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1. INTRODUCTION 

An interesting and important problem in the theory of denumerable 
Slarkov chains is to find a simple, easily computible canonical form for Pn, 
the matrix of the n-step transition probabilities. Kemeny has found such a 
representation for the class of “h-speading chains” [I]. ,4 k-spreading chain 
is a denumerable Markov chain with states the natural numbers, with all 
states communicating, (that is, such that the process, starting in any state, can 
eventually reach any other state), and with a positive integer k associated 
with it, such that Pi,i+k > 0 for all i, and Pij = 0 if j > i + k. Kemeny 
finds a matrix R, depending on P, a matrix Q, which is a 2-sided inverse of R, 
and a matrix S, such that P = QSR. All matrices are row-finite, and thus 
associate. So, P” = QS’&R. Since S is of such simple form that Sn is easy 
to find, the goal is accomplished. 

In a generalization of Kemeny’s work, this paper develops such a 
representation for what we will call n-dimensional k-spreading chains.4 
These chains are indexed by the n-dimensional coordinates (with the natural 
numbers as entries), and they are basically processes which, when projected 
on the x,-axis and watched only when the x,-coordinate changes, look like 
k-spreading chains, This class of Markov chains includes (by a trivial 
renumbering of the states) all n-dimensional random walks. 

A key tool in this paper will be the establishment of criteria for the existence 
and uniqueness of inverses for certain types of infinite matrices. 

1 Written in partial fulfillment of the degree of Bachelor of Arts at Dartmouth 
College. 

s The preparation of this paper was supported in part by the National Science 
Foundation, Grant No. GP-5260. 

a I would like to express my sincere appreciation to Professor John Kemeny for 
his help in the writing of this paper. 

4 A further generalization of this representation is presented in Section 11. 
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DEFINITION. Order the n-dimensional coordinates (that is, the n-dimen- 
sional vectors with the natural numbers, 0, I, 2,... as entries) as follows: 

(Xl ,***, x,) = (rl ,...,m) iff xi = ya , i = l,..., 12 

(Xl ,..‘, 4 < (A 9-**,Y7&) iff Xl<Yl, 

or 
x1 = y1 9.-m, x, = y.7 1 x,-l <Ys+1 9 for some s, 1 :gs <n. 

Denote each vector by a capital letter, and its coordinates by the corresponding 
lower-case letter, with subscripts. Also, write the vector (a, x2 , x3 ,..., x,) 
as (a, X). Thus X =L (.vr , X). 

The n-dimensional coordinates do not have the order-type of the natural 
numbers; thus, some elements have an infinite number of predecessors. 
However, in the generality of such books as [2], we are going to consider 
matrices indexed by the n-dimensional coordinates as states. 

Any matrix M which is indexed by the n-dimensional coordinates, can 
be written in the following form: 

where M[i*ll is that submatrix of M which is indexed down by all states of 
form (i, X), and across by all states of form (j, P). Call such an M[‘mil a basic 
submatrix of 1M. 

Define a matrix T to be triangular if Txx > 0 for each X and TX, = 0 
when X < Y. If a triangular matrix T has T,r = 0 for X + Y, call T 
diagonal. All matrices in this paper are assumed to be finite-valued (f.v.), and 
when necessary are proved to be f.v. 

The following useful criteria for associativity and distributivity of infinite 
matrices, which are proven for example in [2], will be used: 

1. Nonnegative matrices associate under multiplication, and distribute. 

2. If A, B, and C are f.v. matrices such that either A is row-finite or C 
is column-finite, and if (AB) C and A(BC) are both well defined, then 
(AB) C = A(BC). Note that if A and B are both row-finite, or if B and C 
are both column-finite, then (AB) C and A(BC) are well defined, since only 
finite sums are involved. 

3. If AB, AC, and A(B + C) are all well defined, then 

A(B + C) = AB + AC, 

and similarly for right distributivity, 
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4. If’ /A -‘B! - I C; < x;, then (AB) C -- A(BC). If 1 A 1 * 1 B 1 
and 1 rl . : C . . . . oz, then ,4(U I C) -- AB + rlC, and similarly for right 
distributivity. (B! the absolute value of a matrix, 9 , wc mean a matrix 
11 ith cntrics (’ A )X, = .-I,, ; .) 

2. ROW-FIXITE N-DIMENSIONAL K-SPREADING CHAINS 

DEFINITION. An n-dimensional k-spreading chain (n-k-s chain) is a h4arkov 
chain with states the n-dimensional coordinates, with a fixed integer k > 0 
associated with it, and with transition probabilities as follows: 

Pxr = 0 unless either yi < xi -+- k - 1, or yi = or + k and 
(0, P) < (0, x). Further, 

Note that the chain is essentially restricted to being k-spreading in only one 
dimension-there is great freedom of movement in the other dimensions. 

DEFINITION. Define the matrix R, which we will use in the representation 
P* = QSR, inductively. Write 

where each R[i.jl is a basic submatrix, and where omitted basic submatrices 
are 0. Call (R[i*olR[iJ1 *.* Rrt*il 0 0 en*) the ‘5th submatrix row.” Then 
define R[~,fl = SijI, if i < k, and inductively define the (; + k)th submatrix 
row as the ith submatrix row times P. Thus 

Rxu = P::h,,r , if x1 = mk + I, O<r<k. 

The ordering of the states has been defined in precisely such a way that R 
is triangular: If x1 < k - 1, then the (x1 , x) row of R is certainly such as to 
make R triangular. If xi > k - 1, write X, = mk + Y, 0 < Y < k, m > 1. 
Then 

= Pb,d).k+5.8) ’ P(k+r.m, (zJc+r.XP) *.- P((m-1lk+r.X).(mk+s.X) > 0. 
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Next consider Y > X. If yr > x1 = mk + T, then 

Rxr = Pc(i%, , (ul. r) = 0, 

since the first coordinate can increase by at most k on each step. If y1 = x1 , 
then since Y > X, (0, Y) > (0, X), so 

because the first coordinate must increase by k each time, and in so doing, 

(03 a can not increase. 
Triangularity by itself is not sufficient to assure that a matrix have a two- 

sided inverse. In fact, as we shall see in Section 12, there exist n-k-s chains 
whose R matrix fails to have such an inverse. However, we shall temporarily 
assume that P is row-finite, and we will see that no problem then arises. 

Define 5’ to be a matrix indexed by the same states as P, and with 

Thus, 

S.rY = ~(z,+mY - 

s$~:-;;:l). 

Note that Si is simple to find: 

Sk = %q+tk.xP).Y * 

By definition of R, RP = SR. 

LEMMA 1. If M and 1%’ are matrices, M is triangular and f.v., and N is 
either a right OY a left invirrse of M (or both), then N is f.v. 

PROOF. Assume that both MN = I, and also some entry NAB of N is 
f co. Then 

8.a = C MAzNzis = MAAN,, + c MAZNZB . 
Z Z#A 

Since MAA > 0, the right side contains an infinite term, and thus can not 
equal 8& . Likewise, any left inverse of M must be f.v. 

We will often use this lemma tacitly: for example, we will search for right 
inverses of a f.v. triangular matrix T by considering only f.v. candidates. 

4 09/23/3-2 
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LEMMA 2. I.el ‘I’ be my f.x., mu-finite triunplar matrix indexed by the 
n-dimemional coordinutrs. Thr 

1. ‘I’ has a unique 2-sided inwrse 1”. 

2. 7” is f.c., triauplar, and rowfinite. 

3. T’ is the unique right inverse of 7’. 

4. T’ is the unique mm-finite left inrerse of T. 

XOTE. Even if n -7 1, T’ is not necessarily the only left inverse of T, 
as Example 4 in Section 12 shows. 

PROOF. Let T(Q.Q.. ,.*+) be the submatrix of T indexed by all states X 
with “r, : i1 , x2 -= i, ,..., .T,. :-.- i, . To prove the lemma, we will use “back- 
wards induction” (from n to 0) on the length of the superscript of T: that is, 
we will show that if each TCZ1*... szr) fulfills the conclusions of the lemma, then 
so does each T(il~...*z~-l). When the superscript reaches 0 length, then the 
lemma is proven for T itself. Since each TCil*...sin) is a positive number, the 
initial induction step is trivial. 

Assume inductively that for each a = 0, 1, 2,..., the matrix T(E1**..~Z+-l~o) 
fulfills the conclusions. Think of M : Tczl*...*i+l) as being made up of 
blocks of submatrices as follows (as a short-hand, write T(al*....i+-l.a) as T(Q)): 

MC77 J3'2,O' B'2,l' 7Y2' 

WBj) is indexed down by those states X with x1 = il ,..., x,.-~ 1= iTml , x, = i, 
and across by those states with x1 = i, ,..., x,-~ :: i,-, , x, = j. 

Since T is row-finite, so is T(il*...*i+l), and hence so is each Bci*j) and 
each Tfa). 

Define a triangular matric C, indexed by the same states as M, as follows: 
write 

Define the submatrix Wj), i > j, recursively in i, by 

1. C(J.J) = (T(j))‘, the unique two-sided inverse of T(j), which exists, 
and is row-finite and triangular, by induction hypothesis. 

2. CW) = _ (T(i))’ (5 B’“,t’CW ) , i >j. 
t=j 
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Each C’o~j) is well-defined and row-finite, since : C(3.j) certainly is. Given 
inductively that C(j*j), P+l*j),..., cfz-l*J) are, then so is P.J) , since the 
products and sums of row-finite matrices are row-finite. 

We know that 

1’. T(i)C(j.3) = 1 

i-l 

2’. _ (T(i)) CC&j) = C B(i.f)c(~,~), i>j 
l;;j 

by multiplying Eq. 1 on the left by T(J), and Eq. 2 on the left by - To), 
and associating by row-finiteness. But these are precisely the conditions for C 
to be a right inverse of M. 

C is a matrix just like M, so we can identically construct a matrix C, which 
is row-finite, and which is a right inverse of C. 

Now AZ = M(CC,) = (MC) C, = Cr; the second equality follows from 
row-finiteness of M and C. So, C is a two-sided inverse of M. assume M has 
another right inverse N. Then Ar = (CM) N = C(MAr) = C. 

Finally, assume M has another row-finite left inverse L. Then 

L = L(MC) = (L&I) c = c; 

the second equality follows from row-finiteness of L and M. 
The induction is complete, and the lemma is proven. 

THEOREM 1. Let P be an n-k-s chain, which is row-finite. Then 

1. The matrix R associated with P has a unique two-sided inverse Q. 

2. R and Q are f.v., triangular, and row-finite. 

3. Q is the unique right inverse of R, and R is the unique r@t inverse of Q. 

4. Q is the unique row-finite left inverse of R, and R is the unique row-finite 
lejt inverse of Q. 

5. Pi = QSiR, i = 0, 1,2 ,... . 

PROOF. Each row of R is a row of some Pi. Thus R is row-finite, and we 
can apply Lemma 2. WC can then apply Lemma 2 to Q. 

Conclusion 5 follows from multiplying both sides of RP = SR on the left 
by Q, giving P = QSR, which implies Pi = QSiR. Since P, Q, S, and R 
are all row-finite, there is free associativity. 

3. BASIC QUANTITIES OBTAINABLE PROM THE REPRESENTATION 

Several fundamental quantities associated with the Markov chain P can be 
found from the matrices Q and R. In this section, we shall generalize some of 
Kemeny’s formulas in [2] to cover row-finite n-k-s chains. 
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If P has rows-sums unity, then so does R, and hence so does Q, since 
Ql =Q(Rl) =-: (QZR) I -- I, where 1 is a column vector of all ones. If 
PI f 1, then the row sum of the (x1 , Y?) row of R, where x1 = mk + r, 
0 < I < k, equals 

c P{~$J., = probability that the process, started in state (Y, J?), 
Y 

has not stopped with m steps. 

As for the columns of R: the interesting quantity is not lTR, which gives 
column sums, but VAR, where VA is a row vector defined for each A = (r, A), 
0 < r < k, ai arbitrary, i = 2, 3, 4 ,..., by 

Y = (r + sk, A) s = 0, 1, 2,... 
otherwise. 

For, 

(IfAR),= i R( r+sk.A).Y = f p% = NAY I 
3=0 s=o 

the mean number of times E’ is eventually reached, starting in A. If all states 
are transient, we can find all of N. Define 

Then 

T(“) = i St, 
t=o 

and T = lip Ttn). 

N = lim QTf”lR 
II 

= Q lim( Ttn)R) since Q is row-finite 

= Q( TR) by monotonicity. 

Further, it is worth mentioning that (QT) R = Q(TR) = N. For, if 
x1 = mk + r, 0 < I < k, then 

(T&Y < (V(“.-) Y = N(r,m, Y < NIT. 

So, by row-finiteness of Q, ; Q 1 TR is f.v. Let us note for later that each 
column of TR is uniformly bounded. 

4. THE REGULAR FUNCTIONS OF P 

The set of all functions (column vectors indexed by the n-dimensional 
coordinates) forms a vector space over the reals, where we even allow 
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infinite sums of functions whenever the sum is well-defined and f.v. in each 
entry. A countable set of functions { fi} is then linearly independent whenever 

implies that each ai = 0. 

The set of all f.v. regular functions of a row-finite Markov chain forms a 
vector subspace. For, assume 

m 

Then 

g = 1 a, fi is f.v., where each fi is regular. 
p.=1 

Pg = PC aih = C ai& = C Ui fi = 8, 

with the second equality following since P is row-finite. 
For each state A = (r, A), 0 < r < K, of an n-k-s chain P, define a column 

vector EA by 

(EA)x = I:, x = (I + Sk, A), s = 0, 1, 2,... 
otherwise. 

Thus EA = (VA)= (see Section 3). 

THEOREM 2. Let P be any row-finite n-k-s chain P. Then the vectors QEA 
form a linearly independent set which spans (allowing infinite sums) the subspace 
V of f.v. regular functions of P. In particular, if n > 1, then P has a countably 
inJinite number of linearly independent regular functions, and if n = 1, then the 
subspace of f.v. regular functions is k-dimensional. 

PROOF. Each QEA is well-defined, since Q is row-finite. Each QEA is 
regular, since from PQ = QS, w-e have PQEA = QSEA = QEA. Thus, the 
space spanned by the {QE”} is contained in V. 

The {QEA} are linearly independent: assume 

c U&EA = 0. 

Then 
0 = RO 

= R c aAQEA 

= c aARQEA by row-finiteness 

= c UAEA, 

and by the obvious linear independence of the {EA}, each a4 = 0. 
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So\\ assumcf is f.v. and regular. Then Iif RPf = Sl?f. Since g == Rf 
sLllfills g Sg, \\e knw (fif)X (Rf),,,ir,, ,,‘, 8j, m ;: 0. So, 

Rf - c a,l:‘A, where UA -=- (f?f)A s 
‘l‘hcn 

1’1,~ last statcmcnt of the thcorcm is no\v obvious by counting the number 
c,f B”‘s. 

1\.c now have a reprcscntation for f.v. regular functions of a row-finite 
I -, -. Y ct.ain. First, nritc each function 

gro1 

g = PI i-) glZ1 ’ 

where gl”l is a basic subcolumn, indexed by all states X with x1 = i. Then a 
function f is regular iff it is of form Qg, \\hcre g[Ol, gllJ,...,g[Ji-ll are com- 
pletely arbitrary, and g[“l = g[jl whenever i = j mod K. 

5. A SHORTCUT FOR OBTAINING Q 

At this stage, the only method we have for finding the matrix Q associated 
with a given n-k-s chain P is to first find R, and then to find Q as the unique 
two-sided inverse of R. However, it would be desirable to have a more direct 
way of obtaining Q. The conclusion of the following theorem is completely 
analogous to the fact that R is characterized by RX, = aXr for x1 < k, and 
RP = SR. 

THEOREM 3. The Q matrix for a row-jinite n-k-s chain P is characterized 
by QXY = aXr for xl < k, and PQ = QS. 

PROOF. First, the Q matrix for P obviously fulfills this. Assume some 
other matrix Q1 fulfills these conditions. Then PQ, = QIS tells us that Q1 
is indexed by the same states as Q (and P and S). Let P[z-31, Q[i.jl, S[i*jl, and 
Q[li*jl be basic submatrices. Then for i < k and arbitrary j, Qy*jl = Q[i*il. 
Assume inductively that QyJ = Q[tsjl, i < r - 1 and all j, where r >, k. 
Then from PQ, = QIS, 

i p[T--k.dQ~.jl = Qt-k.j-k] = Q[r-k,j-k], 

2=0 
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if we define the “basic” submatrix Qp~~l ~1 QLsstl = 0 when t .c, 0. So, 

T-l 
pp-r.r]Qp.i] = Qpw-li] - 1 P[~-~JIQ[~JI by induction hypothesis 

SO 

= p[7--k.7]Q[r.j], since PQ = QS. (1) 

Now P[r-k.rl can be considered as being indexed by the (n - I)-dimensional 
coordinates, and it then fulfills the hypothesis of Lemma 2. Multiply both 
sides of (1) by (P[r-k.rl)-l on the left, and then Qy*31 = QLr*jl, completing 
the induction. 

Let us calculate R and Q for a given example, to demonstrate the usefulness 
of Theorem 3. Assume P is a row-finite n-l-s chain (that is, an 11-k-s chain 
with k = 1) of form 

i 

pw1 pw1 

pw1 0 pb31 

pw1 0 0 pv.31 

PL3.01 0 0 0 PP.41 

R can be found from its recusive definition : 

I, i=j=O 

i-l 

R[“Jl = 
c RW.rlpP.01, i>j=O 
+=;. 

R[i-1.Gl]p[j-ld], i>j>O 
0, i <j. 

Obviously it would be difficult to try to find Q as a two-sided inverse of R. 
However, starting from Q[“*il = ?&I and PQ == QS, we easily find that for 
i> 1, 

i 

_ (p[i-j-l-i-j]p[i-i.i-i+l] . . . p[i-l.i])-1 p[i-l-3.01, i>j 
Q[id] = (p[O,l]p[l.2] . . . p[i-l.i])-1 

, i=j 

0 otherwise. 

To verify that these equations correctly define Q, we need only verify now, 
according to Theorem 3, that PQ = QS, which is easy to check. 

6. INFINITE-DIMENSIONAL K-SPREADING CHAINS 

It is certainly natural to try to consider infinite-dimensional coordinates 
(that is, vectors containing a countable number of natural numbers as entries) 
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as a set of states. However, this set of \ cctors forms an uncountable collection, 
and thus can not bc considcrctl as the states of a denumerablc llarkov 
chain. One solution is to consider only those vectors which “terminate,” 
that is, which have only zeroes as cntrics from some point on, since these form 
a countable collection. 

DEFINITWS. Call thcsc vectors the injinite-ciirne?zsionuZ terminating coordin- 
ates, and order them as we did the finite-dimensional coordinates: 

(x1 , x2 ,... ) -: (yl ,y2 ,...) iff xr = y1 for all i 

(Xl Y x2 ,...I < (yl ,y2 ,...) iff x1 <yl 
or 

Xl = y1 ,..., xs = ys , x8;, <y&.+1 for some s > 1. 

Adopt the same conventions as before, e.g., X = (x1, x). Define now an 
infinite-dimensional K-spreading chain (W-K-S chain) by carrying over exactly 
the definition of an n-k-s chain (with the exception, of course, of the set 
of states). 

Assume now that each ~-k-s chain P fulfills the following additional 
rtstricticn: there is scme integer c 2 1 asscciated uith P such that 

unless not only (0, a) < (0, x), but also 

(0, 0 ,...) 0, x,tl , xc+2 ,...) - (0, 0 ,..., 0, Yr+, I Yc+n Y*>* 

Thus, when the process takes its maximum jump in the x,-direction, at most 
c - 1 other components can change. Our last restriction can be weakened, 
although we will not consider that here: for example, c can be nonconstant, 
but instead a function of x1 . Let us show that if such a chain P is row-finite, 
it is representable as Pi = QSiR. 

LEMMA 3. Let T be any f.v., row-finite matrix indexed by the injinite- 
dimensional terminating coordinates. Suppose that T has associated with it a 
constant d > 1, such that each submatrix T(il*i~s..‘*id) (dejined in the proof of 
Lemma 2) is diagonal. Then T fulfills the conclusicms of Lemma 2. 

PROOF. The proof of Lemma 2 holds, if we only change the initial induc- 
tion step: the backwards induction runs from d to 0, with each T(il....*id), 
being diagonal, fulfilling the conclusions of the lemma. 

THEOREM 4. Let P be a row-finite w-k-s chain, with the following additional 
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restriction: There exists c > 1 such that P~x,,~),(z,+k,q = 0 unless not only 
(0, P) < (0,X) but also 

(0, OP.., 0, x,+1 , x,+2 ,...) = (0, o,..., O,Y,+, , Ye+2 Y). 

Then P fulfills the conclusions of Theorems I, 2, and 3. 

PROOF. Each R(il*...*ic) is diagonal: it is obviously triangular, since it is 
“on the diagonal” of R. Let ir = mk + r, 0 < Y < h. If 

then 
(0, --a, 0, x,+1, x,+2 ,..*) # (O,..., o,y,+, ,Yc+2 ,...), 

R(il ,....~c.~~+1.2,+,.... ) (’ . ~,....,i,.u,+l.u,+s,... ) 

= p(m) b.lP . . . . . ~o.“o+~.2c+~ . . . . ).(mK+r.is . . . . . i,.uc+l.uc+p . ...) = 0. 

Thus Lemma 3 applies, and the conclusion to Theorem 1 holds. 
The proof of Theorem 2 carries over word for word. The dimension of 

the subspace of regular functions is then, of course, countably infinite, just 
as in the case n > 1. 

The only change necessary in the proof of Theorem 3 lies in showing that 
PLr-lzsrl has a row-finite left inverse. There are 2 cases. If c = 1, then P[r-lc.rl 
is diagonal, and the result follows; if c > 1, then P[+-li.?l can be considered as 
being indexed by the infinite-dimensional terminating coordinates, and it then 
fulfills the hypotheses of Lemma 3, with d = c - 1. 

We have shown that all w-K-s chains with a certain natural restriction are 
representable (Pi = QSR). Let us show (mainly as an interesting exercise 
in the renumbering of states) that if we slightly modify the definition of 
w-K-s chains, we can obtain the desirable result that all row-infinite w-k-s 
chains (of the modified variety) are representable. 

Define a new ordering on the infinite-dimensional terminating coordinates, 
as follows: 

(Xl , x2 ,-** > = '(35 , y2 ,...> ifi xi = yt for all i 

( Xl 9 x2 9-m. ) < ‘(yl ,y2 ,...) iff p:p? **a <pp@ *e*, 

where p, is the ith prime (p, = 2, p, = 3, etc.). 
Since the entries are all 0 from some point on, this is well-defined. 

DEFINITION. A modified w-k-s chain is a Markov chain with states the 
infinite-dimensional terminating coordinates, and with 

Pxr=O unless either yl<xl+k-1, or yl=x,+k and 
(0, p) <’ (0, xl. Further, P~zl~~),(,l+k.~) > 0. 
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Kotc that this definition is identical to the definition of an w-k-s chain 
with ;-:’ substituted for :;;.. X moditicd w-,‘2-s chain is not merely a weakened 
W-/Z-S chain, since for example in a modified w-K-s chain, the process can 
move directly from (1, 1, 1, 0, 0, 0, 0 ,...) to (1 $ k, 2,0,0,0 ,... ), which is 
impossible in regular w-k-s chain. 

TI*EORE>~ 5. A modified w-k-s chain mhich is row-finite is representable. 

PROOF. WC will show that by renumbering the states of a modified 
W-K-S chain, we get nothing other than an ordinary 2-12-s chain. Then the 
result will follow immediately, since row-finite n-k-s chains arc representable. 

Define a 1- 1 correspondence between the infinite-dimensional terminating 
coordinates and the posit& integers by 

f: (a,, a2 ,...) -+pylpF *.. . 

Define a l-1 correspondence between the positive integers and the 2-dimen- 
sional coordinates by 

g : 2”(2b f 1) -+ (a, b). 

Then the 1-l correspondencegfmaps (a, , a2 ,...) onto (al , (plfop> *a* - 1)/2). 
Relabel states X of P as g(f(X)), and let 

Then it is easy to check that the process is now simply a 2-k-s chain. 

7. BLOCK-COLUMN-FINITE n-k-s CHAINS 

We have proved that each row-finite n-k-s chain P has the property that 
its R matrix has a two-sided inverse. We might naturally hope that this 
would be true also of column-finite n-k-s chains. However, there is an imme- 
diate stumbling block: even if an n-k-s chain P is column-finite, its R matrix 
is not necessarily column-finite. In fact, it is easy to show that if any two 
states A and B of P communicate (that is, Pyh > 0 and Pfj > 0 for some 
Y, s), then R is not column-finite. However, as we will see later, the R matrix 
for a column-finite n-k-s chain does have another property which is similar 
to column-finiteness, a property we will call “block-column-finiteness.” 

DEFINITION. A matrix M which is indexed by the n-dimensional or 
infinite-dimensional terminating coordinates is block-column-finite if each 
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of its basic submatrices Mli*Q is column-finite. In particular, every column- 
finite matrix indexed by multi-dimensional coordinates is block-column- 
finite. 

Unfortunately, not even all block-column-finite, triangular matrices have 
a tu-o-sided inverse. In fact, in Section 12 we see a countcrexample, of a 
column-finite, 2-1-s chain P whose R matrix does not have a right inverse. 
So some further restriction is necessary to guarantee that the R matrix of a 
column-finite n-k-s chain P be invert&. A very natural restriction :is ithat 
each l’lz~z+rl be diagonal-that is, that when the process takes its maximum 
jump of k units in the first coordinate, then no other coordinate can change. 
If we adopt this assumption, then we can prove cvcn more: that any such 
block-column-finite n-k-s (or, in fact, w-k-s) chain P has a (unique) two- 
sided inverse for its R matrix. This is quite significant, since then with a little 
more work WC can have a representation for a class of Markov chains which 
need not be either row-finite or column-finite. 

We begin with 4 lemmas. 

LEMhlA 4. Assume that a f.v. triangular matrix T is indexed by either the 
n-dimensional OY the infinite-dimensional terminating coordinates, and that 
each T[i~tl is diagonal. Then if T has a riglzt inverse C, C is triangular. 

PROOF. The proof is exactly like that for a finite triangular matrix, except 
that matrix blocks are used instead of numbers. A diagonal submatrix 
corresponds to a nonzero number, which always has a unique inverse. 

LEMMA 5. Let T be as in Lemma 4. Then T has at most one triangular left 
inverse. 

PROOF. Assume LT = I. Then 

L[i.ilT[i,i] = 1 

Denote the (unique), diagonal, two-sided inverse of the diagonal matrix 
Ttz**l by (T[i*el)-l. Then the above two equations give us 

L[“.il = (‘l-[&i])-1 

L[iJl = - j < i. 
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These are recursion equations in j, which dctcrminc first Lrl*‘J, and then 
Z,I”*‘l (j c, i) in terms of l,lL,L! I,I’*” ’ I,..., I,I&*J II. Hence there is at most one 
solution for I,, ishich can only exist if all matrix products and sums above are 
well defined. 

LEI\lnqA 6. Let .-I and B be two nonnegative f.7:. block-column-finite matrices, 
both indexed by the n-dimensional, or the infinite-dimensional terminating 
coordinates. Assume there exists rA such that ..I,, = 0 whenever y1 > x1 i rA , 
and likewise for B. Then C --- AB has the same properties: it is nonnegative, f.v., 
block-column-&site, and there exists rc such that C,, == 0 whenever 
y1 > xl + rc . Thus any product of a finite number of such matrices is again 
such a matrix, and in particular is f.v. 

PROOF. Let C = AB. Then 

i-CT/j 

c[i.~] _ C fl[i.mlB[*.~l. 

m-o 

Since each ALivrnl and each B[m*jl is column-finite, so is C’[i*jJ. Thus, C is f.v. 
and block-column-finite. 

Finally, if j>i+r,$-r,, then for m=O,l,...,i+rA, we have 
B[msjl zz 0 so 

Thus rA + yB can serve as rc . 
We are now ready to prove: 

LEMMA 7. Z,et T be a f.v., block-column-finite triangular matrix, indexed 
by either the n-dimensional or the infinite-dimensional terminating coordinates. Zf 
each T[i~il is diagonal, then 

1. T has a unique two-sided inverse C. 

2. C is f-v., triangular, and block-column-finite and each C[i*rl is diagonal. 

3. C is the unique r$ht inverse of T. 

4. C is the only left inverse of T which is triangular. 

NOTE. Even if n = 1, C is not necessarily the unique left inverse of T, 
as we see from counterexample 4 in Section 12. The given matrix is block- 
column-finite, where a number serves as a block. 

PROOF. By Lemma 4, if T is to have a right inverse C, C must be trian- 
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gular. Hence a necessary and sufficient condition for a matrix C to be a right 
inverse of T is 

C[i.jl = t-J j>i 

TWJClj.~J = 1 

i-l 
_ T[z,iJC[i.jl = C T[i.tJC[t.jJ , i>j. 

l=J 

Since each Tli**J is diagonal, an equivalent set of conditions is 

C[i.i] _ 0 

C[j.jJ _ (&.jJ)-1 

j > i 

i-l 
CWI = - (TWl)-1 c T[“.tlCI’,jJ, i>j. (2) 

63 

Since condition (2) is a set of recursion equations in i, we can get at most 
one solution for C. Let us prove that we do indeed get a solution, that is, 
that each Cti*iJ is well-defined; simultaneously let us show that each Cti*jJ 
is column-finite. Certainly each CM, i < j, is well-defined and column- 
finite. Assume inductively that CIj*iJ, C/J 1 l-11,..., :C[z-l~~J are well-defined 
and column-finite. Then since products and finite sums of column-finite 
matrices are column-finite, so is Ui*jJ. 

Since the matrix C we have constructed fulfills the hypothesis of the lemma, 
C, by an identical argument, has a unique right inverse C’, which is f.v., 
triangular, and block-column-finite. Now, by the final conclusion of Lemma 6, 
1 T 1 . ) C ) * 1 C’ 1 is f.v. So, T = T(CC’) = (TC) C’ = C’. 

The final conclusion follows from Lemma 5. 

THEOREM 6. Let P be any block-column-finite n-k-s or w-k-s chain, and 
assume that each P[i,r+BJ is diagonal. Then: 

1. The R matrix associated with P has a unique two-sided inverse Q. 

2. R and Q are f.v., triangular, and block-column-Jinite. 

3. Q is the unique right inverse of R, and R is the unique right inverse of Q. 

4. Q is the only left inverse of R which is triangular, and R is the only left 
inverse of Q which is triangular. 

5. Pi=QSR, i=O,1,2 ,.... 

PROOF. Let us show that R fulfills the hypothesis of Lemma 7. R is f.v. 
and triangular. R is also block-column-finite: since P is block-column-finite, 
so is each Pm, m = 0, 1, 2 ,..., by the final conclusion of Lemma 6. And, it is 
easy to show that for i > j, RtimjJ = (Pm)[rmjJ, i = mk + r, 0 < r < k. 



516 FAGIN 

fiach HI’v‘l is diagonal: automatically (by triangularity), HXX :> 0. And, if 
(0, X) + (0, F), and i = mk -j- Y, 0 6. r < k, then 

To show conclusion 5, we need only show that P, 0, R, and Sz (z’ > 0) 
all freely associate. This is satisfied if all finite products among themselves 
of P, i Q I, R, and S are again f.v. 11ut this holds by Lemma 6, 
where rP --: rs = k, and yR = rlQl = 0. 

Note that Theorem 3 holds for this class of chains also: we can carry the 
proof over completely, with only one change-PL7-h*rJ has an inverse since 
it is diagonal. 

Surprisingly, unlike the row-finite case it is not necessarily true that the 
matrix :V of mean number of visits is given by N -- QTR. A countcrexample 
is given in Section 12. 

8. ANOTHER CLASS OF REPRESENTABLE n-k-s CHAINS 

In the previous section, we saw that n-h-s chains P are representable when 

1. Each P[z*z-l ‘(1 is diagonal 

2. P is block-column-finite. 

Neither condition alone is sufficient, as the counterexamples in Section 12 
show. Since condition 1 is so natural-it says that when the process takes its 
maximum jump of K steps in the first coordinate, no other coordinate 
changes--we seek another class of n-h-s chains which are representable 
because of this condition along with some other conditions. One such addi- 
tional condition is 

2. There exists d > 0 such that P(j.~),(i+e,x) > d. We can weaken this 
condition even further to: 

2. There exists a set of positive scalars {di} such that Pti,~),(i+k,~) > di . 

All of these condition 2’s together are not sufficient unless we include con- 
dition 1, as counterexample 3 in Section 12 shows. 

We begin with two lemmas. 

LEMM.4 8. Let A and B be two nonnegative, f.v. matrices, both indexed 
by the n-dimensional or the in$nite-dimensional terminating coordinates. Assume : 

1. There exists a set of nonnegative scalars {ai) such that the row sum of the 
(i, x) row of A is less than or equal to a, , uniformly in x. 

2. There exists a constant rA such that A,, -: 0 whenever y1 > x1 T rA . 
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Assume B also has a set of scalars {bi} fulfilling hypothesis 1, and a constant 
yB fulfilling hypothesis 2. 

Then C : r2B has the same properties: C is nonnegative, f.v., and has a 
set of scalars {ci} fulfilling 1, and a constant yC fulfilling 2. Thus, the product 
of any finite number of such matrices is again such a matrix, and in particular 
is f.v. 

PROOF. Let C = AB. Then 
i-l r* 

I’J~-31 = c A[i.mlB[m.~J. 

m=o 

-4s in Lemma 6, r, + yg can serve as rc . So 2 holds for C. 
To show 1 holds for C, we need only show that there exists a set of scalars 

{czj} such that Crz*jll < ~1, since then we can set 

Ci = C Cig . 
j-0 

This will also show, of course, that C is f.v. Now 

C[Wl = c A[~-~IB[~JI~ by nonnegativity 

m=o 

f+r,, 
6 C A[isrnl b,l 

m=o 

< max{b,} * C A[t*“ll 
m=o 

where the maximum is taken over 0 < m < i + rA . We can let 

Cjj = ai max@,). 

LEMMA 9. Assume T is any f.v., triangular matrik indexed by either the 
n-dimensional or the injnite-dimensional terminating coordinates, and assume 
also that: 

A. There exists a set {a,} of scalars, such that the row sum of the (i, 13) TOW 

of ( T ( is less than or equal to a,, , uniformly in 8. 

B. Each TLisil is diagonal. 

C. There exists a set of positive scalars {bJ, such that bi < / T[W /xx for 
all X. 
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Then : 

I. T has a unique two-sided incerse C. 

2. C is f.v. and triangular, and fulfills each of A, B, and C. 

3. C is the unique right inoerse of T. 

4. C is the only left inaerse of 7’ which is triangular. 

NOTE. Again, Section 12 shows that C is not necessarily the unique left 
inverse of T. 

PROOF. As in Lemma 7, necessary and sufficient conditions for a matrix C 
to be a right inverse of 1’ are 

ctw = 0 i<j 

c[i.3] = (pi])-1 

i-l 
c[i.j] = - (~[i.~l)-l c Tti-~lClt-~l, i > j. (3) 

t=j 

Since these equations are recursion equations in i, we can get at most one 
solution. The matrix C, if it exists, certainly fulfills hypothesis B and C: 
Cti*il = (T[a*il)-l, which is diagonal; and, 

Let us prove that equations (3) give us a well-defined solution C (i.e., that 
each Cti*~I is well defined), and simultaneously, let us show that the matrix C 
fulfills hypothesis A. Fulfilling hypothesis A is equivalent to there being 
{aij} such that I C[i*jl ( < aijl. Now C’[j*jl = (T[j*jl)-l is well defined, and 
satisfies this condition, with aii = l/b, . Assume inductively that C[J*~], 
c[~+w,..., W-14 are all well defined and satisfy 1 CYrBjI I 1 < aill for some 
a:, < 00. Then, first, each T[i*nzlC[ marl, m < i, is well defined, since we need 
only show each entry of 1 Tlisrnl 1 1 CWjl ) is finite, for m < i. 

(I T[iml 1 1 Ctm.jl I)xr = c 1 ‘J”[i.ml Ixz ) C[“W Izy 
Z 

= a& C I T[““’ lxz 
Z 
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Thus the finite sum 
i-l 
c 3’ri*qyi1 
t=j 

is well defined, and therefore so is 

i-l 
_ (T[i.il)-1 C T[LtlC[t.jl, 

t=3 

since (T[i*il)-1 is diagonal. Thus each CY*jl is indeed well defined, and so C 
is well defined. And, 

1 C[i.j] 1 = j (T[Lil)-1 y T[WC[Ljl 1 1 
t=3 

( 
i-l 

< 1 1 (T[idl)-1 ) 1 TWI 1 1 CkJl 1 1. t=3 ) 

So, to finish off this induction, we need only show that there exists some 
constant c = c(i, t, j) such that 

1 (TI’Jl)-1 I 1 Tt*.tl 1 1 ctw 1 1 <cl, j<t<i. 
Now 

1 (T[i,$])-1 1 1 T[i,t] 1 1 CIt*jl 1 1 = 1 (Tri’il)-l 1 1 T[i’tl I (I Crt*‘l I ‘1 

The induction is complete, and we have proven that T has a unique right 
inverse C. This matrix C we have constructed fulfills all the hypotheses of 
the lemma, as we proved, so C has a unique right inverse C’, which also 
fulfills the hypotheses. By the final conclusion of Lemma 8, ( T ( . ( C I . ( C’ I 
is f.v. Thus C’ = (TC) C’ = T(CC’) = T. 

Lastly, conclusion 4 follows from Lemma 5. 

THEOREM 7. Let P be any n-k-s or w-k-s chain P with the following two 
properties : 

1. Each P[{mi+kl is diagonal. 
2. There exists u set of positive SCU~UYS {di} mh thut Pfi,x),(i+k,x) > di , 

uniformly. 

Sogb3/3-3 
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Then : 

I. The nla1ri.x R assor.iutcd uith P kus a unique two-sided incrrse 0. 

2. Q ib f.c., tCmgular, and tlwe is u set ( f,} oj positi~w scalars, such that 
tke wzc slim of the (i, X) mc of 0 is less 2hn or equal to f, , uniformly. 

3. Q is tke unique ri@t inaerw of R, and Ii is /he unique right incerse qf Q. 
4. 0 is the only lefl inwrse of R zckich is triangular, and R is tlu! only left 

inzwse of Ll which is triangulur. 

5. P” : QSR, i = 0, 1, 2 ,... . 

hOOF. To prow conclusions 1-4, n-e need only show that R fulfills 
hypotheses il, 13, and C of Lemma 9. Then wc can apply the results of Lcm- 
ma 9 to Q also. 

A. Set a, 1:: I. 

B. This follows, as in the proof of Theorem 6. 
C. If i 7-7 mk + I, then it is easy to show that WC’ can set 

hi = 4 d,,, -a- 4,.-.~)~>~+, . 

To prove conclusion 5, we need only show, as in Theorem 6, that P, I Q 1 , 
H, and S fulfill the hypotheses of Lemma 8. The {a,} of part 1 exist for Q 1 
by conclusion 2 of this theorem, and ai -: I for P, R, and S. As for part 2: 
Y,~, - rR =- 0, and rf -- rs = lz. 

Theorem 3 applies to this class of chains, with the same modification in 
the proof as in the previous section. 

Finally, as in tho row-finite case (but unlike the block-column-finite case), 
the matrix S is given by :Y = QTR. To show this, first note that each column 
of TR is uniformly bounded, as the last paragraph of Section 3 shows. Then, 
since 1 Q I has finite row sums, wc have 

1Y - lim QTtnlR 
n 

= 0 lim T’“)li by dominated convergence and the above remarks 
k n 

== Q( TR) by monotonicity 

= QTR since : Q 1 TR is f.v., by the above remarks. 

9. SUMS OF \'HCTOR-VALUED INDEPENDENT RANDOM VARIABLES 

By renumbering the states we can turn many Markov chains into repre- 
sentable n-k-s chains. Various classes of sums of independent random 
variables are of this type. For example, WC can rcprescnt sums of n-dimen- 
sional or infinite-dimensional vector-valued (with integral entries) independ- 
ent random variables, with the following restrictions: in S, =- X, + .a* f Xi 
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(where each X, is identically distributed), X7 can only take on a finite number 
of values in the first coordinate; when X,. takes on its maximum a or its 
minimum h in the first coordinate, all the other coordinates must be 0. ‘i’hc 
values a and b must not, of course, both be 0. And, in the infinite-dimensional 
case, WC’ must also add that each value of X, has O’s in all but a finite number 
of entries. Then after renumbering the states, we will haw an n-k-s or w-k-s 
chain of the type in Section 8. The method of renumbering, which is done 
in [2], is as follows. If a :> 0 and b < 0, then let c : - h, and renumber the 
first coordinate of the states as follows: 

0, l,..., a - 1) - 1, - 2 )...) - c, a, a + 1 )..., 

2a - 1, - c - 1, - c - 2 ,..., - 2c, 2a, 2a + l,... . 

Then k -: a + c. If h > 0, do not renumber the first coordinate of the states; 
then k = a. If a < 0, renumber the first coordinate of the states 
0, - 1, - 2,...; then k F= 1 b 1 . And in all casts, renumber the other coordi- 
natcs 0, 1, - I, 2, - 2, 3, - 3 ,... . 

The most famous such chains are the n-dimensional random walks. By 
other rcnumbcring schemes, we can represent reflecting random walks. 

10. A SEMI-REPHESEIVTATION FOR THE MOST GENERAL DENUMERABLY 
INFINITE MARKOV CHAIN 

Because of the great freedom which an n-K-s chain has in all but one 
dimension, the reader map have already anticipated a theorem of the type 
we are about to prove. 

By PE we mean the process which is obtained by watching a Markov chain 
only when it enters a given set of states E. PE is easily proven (in [I]) to be a 
Markov chain in its own right. 

THEOREM 8. Any Markov chain A with a countably infinite number of 
states is ofform PE, where E =: ((0, 0), (0, I), (0, 2),...}, with P (I representubb 
2-l-s chain qf the type in Section 8. 

PROOF. Without loss of generality, let A be indercd by the natural 
numbers. 

Define 

4 A, 4 1, and 0 are being used as basic submatrices. 
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P can be considered as being of form 

’ E 1 

;;(::I ;,; 1 i 2 
’ 3 : 4 

by i? we mean the set of all states excluding those in E. Thus %!a is indexed 
down by all states in E, and across by all states not in E, etc. It is proven in [1] 
that PE then equals M, 7 J4a (zG+s (Al,)“) Ma . So, in this case, 

= A. 

Note that A is the process obtained by projecting P on the x,-axis and 
watching the process only when it changes x,-values. After projection, the 
process changes x,-values with probability one, since the probability that it 
does not is equal to (3) (4) (&) (h) **a -- 0. 

Certain properties which have a simple formula for a representable P 
can be used to give information about .4 = PE. For example, if i,i E E 
then lVij is the same whether computed for A or for P. The same is true for 
other quantities, such as “hitting probabilities.” So, if such a quantity is 
obtainable from the representation in some way, then it can thus be obtained 
for the most general Markov chain A. It is, however, not clear whether this 
is a useful technique. 

11. ADVANCING CHAINS 

We can generalize row-finite n-k-s chans to get an even larger class of 
representable chains. An n-dimensional adwancing chain is a row-finite Markov 
chain with states the n-dimensional coordinates, and which has associated 
with it a function f defined on the states, with the following properties: 

1. Px,r(x) > 0 and Pxu = 0 for Y >f(X). That is, f(X) tells the 
largest state that the process can move to in one step from X. 
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2. f is strictly monotone increasing. That is, X < Y impliesf(X) <f(Y). 

3. f(X) > X for every X. 

Note that even when tl = 1, this is still a generalization of 1-K-s chains. 
Define the matrix S, which is indexed by the n-dimensional coordinates, 

by S,, = ar,,tx) . Kate that Si is still extremely simple to find: 

whereft2)(X) =f(f(X)), etc. 
Now let us define the matrix R, which is again indexed by the n-dimensional 

coordinates. Denote the set of states by C. Set 

6 XY9 x $f ((7 
Rx, = 

;R,wPwu, x=fW (4) 

Since 0 $ f (C), the 0th row of R is certainly well defined. If X = f (Z), then 
Rx, is well defined, since X > 2, and so the Xth row of R is defined only in 
terms of an earlier row. 

By construction, RP = SR, since 

(WZY = %z),Y = c SzwRwv = (S&Y. W 
Let us show that R is f.v., row-finite, and triangular. The 0th row of R 

is all right (i.e., such as to make R f.v., row-finite, and triangular). Assume 
inductively that for all U < X, the Uth row of R is all right. Then let us 
show that the Xth row of R is all right. This is certainly the case if X #f(C). 
So assume X Ef (C). Write X = f (2). For each Y, Rx, is finite, since Rx, 
is defined in (4) as a finite sum of finite numbers by induction hypothesis, 
since Z < X. 

Let 

S, = {Y 1 Pwu > 0 for some WE S,}. 

By induction hypothesis, S, is a finite set. Since P is row-finite, Ss is also a 
finite set. Then Rx, = 0 unless Y E S, , so the Xth row of R has a finite 
number of nonzero entries. 

We need now only show triangularity to complete the induction. 
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&Z~‘~,,U, since l’W,f(Z) 0 

B i) by induction hypothesis. 

for 

Lastly, if k’ J.> X -J‘(Z), then 

R,, -=- 1 RZwP,, -- 0, 
wz 

since 

P -0 WY - for all Y >f(Z) >.f‘( W). 

Lemma 2 now holds for R, and so P fulfills the conclusions of Theorem 1 
and 3. In particular, for every i, P - QSIH. 

12. FIVE COUNTEREXAMPLES 

Before presenting the countcrcxamples, let us first prove a lemma. 

LEMMA 10. If a f.z. triangular matrix T which is indexed by the n-dimen- 
sional coordinates has a right incerse Tl , 1; is triangular. Further, the only 
solution to I’.4 = 0 i.f .4 -= 0. 

PROOF. Dy induction on n. The lemma is true for n =-- 1: by Lemma 2, 
T has a unique right invcrsc 1; , which is triangular, and which is also a left 
inverse of T. And, TA := 0 implies 

0 -: T,(T.4) = (T,T) A --- 2-7. 

Assume inductively that the lemma is true for dimension n - 1, where 
n .> 1. Then in terms of basic submatrices, 7“f, -= I becomes 

s-o 

Each T[z,jl can be considered as being indexed by the (n - I)-dimensional 
coordinates. From ‘T[“,olT,[o*‘] = SLjI, we have by induction hypothesis 
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that T/o,o] is triangular, and that Tr [OJ] = 0 when j ::z 0. Thus all submatrices 
Tj”#‘l are all right (i.e., such as to make ?“r triangular). Assume inductively 
that all subrnatrices Y’!‘*“l, r = 0, I,..., m - 1 and i : 0, I, 2 ,... arc all right. 
Then if y 3 m, 

since by induction hypothesis, Tl Ls,rl = 0 for s < m < y. Thus by induction 
hypothesis, each Tl’n*v] is all right. 

Lastly, if TA = 0, then T~“~olA~O~zl -7 0, so A[0*zl : 0 for all i. And, if 
Al’*%1 = 0 for all r < m and for all j, then TT~.“IAP”*AI = 0, and so Aln1.21 ..- 0 

for all i. 

COUNTEREXAMPLE 1. A simple example of a triangular matrix indexed 
by the 2-dimensional coordinates which has no right inverse. 

Let 

1 
-1 1 

A- 

i ! 

O-l 1 B 
0 0 -1 1 

i 

i 

1 1 1 1 . 
1 1 1 1 . 

I!‘= 1 1 1 1 ’ 
1 1 1 1 * 

i 

1 
1 1 

= i 1 I 1 
1 1 1 1 

! 
. . 
. . 
*. . 
. . 

Then AB = I, and by Lemma 2, B is the unique right inverse of A. Set 

By Lemma 10, if T has a right inverse Tl , Tl is triangular. So, the basic 
submatrix in the upper left corner of Tl would be B. But then TT, involves 
the product EB, which has all infinite entries, a contradiction. 

COUNTEREXAMPLE 2. A 2-l-s chain P with each PIisi+ll diagonal, but 
whose R matrix does not have a right inverse. 
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Define: 

P (0.0) Y =: ~Y.(l,O) 

Y = (0,O) 
Y -= (0, I) 
Y:(l,a) 
otherwise 

! 

1 Y == (2,O) 
Pko), Y = b+2, y= (1,4, a = 0, 1, 2,... 

0 otherwise 

P(o.bLY = SY,(a+,,b) 

(a = 1 and b >, 1, or a 3 2). 

From our recursive definition of R, we easily find: 

R[lJl is diagonal with (RrlJl),, = (4)’ 
(R[‘*Ol)io = ij (1 - 6ia) 
(RWl)ot zx ($)i+z. (5) 

Assume now R has a right inverse Q. Q is triangular, by Lemma 10. From 
RQ = I, we get: 

QW’I = 1, R~W~W’I I RWIQW’I = 0 

RWlQWl $ R[2.‘lQ[‘J’l + R[Z.Z]Q[Z.O] = 0 (6) 

From the first two of Eqs. (6), - R[lJ’l = R[lJIQ[l*ol. Since R[lJl is 
triangular and row-finite, Q[l.Ol = - (R[l.ll)--l R[l*Ol. So the third equation 
becomes 

RP.01 _ RIW((RWl)-1 RP.01) + R[WQ[2.“1 r 0. (7) 

When we use Eqs. (5) to obtain the entry in the 0th row and 0th column 
of the matrix Eq. (7), an infinite entry appears, which is a contradiction. 

COUNTEREXAMPLE 3. A 2-l-s chain P which is column-finite and which 
fulfills P (z,.z,),(x,+l,z,) > 6 , but whose R matrix does not have a right 
inverse, 
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Define 
Y = (0,O) 
Y=(l,O) 
otherwise 

Y = (0, a) 
Y = (1, a - 1) 
Y == (1, a) 
otherwise 

1, Y = (2,O) 

~(l,OLY = Wfl~ y = (1, a), a = 1, 2, 3,... 
0 otherwise 

P(a.b).~= ar.(a+~.a) (a= landb>,l,oru>2). 

We easily find that: 

(R[l.qu = ; ’ 

I 0' 

; 2 f ; f G= l 
I 

otherwise. 

By Lemma 2, R[lJl has a unique two-sided inverse, which is triangular. 
(RPJI);; zz (- I)i2i’l, as we can easily show by induction on i. 

Now assume that R has a right inverse Q. By Lemma 10, Q is triangular. 
Equation (7) of the previous counterexample holds, just as before. But 

RWl((RWl)-1 RP.01) = 4 RWl(RWl)-1, 

which is undefined in the upper left entry. 

COUNTEREXAMPLE 4. A nonnegative triangular matrix indexed by the 
natural numbers with more than one left inverse. 

This example will also have row sums less than one. 
Define 

w+lI a odd and b < a, or a even and b even and b < a 
Tab = 

I 
(W, a even and b odd and b < a 
0, b>u 

Vlab = 
I 

- 2’b-2’/2, b even 
2(b-1)/a, b odd, 
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Then 1’ is triangular and of course ra\+-finite, so it has a left inverse 7; by 
Lemma 2. It is casv to check that C’II’ = 0. llcncc Yr - b’ is a second left 

- inverse of 1’. 

(hJNTEHEX.~MPLE 5. A representable transient 2-1-s chain for which 
A7 + Q Y’H. 

\Ve will show that N f Q(TR) and also A’ f (01’) H for this chain. 
IMine P as follows: 

’ 1 -. (#al-l, 

P(0.d.Y =- (i)” I-‘, 

(a -: 0, 1, 2,...) t 0 

1 

(-;)a 11, 

P = (I.O).Y ; 9 
0 

P bd.Y -= h!,u).Y 

(u = 1, 2, 3,...) 

Y = (0, a) 
Y == (1, a) 
otherwise 

Y -= (1, a), 
I’ = (2,O) 
otherwise 

a = 1, 2, 3,... 

Y = (a + 1,O) 

1’ < (a -i- 1, 0) 
Y ;a (a + 1,O) 

b>u 
Y=(ufl,b) 
Y -= (0,O) 
otherwise. 

(This is obviously possi- 
ble to bring about, and 
with CY~‘(~.~).Y = 1) 

and b<u 
and b<u 

It is straightforward to check that P is a 2-1 -s chain of the type in Section 7, 
and with all row sums unity. One can also check that (0, 0) communicates 
with every state, and so all states communicate. To show that all states of P 
are transient, WC need only to show that (0,O) is transient, since all states 
communicate. Now the chain, starting in (0, 0), can “drift off to infinity” 
along the q-axis: that is, from (0,O) the process can move to (1, 0), and from 
there to (2, 0), and from there to (3,0), etc., with probability 

The infinite product is easily shown to converge to : > 0, 
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Now let us show that N f Q( TR) and ;Y # (QT) R. The basic submatrix 
(assuming it exists) (Q(TR))r**“l must equal 

Ql*.~~l(~R)W’l 4. Ql2.1l(~R)[‘~Ol + QWl(TR)[2.“1. 

So to show that the f.v. matrix A’ does not equal Q(TR), we need only show 
that there is a.n infinite entry in 

Let us now show that this condition is also sufficient to prove that 
N f (QT) R. 

Assuming it exists, the basic submatrix ((QT) R)p,“l is easily shown to 
equal 

QWI + (QWI + QWI) RlW + i ((QW’I $- QWI 4. QWI) RW’I). 
k=2 

Since each QIi*~l and Rfz*jJ is oolumn-finite (by Theorem 6, conclusion 2), 
we can distribute in the previous expression. Hence, WC can reach our contra- 
diction if we can show that 

‘& QWlipWl (8) 

has an infinite entry. By “solving” RQ =J I, and freely associating and distri- 
buting by column-finiteness of the basic submatrices, we get 

- QWI = (RWl)-1 RWl(RWl)--1 3 0. 

So we can distribute in (8) by nonnegativity (the minus sign can be pulled 
outside), and to show that N f (QT) R, we now need only show that 

(p.11 f Rtk.01 (9) 
I;=1 

contains an infinite entry. As promised, this is precisely the condition we 
found as sufficient to prove that N + Q( TR). 

Index Q[ 2~11 and each RLi*Jl bv the natural numbers. Then 

(p*~l)o,a = - ((RWl)-’ ~rw(~wl)-l)O,a 

= - ((R[2~21)-‘)o,o (R[2Jl)o,a ((R[‘Jl)-‘)a,, 
= - (4) ((p+2) (2”+1), as simple calculations show 
=- 2, 

where the second equality follows since (R[2**1)-1 and (R[lJl)--l are diagonal. 
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Now 

So, the entry in the 0th row and 0th column of (9) is 

- 2(~~(O.OL(O.O) - 1) - 2 f ~r(o,n’,(O.O) 
a=1 

= - 2(-~kb,o),kl,o) - 1) - 2~~(0*0’.(0.0) f ~~(o.a’,(o.o’ T 
w 1 

where H xy is the probability that the process, starting in state X, eventually 
reaches state Y. We are clearly through if we now show that 

H(o,n).(o,o) b i 3 a > 3. 

With probability one, the process moves from (0, a) to (1, a) in a finite 
number of steps, since the probability that it does not is the probability that it 
remains at (0, u) at every stage, which is 

( 1-q (1 - -&) (1 - r) **a = 0. p+1 p+1 

From (I, a) the process moves deterministically to (2, a), from (2, a) deter- 
ministically to (3, a),..., and then deterministically to (a, a), and then to (0,O) 
on the next step with probability 3. So H (o,a).(O.o) >, 4 , and WC are through. 
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