag phase of a-
synuclein aggregation increased and the ThT signal decreased
significantly in the concentration-dependent manner. At dopamine
concentrations of 10 mg/mL and higher, no increase in ThT



Fig. 2. Effect of additives on the kinetics of a-synuclein aggregation. (A e C): Kinetic curves for fibril formation from a-synuclein (0.25 mg/mL, pH 7.5, 50 mg/mL heparin, 40 �C) in the
presence of dopamine, dopamine-containing polymer (DP) and PEG 12. A e DP; B e dopamine; C PEG 12. Black e no additive, rede0.025% additive, greene0.2% additive, yellowe2%
additive. (DeE): Initiation and elongation rates for fibril formation from a-synuclein in the presence of dopamine, DP and PEG 12. D e initiation rate (1/lag phase); E�fibril yield
(ThT fluorescence). Black e dopamine, red e DP, green e PEG 12. Scale bars correspond to standard error between independent measurements. (F e I): EM images of aggregates
obtained after 5 days of incubation. F e no additive; G e 0.5% DP; H e 0.5% dopamine; I e 0.5% PEG 12. Scale bars: 500 nm.(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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fluorescence was observed indicating complete inhibition of fibril
formation. Electron microscopy (Fig. 2H) confirmed these obser-
vations showing large quantities of oligomers and the absence of
fibrils in the samples aggregates in the presence of dopamine.

PEG 12 accelerated a-synuclein aggregation decreasing the lag
phase of aggregation somewhat and significantly increasing the
ThT fluorescence indicating higher yield of fibrils (Fig. 2 AeE). And
indeed electron microscopy (Fig. 2I) confirmed formation of large
quantity of a-synuclein fibrils in the presence of PEG.

3.3. Disaggregation of a-synuclein fibrils by dopamine and the
dopamine-containing polymer

In addition to interfering with formation of protein fibrils, some
compounds are known to disaggregate the preformed fibrils. A
peculiar shape of a-synuclein aggregation curves in the presence of
dopamine (Fig. 2B) consisting of the sigmoidal rise of ThT fluores-
cence followed by exponential decrease suggested that dopamine
might be disaggregating a-synuclein fibrils. We decided to examine
whether this is indeed the case.

We analyzed the morphology of a-synuclein aggregates by
electron microscopy at different time points during aggregation in
the presence of dopamine indicated by arrows in Fig. 3A. We found
that at the endpoint of aggregation, only oligomeric aggregates
were present (Fig. 3C). However, at the intermediate point during
the aggregation (after the sigmoidal rise in ThT fluorescence but
before its subsequent exponential drop) primarily amyloid fibrils
were observed (Fig. 3B). This result strongly suggests that dopa-
mine (or a product of dopamine oxidation) is highly effective in
disaggregating preformed a-synuclein amyloid fibrils. We have also
tested this directly by incubating a-synuclein fibrils (0.05 mg/mL)
in the presence of dopamine (Fig. 4A). We found that dopamine
rapidly disaggregates the fibrils in concentration-dependent
manner. The process of disaggregation is complete in minutes at
higher dopamine concentrations. We have also tested the ability of
DP to disaggregate the a-synuclein fibrils in a similar fashion
(Fig. 4B). We found a weak effect of the polymer on ThT fluores-
cence of the fibrils indicating that DP does mediate fibril disag-
gregation, but to a significantly lesser extent than dopamine.
Electron microscopy (Fig. 4DeF) confirmed that a-synuclein fibrils
completely disaggregated into oligomeric aggregates in the pres-
ence of dopamine but remained largely intact in the presence of DP.

Since PD pathology is associated with dopaminergic neurons,
interaction between a-synuclein and dopamine has been exten-
sively investigated [37]. Dopamine is known to bind to a-synuclein
non-covalently inhibiting its fibrillation and stabilizing the oligo-
mers [43]. However, dopamine is highly susceptible to oxidation
and its oxidation products form adducts with a-synuclein [39,44].
These adducts drive aggregation of a-synuclein into primarily un-
structured, sodium dodecyl sulfate (SDS)-resistant oligomers



Fig. 3. Morphology of a-synuclein aggregates formed in the presence of dopamine at different time points. A e kinetic curve of a-synuclein aggregation in the presence of 0.1%
dopamine; B e aggregates at 10 h; C e ggregates at 48 h. Time points are marked with arrows. Scale bars: 200 nm.

Fig. 4. Disaggregation of a-synuclein fibrils by dopamine and DP. A, B e kinetic curves for disaggregation of preformed a-synuclein fibrils (0.05 mg/mL, pH 7.5, 50 mg/mL heparin,
40 �C) in the presence of dopamine or DP. A e dopamine; B e DP. Black e no additive, rede0.025% additive, greene0.5% additive, yellowe2% additive. C e exponential decay rate of
ThT fluorescence of a-synuclein fibrils incubated in the presence of DOPA and DP. D e E: morphology of fibrils after incubation with the additive for 15 h. D e no additives, E 0.5%
dopamine, F e 0.1% DP.(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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[39,44,45]. Therefore, dopamine interferes with protein aggrega-
tion via a variety of pathways. Most of these pathways require
either direct proteinedopamine interaction or proximity between
dopamine and a protein molecule. Incorporation of dopamine
within a PEG polymer was expected to result in a large molecule
capable of inhibiting fibrillation. This was achieved but to a lesser
extent than free dopamine due to its immobilization interfering
with dopamineeprotein interactions.

Overall, we synthesized a dopamine-containing hyperbranched
polymer via RAFT co-polymerization with PEG monomers. We
found that, similar to dopamine itself, the polymer interfered with
the a-synuclein fibril formation promoting oligomer formation
instead. However, effects of dopamine were significantly moder-
ated by its incorporation into a polymer, and it was no longer
capable of effectively disaggregating fibrils into oligomers. This is
likely due to a specific mechanism of action of dopamine known to
involve covalent interaction with the target proteins. The ease at
which the polymer structure and composition can be varied allows
the potential to mechanistically study specific polymer/protein
interactions in an attempt to find future therapeutic strategies for
diseases associated with protein misfolding.
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