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Abstract

By using weighted summable dichotomies and Schauder’s fixed point theorem, we prove the
existence of convergent solutions of linear functional difference equations. We apply our result to
Volterra difference equations with infinite delay.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In this paper, we are concerned with a system of homogeneous linear functional
difference equations

x(n+ 1)= L(n,xn), n� n0 � 0, (1.1)

and its perturbed system

x(n+ 1)= L(n,xn)+ f1(n, xn)+ f2(n, x•), n� n0 � 0, (1.2)
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whereL :N(n0)× B → Cr is a bounded linear map with respect to the second variable,
f1 (respectivelyf2) is C

r -valued function defined on the product spaceN(n0) × B
(respectivelyN(n0) × Xk) under suitable conditions;B denotes an abstract phase space
that we will explain later,N(n0)= {n0, n0 + 1, . . .} (n0 is a fixed nonnegative integer) and
Xk is an appropriate Banach space endowed with the norm given by (2.7);x• denotes the
B-valued function onN(n0) defined byn 	→ xn wherexn(s)= x(n+s) for any nonpositive
integers.

The theory of functional difference equations in phase space has drawn the attention
of several authors in recent years. We only mention here Murakami [9], Elaydi et al. [7],
Cuevas and Pinto [3,4].

The main objective of this work is to establish sufficient conditions on the functions
f1 andf2 to assure the existence of convergent solutions of Eq. (1.2). As applications
and examples we apply our results to concrete model functional difference equations,
considering Volterra difference equations.

Some results concerned with convergence problem in ordinary difference equations
were established by Cheng et al. [5], Drosdowicz and Popenda [6], Szafranski and
Szmanda [11], Lakshmikantham and Trigiante [8], Aulbach [2], Agarwal [1].

In a recent paper Cuevas and Pinto [4] have established results of existence of
convergent solutions of nonautonomous Volterra difference systems with infinite delay.
In this paper we will extend these results replacing the Lipschitz condition and considering
general systems with unbounded delay.

The paper is organized as follows. Section 2 provides the definitions and preliminary
results to be used in the theorems stated and proved in this work. In Section 3 we study
the existence of convergent solutions of Eq. (1.2). In Section 4 we present applications
to Volterra difference equations. Throughout this paper we will always assume thatB is
a phase space andL is a bounded linear map with respect to the second variable.

2. Preliminaries and notations

Here we explain some notations and the phase space in this article. As usual, we denote
by Z, Z+ andZ− the set of all integers, the set of all nonnegative integers and the set of all
nonpositive integers, respectively. LetCr be ther-dimensional complex Euclidean space
with norm| · |. For any functionx :Z → C

r andn ∈ Z, we define the functionxn :Z− → C
r

by xn(s)= x(n+ s) for s ∈ Z−. We follow the terminology used in Murakami [9] to define
the axioms for spaceB. Thus the phase spaceB = B(Z−,Cr ) is a Banach space (with norm
denoted by‖ · ‖B) which is a subfamily of functions fromZ− into Cr and it is assumed to
satisfy the following axiom:

(A) There are a positive constantJ > 0 and nonnegative functionsN(·) andM(·) on Z+
with the property that ifx :Z → Cr is a function such thatx0 ∈ B, then for alln ∈ Z+,
(i) xn ∈ B,
(ii) J |x(n)| � ‖xn‖B �N(n)sup0�s�n |x(s)| +M(n)‖x0‖B .

To obtain our results we will need one additional property onB, namely:
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(B) The inclusion mapi : (B(Z−,Cr ),‖ · ‖∞)→ (B,‖ · ‖B) is continuous, i.e., there is a
constantK � 0 such that‖ϕ‖B �K‖ϕ‖∞, for all ϕ ∈ B(Z−,Cr ) (whereB(Z−,Cr )

represents the bounded functions ofZ
− in C

r ).

A typical space which satisfies the conditions (A) and (B) is the Banach spaceBα
defined by

Bα =
{
Φ :Z− → C

r : sup
n∈Z+

|Φ(−n)|
α(n)

<+∞
}
, (2.1)

with norm

‖Φ‖Bα = sup
n∈Z+

|Φ(−n)|
α(n)

, Φ ∈ Bα, (2.2)

whereα :Z+ → R+ := [0,∞) is an arbitrary positive increasing sequence.
From now onB will denote a phase space satisfying the axioms (A) and (B). For any

n� τ , we define the operatorT (n, τ ) :B → B by T (n, τ )ϕ = xn(τ,ϕ,0) for ϕ ∈ B, where
x(·, τ, ϕ,0) denotes the solution of the homogeneous linear system (1.1) passing through
(τ,ϕ). It is clear that the operatorT (n, τ ) is linear and by virtue of Axiom (A) it is bounded
onB and satisfies the following properties:

T (n, s)T (s, τ )= T (n, τ ) for n� s � τ and T (n,n)= I for n� n0. (2.3)

The operatorT (n, τ ) is called the solution operator of the homogeneous linear system
(1.1) (see [9] for details).

For convenience we will recall the definition of weightedp-summable dichotomy,
because we are interested in establishing our result for this kind of dichotomy. In the
following p � 1 anda1, a2 are two positive sequences.

Definition 2.1. We say that system(1.1) has an(a1, a2) weightedp-summable dichotomy
(or simplyp-summable) (ifp = 1 we simply say that dichotomy is summable), if there is a
positive constant̃K and a projection operatorP(τ) :B → B, (P (τ)= P 2(τ )), τ ∈ Z, such
that ifQ(τ)= I − P(τ), then

(i) T (n, τ )P (τ)= P(n)T (n, τ ), n� τ ;
(ii) The restriction T (n, τ )|R(Q(τ)), n � τ , is an isomorphism ofR(Q(τ)) onto

R(Q(n)) (R(Q(·)) denotes the range ofQ(·)) and we defineT (τ,n) as the inverse
mapping;

(iii) ‖Γ (n, ·)‖a2,p := (
∑∞

s=n0
‖Γ (n, s)‖pa2(s))

1/p � K̃a1(n), for all n� n0,

whereΓ (n, s) denotes the Green function associated with Eq. (1.1), i.e.,

Γ (n, s)=
{
T (n, s + 1)P (s + 1) if n− 1 � s,

−T (n, s + 1)Q(s + 1) if s > n− 1.

This concept was introduced by Pinto [10]. In general, the dichotomies are decomposed
in two important groups. The “uniform” dichotomies and the “weighted summable”
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dichotomies. The uniform dichotomies are the natural extension of ordinary dichotomy
and the weighted summable dichotomies are an extension of exponential dichotomy.

We shall need the following lemma:

Lemma 2.1. Assume that(1.1) has a weightedp-summable dichotomy. Then

∥∥T (n,m)P (m)∥∥� K̃a1(n)

a2(m)1/p

∥∥T (m+ 1,m)P (m)
∥∥

×
n−1∏

s=m+1

K̃a1(s + 1)

[K̃pa1(s + 1)p + a2(s)]1/p
,

for all n�m+ 1, whereK̃ is the constant of Definition2.1.

Proof. Puttingϕ(n)= ‖T (n,m)P (m)‖−1 andψ(n)=∑n−1
s=m ϕ(s + 1)pa2(s), we have

ψ(n)

ϕ(n)p
=

n−1∑
s=m

ϕ(s + 1)p
∥∥Γ (n, s)T (s + 1,m)P (m)

∥∥pa2(s)

=
n−1∑
s=m

∥∥Γ (n, s)∥∥pa2(s)� K̃pa1(n)
p

and henceψ(n) � ϕ(n)pK̃pa1(n)
p . Moreover,ψ(n + 1) − ψ(n) = ϕ(n + 1)pa2(n) �

ψ(n+ 1)a2(n)/K̃
pa1(n+ 1)p so that noticing thatψ(n+ 1)�ψ(n), we get

ψ(n+ 1)�
(

1+ a2(n)

K̃pa1(n+ 1)p

)
ψ(n), n�m+ 1.

Thus, we deduce that

ψ(n)�
n−1∏

s=m+1

(
1+ a2(s)

K̃pa1(s + 1)p

)
ψ(m+ 1).

Therefore, we complete the proof of lemma.✷
In the following paragraphs, we consider ther × r matrix function,E0(t), t ∈ Z

−,
defined by

E0(t)=
{
I (r × r unit matrix), if t = 0,
0 (r × r zero matrix), if t < 0.

Lemma 2.2 (see [4]).Assume that a functionz : [τ,∞)→ B satisfies the relation

z(n)= T (n, τ )z(τ )+
n−1∑
s=τ

T (n, s + 1)E0p(s), n� τ, (2.4)

and define a functiony :Z → Cr by
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y(n)=
{ [z(n)](0) if n� τ,

[z(τ )](n− τ ) if n < τ.
(2.5)

Theny(n) satisfies the equation

y(n+ 1)= L(n,yn)+ p(n), n� τ, (2.6)

together with the relationyn = z(n), n� τ .

Let {k(n)}n∈Z+ be an arbitrary positive sequence. Denoted byXk the Banach space of
all k-bounded functionsη :N(n0)→ B endowed with the norm

‖η‖k = sup
n�n0

∥∥η(n)∥∥Bk(n)−1. (2.7)

Also, we denote byX∞,k the Banach space of allk-convergent functionsξ ∈Xk , i.e., for
which the limitZk∞(ξ) := limn→∞ ξ(n)k(n)−1 exists, endowed with the norm (2.7). On
the other hand, for eachλ > 0 we denote byX∞,k[λ] the ball‖ξ‖k � λ in X∞,k .

Any concrete nonlinear situation requires a compact operator and hence a compactness
criterion. Onl∞ := l∞(N(n0),R

m), the Banach space of the uniform bounded sequences
there is not a good compactness criterion inl∞ (here Rm denotes them-copies of
R = (−∞,∞)). We will use the following criterion: A bounded equiconvergent at∞
subsetS of l∞ is relatively compact. We recall that the setS of sequencesx :N(n0)→ Rm

in l∞ is said to be equiconvergent at∞ if all sequence inS is convergent at the point∞
and for everyε > 0 there exists aN such that|x(n)−Z1∞(x)|< ε for n�N , for all x ∈ S,
whereZ1∞(x)= limn→∞ x(n).

To study general nonlinear perturbations we need a compactness criterion onX∞,k , for
using the Schauder’s fixed point theorem. This powerful theorem has not been sufficiently
used in difference equations. We have the following lemma:

Lemma 2.3 (compactness criterion onX∞,k). Let S be a subset ofX∞,k . Suppose the
following conditions are satisfied:

(C1) The setHk(n) := {ξ(n)k(n)−1/ξ ∈ S} is relatively compact onB, for all n ∈ N(n0);
(C2) S is weighted equiconvergent at∞, i.e., for everyε > 0 there exists aN such that

‖ξ(n)k(n)−1 −Zk∞(ξ)‖B < ε for n�N , for all ξ ∈ S.

ThenS is relatively compact onX∞,k .

Proof. Let {ξm}m be a sequence inS, it follows from (C1) there is a subsequence{ξmj }j
of {ξm}m such that the limita(n)= limj→∞ ξmj (n)k(n)

−1 exists. On the other hand, the
setZk∞(S)= {Zk∞(ξ)/ξ ∈ S} is relatively compact inB. Indeed, it follows from (C1) and
(C2) thatZk∞(S) is the uniform limit of the relatively compact setHk(n), so it is relatively
compact inB. Therefore, we can assume that{Zk∞(ξmj )}j is a Cauchy sequence onB.
A simple computation shows that{ξmj }j is a Cauchy sequence onX∞,k . To see this, letN
be a number ensured in condition (C2); then ifn0 � n�N
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∥∥ξmj (n)− ξmk (n)
∥∥
Bk(n)

−1 �
∥∥ξmj (n)k(n)

−1 − a(n)
∥∥
B

+ ∥∥ξmk (n)k(n)
−1 − a(n)

∥∥
B,

whereas forn >N we get∥∥ξmj (n)− ξmk (n)
∥∥
Bk(n)

−1 �
∥∥ξmj (n)k(n)

−1 −Zk∞(ξmj )
∥∥
B

+ ∥∥ξmk (n)k(n)
−1 −Zk∞(ξmk )

∥∥
B

+ ∥∥Zk∞(ξmj )−Zk∞(ξmk )
∥∥
B,

which concludes the proof.✷
Forϕ ∈ P(n0)B, we introduce the following notationZϕ(n)= T (n,n0)P (n0)ϕ and we

consider the closed and convex subsetX∞,a1[λ] of X∞,a1 and the operatorM defined by

(Mξ)(n)=Zϕ(n)+
∞∑
s=n0

Γ (n, s)E0(f1
(
s, ξ(s)

)+ f2(s, ξ)
)
, (2.8)

for anyξ ∈X∞,a1[λ]. We need the following lemma:

Lemma 2.4. Let p andq be conjugated exponents. Suppose the following conditions are
satisfied:

(D1) The system(1.1)has a weightedp-summable dichotomy;
(D2) There is a constantλ > 0 and functionsFi :N(n0)× R+ → R+, i = 1,2, with the

following properties:
(a1) Fi(n,u), i = 1,2, is nondecreasing inu for each fixedn� n0;
(a2) There is a functionl1 ∈ lq := lq (N(n0),R

+) such that for each(n,ϕ) ∈
N(n0)×B,∣∣f1(n,ϕ)

∣∣� a2(n)
1/pl1(n)F1

(
n,‖ϕ‖Ba1(n)

−1);
(a3) There is a functionl2 ∈ lq such that for each(n, ξ) ∈ N(n0) × Xa1 with

‖ξ‖a1 � λ,∣∣f2(n, ξ)
∣∣� a2(n)

1/pl2(n)F2
(
n,‖ξ‖a1

);
(a4) ρ[Fi ] := supn�n0

Fi(n,λ) <+∞, i = 1,2, and

δ :=KK̃
(
ρ[F1]‖l1‖q + ρ[F2]‖l2‖q

)
< λ;

(D3) The sequencesa1 anda2 satisfy

lim
n→∞

n−1∏
s=m+1

K̃a1(s + 1)

[K̃pa1(s + 1)p + a2(s)]1/p
= 0,

for all m� n0;
(D4) There are functionsΘi :N(n0)×B → Cr , i = 1,2, such that for allξ ∈X∞,a1[λ]:

(b1) f1(n, ξ(n))−Θ1(n,Z
a1∞(ξ))= 0(a2(n)

1/pl1(n)) asn→ ∞;
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(b2) f2(n, ξ)−Θ2(n,Z
a1∞(ξ))= 0(a2(n)

1/pl2(n)) asn→ ∞;
(D5) The limitsRi(ϕ) := Z

a1∞(Ωi(·, ϕ)) (i = 1,2) exist for all ϕ ∈ B with ‖ϕ‖B � λ,
whereΩi(n,ϕ) :=∑∞

s=n0
Γ (n, s)E0(Θi(s, ϕ)).

Then there is a constantM > 0 such that forϕ ∈ P(n0)B with ‖ϕ‖B � (λ − δ)M−1 we
have thatM mapsX∞,a1[λ] to itself.

Proof. We begin definingM := supn�n0
‖T (n,n0)P (n0)‖a1(n)

−1 andϕ ∈ P(n0)B with
‖ϕ‖B � (λ − δ)M−1. To establish thatξ ∈ X∞,a1[λ] implies ‖Mξ‖a1 � λ, using hy-
pothesis (D2), we deduce that∥∥(Mξ)(n)

∥∥
Ba1(n)

−1

�M‖ϕ‖B +Ka1(n)
−1
∥∥Γ (n, ·)∥∥

a2,p

(
ρ[F1]‖l1‖q + ρ[F2]‖l2‖q

)
�M‖ϕ‖B + δ � λ.

The operatorM defined in (2.8) may be rewritten as

(Mξ)(n)=Zϕ(n)+ (Ω1 +Ω2)
(
n,Za1∞(ξ)

)
+

∞∑
s=n0

Γ (n, s)E0(f1
(
s, ξ(s)

)−Θ1
(
s,Za1∞(ξ)

))

+
∞∑
s=n0

Γ (n, s)E0(f2(s, ξ)−Θ2
(
s,Za1∞(ξ)

))
.

From (D3), (D4) and taking into account Lemma 2.1, we can see that thea1-limit of
the last two terms of the right side of above expression are zero. ThereforeZ

a1∞(Mξ) =
(R1 +R2)(Z

a1∞(ξ)). This completes the proof of Lemma 2.4.✷
Remark 2.1. If the system (1.1) has a weighted summable dichotomy the hypothesis
(D2)(a2), (D2)(a3), (D3) and (D4) can be considered withp = 1 and li ∈ l∞, i =
1,2. On the other hand, the condition(D2)(a4) is replaced byδ := KK̃(ρ[F1]‖l1‖∞ +
ρ[F2]‖l2‖∞) < λ.

3. Existence of convergent solutions

By using Schauder’s fixed point theorem and weightedp-summable dichotomies, we
prove the existence of convergent solutions of Eq. (1.2). We have the following result:

Theorem 3.1. Assume that the hypotheses(Di ), i = 1,2,3,4, of Lemma2.4 hold. In ad-
dition suppose also that the following conditions are satisfied:

(E1) For everyn ∈ N(n0), the functionsa2(n)
−1/pli(n)

−1fi(n, ·), i = 1,2, are continu-
ous;
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(E2) The limitsπ1(ξ) = Z
ν1∞(f1(·, ξ(·))) and π2(ξ) = Z

ν2∞(f2(·, ξ)) exist uniformly in
ξ ∈X∞,a1[λ], whereνi(n)= a2(n)

1/pli (n), i = 1,2;
(E3) There are functionsGi :N(n0)×R+ → R+, i = 1,2, withρ[Gi] := supn�n0

Gi(n,λ),
Gi(n, ·) is nondecreasing for each fixedn ∈ N(n0) such that for each(n,ϕ) ∈
N(n0)×B, |Θi(n,ϕ)| � νi(n)Gi(n,‖ϕ‖B);

(E4) The limitsRi(ϕ) :=Z
a1∞(Ωi(·, ϕ)) (see(D5)), i = 1,2, exist uniformly inϕ ∈ B with

‖ϕ‖B � λ.

Then there is a constantM > 0 such that for eachϕ ∈ P(n0)B with ‖ϕ‖B � (λ− δ)M−1

there is a solutiony = y(ϕ)= y(n,n0,ψ) of Eq.(1.2)withP(n0)ψ = ϕ such thatZa1∞(y•)
exists and‖y•‖a1 � λ. The limitZa1∞(y•) is a fixed point of the operatorR1+R2. Moreover,
we have the following asymptotic formula:

yn(ϕ)=Zϕ(n)+ (Ω1 +Ω2)
(
n,Za1∞(y•)

)+ o
(
a1(n)

)
, n→ ∞. (3.1)

Proof. PuttingM := supn�n0
‖T (n,n0)P (n0)‖a1(n)

−1 and ϕ ∈ P(n0)B with ‖ϕ‖B �
(λ− δ)M−1. The Schauder’s fixed point theorem will be used to shows thatM (see (2.8))
has a fixed point inX∞,a1[λ].

We need show thatM is continuous. Let{ξm}∞m=1 be a sequence of elements of
X∞,a1[λ] such thatξm 	→ ξ in X∞,a1[λ]. We introduce the following notation:g1(n,ϕ) :=
ν1(n)

−1f1(n,ϕ), ϕ ∈ B; g2(n, ξ) := ν2(n)
−1f2(n, ξ), ξ ∈ Xa1. Let ε > 0, and select

an n1 ∈ N(n0) which is large enough to satisfyγi := 2KK̃ρ[Fi](∑∞
s=n1

li(s)
q)1/q < ε,

i = 1,2. Then, we obtain the following estimate:∥∥(Mξm)(n)− (Mξ)(n)
∥∥
Ba1(n)

−1

�Ka1(n)
−1

n1−1∑
s=n0

∥∥Γ (n, s)∥∥ν1(s)
∣∣g1
(
s, ξm(s)

)− g1
(
s, ξ(s)

)∣∣

+Ka1(n)
−1

n1−1∑
s=n0

∥∥Γ (n, s)∥∥ν2(s)
∣∣g2(s, ξm)− g2(s, ξ)

∣∣+ γ1 + γ2

�KK̃‖l1‖q max
n0�s�n1−1

∣∣g1
(
s, ξm(s)

)− g1
(
s, ξ(s)

)∣∣
+KK̃‖l2‖q max

n0�s�n1−1

∣∣g2(s, ξm)− g2(s, ξ)
∣∣+ 2ε.

As an immediate consequence of the continuity ofgi , i = 1,2, it follows thatMξm a1-
converges toMξ asn→ ∞.

We will show that the image ofM is relatively compact inX∞,a1. We will prove that
Ha1(n) is relatively compact inB for all n ∈ N(n0). We consider a arbitrary sequence
(ξm)m in X∞,a1[λ] and define the following sequenceϕm(n) := f1(n, ξm(n))/ν1(n),
n� n0. We note that the setAf1 = {ϕm/m ∈ N} is relatively compact inl∞. In fact, using
(D2), we infer that‖ϕm‖∞ � ρ[F1] for everym ∈ N. In this wayAf1 is bounded. On
the other hand, by hypothesis (E2) it follows that is equiconvergent. Therefore there is a
subsequence{ϕmj }j of {ϕm}m uniformly convergent inl∞, i.e., there is a functionϕf1 ∈ l∞
such that‖ϕmj − ϕf1‖∞ → 0, asj → ∞.
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We next consider a sequenceψmj (n) := f2(n, ξmj )/ν2(n), n � n0. We can repeat the
previous argument to conclude that the set{ψmj /j ∈ N} is relatively compact inl∞.
Hence there is a functionϕf2 ∈ l∞ such that‖ψmj − ϕf2‖∞ → 0 as j → ∞. Let
ϕ′
i (n) := νi(n)ϕfi (n), i = 1,2. Then, we can verify that the sequence(Mξmj )(n)a1(n)

−1

converges toZϕ(n)a1(n)
−1 + a1(n)

−1∑∞
s=n0

Γ (n, s)E0(ϕ′
1(s)+ ϕ′

2(s)), asj → ∞.
In fact, we note that

a1(n)
−1

∥∥∥∥∥
∞∑
s=n0

Γ (n, s)E0(ϕ′
1(s)+ ϕ′

2(s)
)∥∥∥∥∥

B
�KK̃

(‖ϕf1‖∞‖l1‖q + ‖ϕf2‖∞‖l2‖q
)

and

a1(n)
−1

∥∥∥∥∥
∞∑
s=n0

Γ (n, s)E0(f1
(
s, ξmj (s)

)− ϕ′
1(s)+ f2(s, ξmj )− ϕ′

2(s)
)∥∥∥∥∥

B

�Ka1(n)
−1

∞∑
s=n0

∥∥Γ (n, s)∥∥ν1(s)
∣∣ϕmj (s)− ϕf1(s)

∣∣

+Ka1(n)
−1

∞∑
s=n0

∥∥Γ (n, s)∥∥ν2(s)
∣∣ψmj (s)− ϕf2(s)

∣∣
�KK̃

(‖ϕmj − ϕf1‖∞‖l1‖q + ‖ψmj − ϕf2‖∞‖l2‖q
)
.

On the other hand, taking into account thatZ
a1∞(‖T (·,m)P (m)‖)= 0, for everym ∈ N, and

condition (E4), we observe that the weighted equiconvergence at∞ of the setMX∞,a1[λ]
is a consequence from the following two inequalities. Letξ ∈X∞,a1[λ]; then

a1(n)
−1
∥∥(Mξ)(n)− (Ω1 +Ω2)

(
n,Za1∞(ξ)

)∥∥
B

� a1(n)
−1
∥∥T (n,n0)P (n0)

∥∥‖ϕ‖B

+K
∥∥Γ (n1, ·)

∥∥
a2,p

a1(n)
−1
∥∥T (n,n1)P (n1)

∥∥ 2∑
i=1

(
ρ[Fi ] + ρ[Gi]

)‖li‖q
+K

∥∥Γ (n, ·)∥∥
a2,p

a1(n)
−1

2∑
i=1

(
ρ[Fi ] + ρ[Gi]

)( ∞∑
s=n1

li(s)
q

)1/q

� a1(n)
−1
∥∥T (n,n0)P (n0)

∥∥‖ϕ‖B

+KK̃a1(n1)a1(n)
−1
∥∥T (n,n1)P (n1)

∥∥ 2∑
i=1

(
ρ[Fi] + ρ[Gi]

)‖li‖q
+KK̃

2∑
i=1

(
ρ[Fi ] + ρ[Gi]

)( ∞∑
s=n1

li(s)
q

)1/q

and
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∥∥a1(n)
−1(Ω1 +Ω2)

(
n,Za1∞(ξ)

)−Za1∞(Mξ)
∥∥
B

�
∥∥a1(n)

−1Ω1
(
n,Za1∞(ξ)

)−R1
(
Za1∞(ξ)

)∥∥
B

+ ∥∥a1(n)
−1Ω2

(
n,Za1∞(ξ)

)−R2
(
Za1∞(ξ)

)∥∥
B.

By compactness criterion onX∞,a1, we conclude that the image ofM is relatively compact
in X∞,a1. Using the Schauder’s fixed point theoremM has a fixed pointξ ∈ X∞,a1[λ].
Define

y(n)=
{ [ξ(n)](0) if n� n0,

[ξ(n0)](n− n0) if n < n0.

Lemma 2.2 implies thaty(n) is solution of Eq. (1.2) andyn = ξ(n), n� n0. This completes
the proof of Theorem 3.1.✷

We can obtain uniqueness in some sense of solutions of Eq. (1.2) for certain special
cases. We have the following corollary:

Corollary 3.2. Assume that the hypotheses of Theorem3.1 are satisfied, whereGi(n,u)=
u andΘi(n,ϕ) (see(E3)) i = 1,2, is a linear operator inϕ ∈ B for everyn ∈ N(n0).
SupposeKK̃(‖l1‖q + ‖l2‖q) < 1; then there is a constantM > 0 such that for each
ϕ ∈ P(n0)B with ‖ϕ‖B � (λ− δ)M−1, there is a unique solutiony = y(ϕ)= y(n,n0,ψ)

with P(n0)ψ = ϕ such thatZa1∞(y•) exists and‖y•‖a1 � λ (uniqueness being understood
in the sense that any two such solutions differ by a factor of ordero(a1(n)), asn→ ∞).

Proof. It is sufficient to observe thatR1 + R2 is contractive onB. For ξ, η ∈ B, we have
the following estimate:∥∥Ωi(n, ξ)−Ωi(n,η)

∥∥
Ba1(n)

−1

�K

∞∑
s=n0

∥∥Γ (n, s)∥∥∣∣Θi(s, ξ − η)
∣∣a1(n)

−1 �KK̃‖li‖q‖ξ − η‖B.

Lettingn→ ∞ in the above estimate, we get∥∥Ri(ξ)−Ri(η)
∥∥
B �KK̃‖li‖q‖ξ − η‖B, i = 1,2.

This implies that∥∥(R1 +R2)(ξ)− (R1 +R2)(η)
∥∥
B �KK̃

(‖l1‖q + ‖l2‖q
)‖ξ − η‖B,

andR1 +R2 is a contraction onB sinceKK̃(‖l1‖q + ‖l2‖q) < 1. ✷
Remark 3.1. If the system (1.1) has a weighted summable dichotomy, taking into account
the Remark 2.1, the hypotheses of Theorem 3.1 can be considered withp = 1 andli ∈ l1,
i = 1,2. On the other hand, the conditionKK̃(‖l1‖q + ‖l2‖q) < 1 of Corollary 3.2 is
replaced byKK̃(‖l1‖∞ + ‖l2‖∞) < 1.
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Remark 3.2. We emphasize that Theorem 3.1 is interesting in two respects. Firstly,
certain conditions guarantee the existence of a weighted convergent solution to Eq. (1.2).
Secondly, its usefulness in applications (see Section 4), since the results include a larger
class, namely, systems (1.2) where Eq. (1.1) has a weightedp-summable dichotomy.

4. Applications and examples

We complete this work applying our previous results to the Volterra difference equations
with infinite delay.

Let a(n), b(n), k(s), r(t) be sequences of complex numbers defined forn ∈ N(n0),
s ∈ Z+, t ∈ Z, and letα :Z+ → R+ be an arbitrary positive increasing sequence such that

∞∑
n=0

∣∣k(n)∣∣α(n) <+∞. (4.1)

We consider the Volterra difference equations

x(n+ 1)=
n∑

s=−∞
a(n)k(n− s)x(s), (4.2)

y(n+ 1)=
n∑

s=−∞
a(n)k(n− s)y(s)+ ν

n∑
s=−∞

b(n)r(s)
(
y(s)

)µ
, (4.3)

with µ ∈ Z+, n� n0 andν ∈ R, |ν| small enough.
Equations(4.2) and(4.3) are viewed as functional difference equations on the phase

spaceBα , whereBα is defined as in the Section 2 withr = 1. In fact, letξ :N(n0)→ Bα ;
we note that

L(n,φ)=
∞∑
j=0

a(n)k(j)φ(−j),φ ∈ Bα, (4.4)

f (n, ξ)=
n0−1∑
τ=−∞

νb(n)r(τ )
([
ξ(n0)

]
(τ − n0)

)µ +
n∑

τ=n0

νb(n)r(τ )
([
ξ(τ )

]
(0)
)µ
.

(4.5)

We have the following result:

Theorem 4.1. Letp andq be conjugated exponents. Suppose the following conditions are
satisfied:

(H1) Equation(4.2) possesses a(a1, a2) weightedp-summable dichotomy witha1 anda2
satisfying the condition(D3);

(H2) χµ :=∑∞
τ=−∞ |r(τ )|(ã1(τ ))

µ <+∞, where

ã1(τ )=
{
a1(τ )α(0) if τ � n0,

a1(n0)α(n0 − τ ) if τ < n0;



C. Cuevas, M. Pinto / J. Math. Anal. Appl. 277 (2003) 324–341 335

(H3)
∑∞

s=n0
|sb(s)|(1+ a2(s)

1−q) <+∞;
(H4) Letλ be a positive real number andν a real number such that

δ :=KK̃λµ|ν|χµ
∥∥·b(·)∥∥1/p

1

∥∥·b(·)a1−q
2

∥∥1−q
1 < λ,

whereK is given by axiom(B) andK̃ is the constant of Definition2.1(iii).

Then there is a constantM > 0 such that for eachϕ ∈ P(n0)Bα with ‖ϕ‖Bα � (λ− δ)M−1

there is ana1-convergent solutiony = y(ϕ)= y(n,n0,ψ) of Eq.(4.3) with P(n0)ψ = ϕ,
and Za1∞(y•) is a fixed point ofR and ‖y•‖a1 � λ. Moreover, we have the following
asymptotic formula:

yn(ϕ)=Zϕ(n)+ o
(
a1(n)

)
, n→ ∞.

Proof. We begin defining

l(n)= |ν|a2(n)
−1/p

n∑
τ=−∞

∣∣nb(n)∣∣∣∣r(τ )∣∣(a1(τ )
)µ
, n� n0.

We note thatl ∈ lq . In fact,

l(n)� χµ|ν|∥∥·b(·)∥∥1/p
1

∣∣nb(n)∣∣1/qa2(n)
−1/p,

implying that

‖l‖q � χµ|ν|∥∥·b(·)∥∥1/p
1

∥∥·b(·)a1−q
2

∥∥1/q
1 .

A simple calculation shows that

∣∣f (n, ξ)∣∣�
(

|ν|
n∑

τ=−∞

∣∣b(n)∣∣∣∣r(τ )∣∣(ã1(τ )
)µ)‖ξ‖µa1

� a2(n)
1/pl(n)‖ξ‖µa1

.

Define a functionΘ :N(n0)×Bα → Cr by

Θ(n,ϕ)=
n∑

τ=n0

νb(n)r(τ )
(
a1(τ )ϕ(0)

)µ +
n0−1∑
τ=−∞

νb(n)r(τ )
(
a1(n0)ϕ(τ − n0)

)µ
.

To prove (D4)(b2), let ξ be a function inX∞,a1[λ], and if we choosen1 large sufficiently,
we have the following estimate:∣∣f (n, ξ)−Θ

(
n,Za1∞(ξ)

)∣∣
� µλµ−1

n∑
τ=n0

|ν|∣∣b(n)∣∣∣∣r(τ )∣∣(ã1(τ )
)µ∥∥∥∥ ξ(τ )a1(τ )

−Za1∞(ξ)
∥∥∥∥
Bα

+µλµ−1
n0−1∑
τ=−∞

|ν|∣∣b(n)∣∣∣∣r(τ )∣∣(ã1(τ )
)µ∥∥∥∥ ξ(n0)

a1(n0)
−Za1∞(ξ)

∥∥∥∥
Bα

� µλµ−1|ν|∣∣b(n)∣∣
(

n1−1∑
τ=−∞

∣∣r(τ )∣∣(ã1(τ )
)µ)

max
n0�s�n1−1

∥∥∥∥ ξ(s)a1(s)
−Za1∞(ξ)

∥∥∥∥
Bα
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+µλµ−1|ν|
(

n∑
τ=n1

∣∣b(n)∣∣∣∣r(τ )∣∣(ã1(τ )
)µ)

sup
s�n1

∥∥∥∥ ξ(s)a1(s)
−Za1∞(ξ)

∥∥∥∥
Bα

� µλµ−1|ν|χµ
∣∣b(n)∣∣ max

n0�s�n1−1

∥∥∥∥ ξ(s)a1(s)
−Za1∞(ξ)

∥∥∥∥
Bα

+µλµ−1|ν|a2(n)
1/pl(n) sup

s�n1

∥∥∥∥ ξ(s)a1(s)
−Za1∞(ξ)

∥∥∥∥
Bα
.

We observe that sinceZa1∞(ξ) exists andZ
a

1/p
2 l

∞ (|b(·)|)= 0, we get from the previous ine-
quality

f (n, ξ)−Θ
(
n,Za1∞(ξ)

)= o
(
a2(n)

1/pl(n)
)
, n→ ∞,

for all ξ ∈X∞,a1[λ].
We claim that the functiona2(n)

−1/pl(n)−1f (n, ·) is continuous for everyn ∈ N(n0).
Indeed, letη ∈Xa1 fixed,ε > 0 and letξ ∈Xa1 such that

‖ξ − η‖a1 <min

{
1,

ε

µ(1+ ‖η‖a1)
µ−1

}
.

We infer that∣∣f (n, ξ)− f (n,η)
∣∣a2(n)

−1/pl(n)−1

� µ
(
1+ ‖η‖a1

)µ−1
a2(n)

−1/pl(n)−1|ν|
(

n∑
τ=−∞

∣∣b(n)∣∣∣∣r(τ )∣∣a1(τ )

)
‖ξ − η‖a1

< ε.

To prove (E2) with f2 = f andl2 = l, we note

sup
‖ξ‖a1�λ

|f (n, ξ)|
a2(n)1/pl(n)

� λµ

n
,

which impliesZ
a

1/p
2 l

∞ (f (·, ξ))= 0 uniformly in ξ ∈X∞,a1[λ].
To prove (E3) for Θ, we observe∣∣Θ(n,ϕ)∣∣� 1

n
a2(n)

1/pl(n)‖ϕ‖µBα ,

for all ϕ ∈ Bα . Moreover,Z
a

1/p
2 l

∞ (Θ(·, ϕ)) = 0 uniformly in ϕ ∈ Bα with ‖ϕ‖Bα � λ. To
prove (E4), let ε be an arbitrary positive number; we can choosen1 � n0 andn2 � n1 such
that for allϕ ∈ Bα with ‖ϕ‖Bα � λ∣∣Θ(n,ϕ)∣∣� ε

2KK̃‖l‖q
a2(n)

1/pl(n), n� n1,

and
n−1∏

s=n1+1

K̃a1(s + 1)

[K̃pa1(s + 1)p + a2(s)]1/p
< ε/C, n� n2,
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where

C := 2λµKK̃2a1(n1)a2(n1)
−1/p‖l‖q

∥∥T (n1 + 1, n1)P (n1)
∥∥.

Hence, forn� n2, taking into account Lemma 2.1, we can infer that

a1(n)
−1
∥∥Ω(n,ϕ)∥∥Bα � λµK‖l‖qa1(n)

−1
∥∥T (n,n1)P (n1)

∥∥∥∥Γ (n1, ·)
∥∥
a2,p

+ ε

2K̃‖l‖q
a1(n)

−1
∞∑
s=n1

∥∥Γ (n, s)∥∥a2(s)
1/pl(s)

� 1

2
C

n−1∏
s=n1+1

K̃a1(s + 1)

[K̃pa1(s + 1)p + a2(s)]1/p

+ ε

2K̃
a1(n)

−1
∥∥Γ (n, ·)∥∥

a2,p

< ε.

ThereforeΩ(n,ϕ)= o(a1(n)) uniformly in ϕ ∈ Bα with ‖ϕ‖Bα � λ. This completes the
proof of Theorem 4.1. ✷
Remark 4.1. From the proof of Theorem 4.1 we can see that condition (D3) can be
replaced by limn→∞ a1(n)

−1T (n,m)P (m) = 0. On the other hand, if the system (4.2)
has a weighted summable dichotomy, taking into account the Remark 3.1, the hypotheses
of Theorem 4.1 can be considered withp = 1 but we need the condition‖· b(·)a−1

2 ‖1 <∞
instead conditions (H3). Moreover, condition (H4) is replaced byδ := KK̃λµ|ν|χµ ×
‖ · b(·)a−1

2 ‖∞ < λ.

Remark 4.2. Using previous proofs, it is easy to obtain the same type of result (Theo-
rem 4.1) for the following nonautonomous Volterra difference system with infinite delay:

x(n+ 1)=
n∑

s=−∞
A(n)K(n− s)x(s), n� n0 � 0, (4.6)

and its perturbed system

y(n+ 1)=
n∑

s=−∞

{
A(n)K(n− s)+ νB(n)R(s)

}
y(s), n� n0 � 0, (4.7)

whereA(n), K(m), B(n), R(s) are r × r matrices defined forn ∈ N(n0), m ∈ Z+ and
s ∈ Z.

Next, we will to provide an example to illustrate the usefulness of Theorem 4.1. Here
α(n)= 2n, a1(n)= (1/

√
2)n anda2(n)= (1/4)n+1.

Example 4.1. Let a > 1; we consider the following homogeneous linear difference equa-
tion:
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x(n+ 1)= anx(n), n� n0 � 0. (4.8)

We begin with a complete analysis to check the dichotomic properties. We recall that
solutionx(·,m,ϕ) of (4.8) is given by

x(n,m,ϕ)= am+(m+1)+···+n−1ϕ(0)= √
a
(n−m)(n+m−1)

ϕ(0)

for n�m. Hence

[
T (n,m)ϕ

]
(θ)=

{
ϕ(0)

√
a
(n+θ−m)(n+θ+m−1)

, m− n� θ � 0,
ϕ(n+ θ −m), n+ θ �m.

A computation shows that

T (n, s)T (s,m)= T (n,m), n� s �m,

T (n,n)= I, n�m.

We need to define appropriate projections in this problem. In this case the projections can
be taken asP(n) :Bα → Bα given by

[
P(n)ϕ

]
(θ)=

{
ϕ(θ)− ϕ(0)

√
a
(2nθ+θ2−θ)

, −n� θ � 0,
0, θ <−n.

andQ(n)= I − P(n) :Bα → Bα given by

[
Q(n)ϕ

]
(θ)=

{
ϕ(0)

√
a
(2nθ+θ2−θ)

, −n� θ � 0,
ϕ(θ), θ <−n.

We can see that forn� τ , we get

T (n, τ )P (τ)= P(n)T (n, τ ),

T (n, τ )Q(τ)=Q(n)T (n, τ ).

Forn� τ , we observe thatT (n, τ ) :Q(τ)Bα →Q(n)Bα is given by

[
T (n, τ )Q(τ)ϕ

]
(θ)=

{
ϕ(0)

√
a
(n+θ−τ )(n+θ+τ−1)

, −n� θ � 0,
ϕ(n+ θ − τ ), θ <−n.

We can prove thatT (n, τ ), n� τ , is an isomorphism ofQ(τ)Bα ontoQ(n)Bα . We define
T (τ,n) as the inverse mapping which is given by

[
T (τ,n)Q(n)ϕ

]
(θ)=

{
ϕ(0)

√
a
(τ+θ−n)(τ+θ+n−1)

, −τ � θ � 0,
ϕ(τ − n+ θ), θ <−τ.

On the other hand, we can infer that

∥∥T (n,m)P (m)ϕ∥∥Bα � 2

(
1

2

)n−m
‖ϕ‖Bα , ϕ ∈ Bα, n� s + 1, (4.9)

which implies that

lim
n→∞ a1(n)

−1
∥∥T (n,m)P (m)∥∥= 0. (4.10)

A computation shows that



C. Cuevas, M. Pinto / J. Math. Anal. Appl. 277 (2003) 324–341 339

∥∥T (n, s + 1)P (s + 1)ϕ
∥∥
Bα � 2

(
1

2

)n−(s+1)

‖ϕ‖Bα , ϕ ∈ Bα, n� s + 1, (4.11)∥∥T (n, s + 1)Q(s + 1)ϕ
∥∥
Bα � 2s+1−n‖ϕ‖Bα , ϕ ∈ Bα, s + 1 � n. (4.12)

The above estimates imply that‖Γ (n, ·)‖a2,1 � 2a1(n), n � n0. Next we consider the
following perturbed equation of (4.8):

y(n+ 1)= any(n)+ ν

n∑
s=−∞

b(n)r(s)(y(s))µ, µ ∈ Z
+, (4.13)

where

r(s)= l(s)r̃(s), s ∈ Z, (4.14)

with r̃ ∈ l1
a
µ
1
(N) ∩ l∞(Z−), l ∈ l∞(N) with l(s) = α(2s)µ, s ∈ Z

−, and letb(n) be a

complex sequence such that‖ · b(·)a−1
2 ‖1 <∞. We introduce the following notation:

γ1 := ∥∥·b(·)a−1
2

∥∥∞,
γ2 := a1(n0µ)

−1[‖r̃‖∞ + ‖l‖∞
][
α(µ)

/(
α(µ)− 1

)+ ‖r̃‖1,aµ1

]
.

Assume thatλ is a real positive number and assumeν is a real number such that
2|ν|γ2γ1 < λ1−µ. From this construction, we have that hypotheses of Theorem 4.1 are
satisfied (see Remark 4.1). In fact, we note that

n∑
τ=−∞

∣∣r(τ )∣∣(a1(τ )
)µ � a1(n0)

µ

n0−1∑
τ=−∞

∣∣r(τ )∣∣(α(n0 − τ )
)µ +

n∑
τ=n0

∣∣r(τ )∣∣(a1(τ )
)µ

� a1(n0µ)
−1

(
‖r̃‖∞

∞∑
s=0

(
1

α(µ)

)s
+ ‖l‖∞

n∑
τ=0

∣∣r̃(τ )∣∣(a1(τ )
)µ)� γ2.

Henceχµ <+∞. Therefore by Theorem 4.1 there is a constantM > 0 such that for each
ϕ ∈ P(n0)Bα with ‖ϕ‖Bα < (λ − δ)M−1 (δ is the constant of Remark 4.1), there is a
solutiony = y(ϕ)= y(n,n0,ψ) of Eq. (4.9) withP(n0)ψ = ϕ such thatZa1∞(y•)= 0 and
‖y•‖a1 � λ. Further, we have the asymptotic formula

yn(ϕ)= T (n,n0)ϕ + o
(
a1(n)

)
, n→ ∞.

Example 4.2. We consider the following homogeneous linear difference equation:

x(n+ 1)= a(n)x(n), n� n0 � 0. (4.15)

We note that solution operator is given by

[
T (n,m)ϕ

]
(θ)=

{(∏n+θ−1
τ=m a(τ)

)
ϕ(0), m− n� θ � 0,

ϕ(n+ θ −m), θ <m− n.

The projection in this case can be taken as

[
P(n)ϕ

]
(θ)=

{
ϕ(θ)− (∏n−1

τ=n+θ a(τ )−1
)
ϕ(0), −n� θ � 0,

0, θ <−n,
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and

[
Q(n)ϕ

]
(θ)=

{(∏n−1
τ=n+θ a(τ )−1

)
ϕ(0), −n� θ � 0,

ϕ(θ), θ <−n.
Forn� t , we observe thatT (n, τ ) is an isomorphism ofQ(τ)Bα ontoQ(n)Bα given by

[
T (n, τ )Q(τ)ϕ

]
(θ)=

{(∏n−1
s=τ a(s)

)(∏n−1
s=n+θ a(s)−1

)
ϕ(0), −n� θ � 0,

ϕ(n+ θ − τ ), θ <−n.
We defineT (τ,n) as the inverse mapping ofT (n, τ ), which is given by

[
T (τ,n)Q(n)ϕ

]
(θ)=

{(∏n−1
s=τ+θ a(s)−1

)
ϕ(0), −τ � θ � 0,

ϕ(τ − n+ θ), θ <−τ.
Letα(n), a1(n) anda2(n) be the same functions defined as in Example 4.1. Then, it is easy
to see that the solution operatorT (n,m) satisfies (4.10), (4.11) and (4.12). Hence, system
(4.15) has an(a1, a2) weighted summable dichotomy.

Next, we consider the following perturbed equation of (4.15)

y(n+ 1)= a(n)y(n)+ ν

n∑
s=−∞

b(n)r(s)
(
y(s)

)µ
, µ ∈ Z

+,

with b(n), r(s), λ and ν as in Example 4.1. Then the hypotheses of Theorem 4.1 are
satisfied.
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