Representation Theory for a Class of Denumerable Markov Chains ${ }^{1}$

Ronald Fagin ${ }^{2,3}$
Dartmouth College, Hanover, New Hampshire 03755
Submitted by John G. Kemeny

1. Introduction

An interesting and important problem in the theory of denumerable Markov chains is to find a simple, easily computible canonical form for P^{n}, the matrix of the n-step transition probabilities. Kemeny has found such a representation for the class of " k-speading chains" [1]. A k-spreading chain is a denumerable Markov chain with states the natural numbers, with all states communicating, (that is, such that the process, starting in any state, can eventually reach any other state), and with a positive integer k associated with it, such that $P_{i, i+k}>0$ for all i, and $P_{i j}=0$ if $j>i+k$. Kemeny finds a matrix R, depending on P, a matrix Q, which is a 2 -sided inverse of R, and a matrix S, such that $P=Q S R$. All matrices are row-finite, and thus associate. So, $P^{n}=Q S^{n} R$. Since S is of such simple form that S^{n} is easy to find, the goal is accomplished.
In a generalization of Kemeny's work, this paper develops such a representation for what we will call n-dimensional k-spreading chains. ${ }^{4}$ These chains are indexed by the n-dimensional coordinates (with the natural numbers as entries), and they are basically processes which, when projected on the x_{1}-axis and watched only when the x_{1}-coordinate changes, look like k-spreading chains. This class of Markov chains includes (by a trivial renumbering of the states) all n-dimensional random walks.
A key tool in this paper will be the establishment of criteria for the existence and uniqueness of inverses for certain types of infinite matrices.

[^0]Definition. Order the n-dimensional coordinates (that is, the n-dimensional vectors with the natural numbers, $0,1,2, \ldots$ as entries) as follows:

$$
\begin{array}{lll}
\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) & \text { iff } & x_{i}=y_{2}, \quad i=1, \ldots, n \\
\left(x_{1}, \ldots, x_{n}\right)<\left(y_{1}, \ldots, y_{n}\right) & \text { iff } & x_{1}<y_{1},
\end{array}
$$

or

$$
x_{1}=y_{1}, \ldots, x_{s}=y_{s}, \quad x_{s-1}<y_{s+1}, \quad \text { for some } \quad s, \quad 1 \leqslant s<n
$$

Denote each vector by a capital letter, and its coordinates by the corresponding lower-case letter, with subscripts. Also, write the vector ($a, x_{2}, x_{3}, \ldots, x_{n}$) as (a, \bar{X}). Thus $X=\left(x_{1}, \bar{X}\right)$.

The n-dimensional coordinates do not have the order-type of the natural numbers; thus, some elements have an infinite number of predecessors. However, in the generality of such books as [2], we are going to consider matrices indexed by the n-dimensional coordinates as states.

Any matrix M which is indexed by the n-dimensional coordinates, can be written in the following form:

$$
M=\left(\begin{array}{cccc}
M^{[0,0]} & M^{[0,1]} & M^{[0,2]} & \cdots \\
M^{[1,0]} & M^{[1,1]} & M^{[1,2]} & \cdots \\
M^{[2,0]} & M^{[2,1]} & M^{[2,2]} & \cdots \\
& \vdots & &
\end{array}\right)
$$

where $M^{[i, \gamma]}$ is that submatrix of M which is indexed down by all states of form (i, \bar{X}), and across by all states of form (j, \bar{Y}). Call such an $M^{[i, j]}$ a basic submatrix of M.

Define a matrix T to be triangular if $T_{X X}>0$ for each X and $T_{X Y}=0$ when $X<Y$. If a triangular matrix T has $T_{X Y}=0$ for $X \neq Y$, call T diagonal. All matrices in this paper are assumed to be finite-valued (f.v.), and when necessary are proved to be f.v.

The following useful criteria for associativity and distributivity of infinite matrices, which are proven for example in [2], will be used:

1. Nonnegative matrices associate under multiplication, and distribute.
2. If A, B, and C are f.v. matrices such that either A is row-finite or C is column-finite, and if $(A B) C$ and $A(B C)$ are both well defined, then $(A B) C=A(B C)$. Note that if A and B are both row-finite, or if B and C are both column-finite, then $(A B) C$ and $A(B C)$ are well defined, since only finite sums are involved.
3. If $A B, A C$, and $A(B+C)$ are all well defined, then

$$
A(B+C)=A B+A C
$$

and similarly for right distributivity.
4. If $|A \cdot B!\cdot| C ;<\infty$, then $(A B) C-A(B C)$. If $|A| \cdot|B|$ and $\mid A \cdot C<\infty$, then $A(B \perp C)-A B+A C$, and similarly for right distributivity. ($B y$ the absolute value of a matrix, A, we mean a matrix with entries $(A)_{X Y}=, A_{X Y} ;$.)

2. Row-Finite N-Dimensional K-Spreading Chains

Definition. An n-dimensional k-spreading chain (n - k-s chain) is a Markov chain with states the n-dimensional coordinates, with a fixed integer $k>0$ associated with it, and with transition probabilities as follows:
$P_{X Y}=0$ unless either $y_{1} \leqslant x_{1}+k-1$, or $y_{1}=x_{1}+k$ and $(0, \bar{Y}) \leqslant(0, \bar{X})$. Further,

$$
P_{\left(x_{1}, X\right),\left(x_{1}+k, X\right)}>0
$$

Note that the chain is essentially restricted to being k-spreading in only one dimension-there is great freedom of movement in the other dimensions.

Definition. Define the matrix R, which we will use in the representation $P^{i}=Q S^{i} R$, inductively. Write

$$
R=\left(\begin{array}{ccc}
R^{[0,0]} & & \\
R^{[1,0]} & R^{[1,1]} & \\
R^{[2,0]} & R^{[2,1]} & R^{[2,2]} \\
\vdots & \vdots & \vdots
\end{array}\right),
$$

where each $R^{[i, j]}$ is a basic submatrix, and where omitted basic submatrices are 0 . Call $\left(R^{[i .0]} R^{[i, 1]} \cdots R^{[i, i]} 00 \cdots\right)$ the " i th submatrix row." Then dcfinc $R^{[2 .,]]}=\delta_{i j} I$, if $i<k$, and inductively define the $(i-\mid k)$ th submatrix row as the i th submatrix row times P. Thus

$$
R_{X Y}=P_{(r, S), Y}^{(m)}, \quad \text { if } \quad x_{1}=m k+r, \quad 0 \leqslant r<k
$$

The ordering of the states has been defined in precisely such a way that R is triangular: If $x_{1} \leqslant k-1$, then the $\left(x_{1}, \bar{X}\right)$ row of R is certainly such as to make R triangular. If $x_{1}>k-1$, write $x_{1}=m k+r, 0 \leqslant r<k, m \geqslant 1$. Then

$$
\begin{aligned}
R_{X X} & =P_{(r, X),(m k+r, X)}^{(m)} \\
& =P_{(r, X),(k+r, X)} \cdot P_{(k+r, X),(2 k+r, X)} \cdots P_{((m-1) k+r, X),(m k+r, X)}>0
\end{aligned}
$$

Next consider $Y>X$. If $y_{1}>x_{1}=m k+r$, then

$$
R_{X Y}=P_{(r, X) \cdot\left(v_{1}, \bar{Y}\right)}^{(m)}=0,
$$

since the first coordinate can increase by at most k on each step. If $y_{1}=x_{1}$, then since $Y>X,(0, \bar{Y})>(0, \bar{X})$, so

$$
R_{X Y}=P_{(r, X),(m k+r, Y)}^{(m)}=0,
$$

because the first coordinate must increase by k each time, and in so doing, ($0, \bar{X}$) can not increase.

Triangularity by itself is not sufficient to assure that a matrix have a twosided inverse. In fact, as we shall see in Section 12, there exist $n-k-s$ chains whose R matrix fails to have such an inverse. However, we shall temporarily assume that P is row-finite, and we will see that no problem then arises.

Define S to be a matrix indexed by the same states as P, and with

$$
S_{X Y}=\delta_{\left(x_{1}+k . X\right) . Y}
$$

Thus,

$$
S=\left(\begin{array}{ccccccc}
0 & 0 & \cdots & 0 & 1 & & \\
0 & 0 & \cdots & 0 & 0 & I & \\
0 & 0 & \cdots & 0 & 0 & 0 & 1 \\
& & & \vdots & & &
\end{array}\right)
$$

Note that S^{i} is simple to find:

$$
S_{X Y}^{i}=\delta_{\left(x_{1}+2 k, X\right), Y}
$$

By definition of $R, R P=S R$.
Lemma 1. If M and N are matrices, M is triangular and f.v., and N is either a right or a left inverse of M (or both), then N is f.v.

Proof. Assume that both $M N=I$, and also some entry $N_{A B}$ of N is $\pm \infty$. Then

$$
\delta_{A B}=\sum_{Z} M_{A Z} N_{Z B}=M_{A A} N_{A B}+\sum_{Z \neq A} M_{A Z} N_{Z B}
$$

Since $M_{A A}>0$, the right side contains an infinite term, and thus can not equal $\delta_{A B}$. Likewise, any left inverse of M must be f.v.

We will often use this lemma tacitly: for example, we will search for right inverses of a f.v. triangular matrix T by considering only f.v. candidates.

Lemma 2. Let T' be any f. x., row-finite triangular matrix indexed by the n-dimensional coordinates. Then

1. T has a unique 2-sided incerse T^{\prime}.
2. T^{\prime} is f.c., triangular, and row-finite.
3. T^{\prime} is the unique right inverse of T.
4. T^{\prime} is the unique row-finite left inverse of T.

Note. Even if $n-1, T^{\prime}$ is not necessarily the only left inverse of T, as Example 4 in Section 12 shows.

Proof. Let $T^{\left\langle\iota_{1}, \iota_{2}, \ldots, \imath_{r}\right\rangle}$ be the submatrix of T indexed by all states X with $x_{1}=i_{1}, x_{2}=i_{2}, \ldots, x_{r}=-i_{r}$. To prove the lemma, we will use "backwards induction" (from n to 0) on the length of the superscript of T : that is, we will show that if each $T^{\left\langle\imath_{1}, \ldots, \imath_{r}\right\rangle}$ fulfills the conclusions of the lemma, then so does each $T^{\left\langle i_{1}, \ldots, i_{r-1}\right\rangle}$. When the superscript reaches 0 length, then the lemma is proven for T itself. Since each $T^{\left\langle i_{1}, \ldots, i_{n}\right\rangle}$ is a positive number, the initial induction step is trivial.

Assume inductively that for each $a=0,1,2, \ldots$, the matrix $T^{\left\langle{ }_{1}, \ldots, \imath_{r-1}, a\right\rangle}$ fulfills the conclusions. Think of $M=T^{\left\langle\iota_{1}, \ldots, i_{r-1}\right\rangle}$ as being made up of blocks of submatrices as follows (as a short-hand, write $T^{\left\langle\iota_{1} \ldots, i_{r-1}, a\right\rangle}$ as $T^{(a)}$):

$$
M=\left(\begin{array}{lll}
T^{(0)} & & \\
B^{(1,0)} & T^{(1)} & \\
B^{(2,0)} & B^{(2,1)} & T^{(2)} \\
& \vdots &
\end{array}\right)
$$

$B^{(i, j)}$ is indexed down by those states X with $x_{1}=i_{1}, \ldots, x_{r-1}=i_{r-1}, x_{r}=i$, and across by those states with $x_{1}=i_{1}, \ldots, x_{r-1} \because i_{r-1}, x_{r}=j$.

Since T is row-finite, so is $T^{\left\langle i_{1}, \ldots, i_{r-1}\right\rangle}$, and hence so is each $B^{(i, j)}$ and each $T^{(a)}$.

Define a triangular matric C, indexed by the same states as M, as follows: write

$$
C=\left(\begin{array}{ccc}
C^{(0,0)} & & \\
C^{(1,0)} & C^{(1,1)} & \\
C^{(2,0)} & C^{(2,1)} & C^{(2,2)} \\
& \vdots &
\end{array}\right)
$$

Define the submatrix $C^{(i, j)}, i \geqslant j$, recursively in i, by

1. $C^{(j, j)}=\left(T^{(j)}\right)^{\prime}$, the unique two-sided inverse of $T^{(j)}$, which exists, and is row-finite and triangular, by induction hypothesis.
2. $C^{(i, j)}=-\left(T^{(i)}\right)^{\prime}\left(\sum_{t=j}^{i-1} B^{(i . i)} C^{(t . j)}\right), \quad i>j$.

Each $C^{(i, j)}$ is well-defined and row-finite, since: $C^{(0, j)}$ certainly is. Given inductively that $C^{(j, j)}, C^{(0+1, j)}, \ldots, C^{(2-1,1)}$ are, then so is $C^{(2, j)}$, sincc the products and sums of row-finite matrices are row-finite.

We know that
1'. $\quad T^{(j)} C^{(j, j)}=I$

$$
2^{\prime} . \quad-\left(T^{(i)}\right) C^{(i, j)}=\sum_{i=j}^{i-1} B^{(i, t)} C^{(t, j)}, \quad i>j
$$

by multiplying Eq. 1 on the left by $T^{(0)}$, and Eq. 2 on the left by $-T^{(2)}$, and associating by row-finiteness. But these are precisely the conditions for C to be a right inverse of M.
C is a matrix just like M, so we can identically construct a matrix C_{1} which is row-finite, and which is a right inverse of C.

Now $M=M\left(C C_{1}\right)=(M C) C_{1}=C_{1}$; the second equality follows from row-finiteness of M and C. So, C is a two-sided inverse of M. Assume M has another right inverse N. Then $N=(C M) N=C(M N)=C$.

Finally, assume M has another row-finite left inverse L. Then

$$
L=L(M C)=(L M) C=C
$$

the second equality follows from row-finiteness of L and M.
The induction is complete, and the lemma is proven.
Theorem 1. Let P be an n - k-s chain, which is row-finite. Then

1. The matrix R associated with P has a unique two-sided inverse Q.
2. R and Q are f.v., triangular, and row-finite.
3. Q is the unique right inverse of R, and R is the unique right inverse of Q.
4. Q is the unique row-finite left inverse of R, and R is the unique row-finite left inverse of Q.
5. $P^{i}=Q S^{i} R, i=0,1,2, \ldots$.

Proof. Each row of R is a row of some P^{i}. Thus R is row-finite, and we can apply Lemma 2. We can then apply Lemma 2 to Q.
Conclusion 5 follows from multiplying both sides of $R P=S R$ on the left by Q, giving $P=Q S R$, which implies $P^{i}=Q S^{i} R$. Since P, Q, S, and R are all row-finite, there is free associativity.

3. Basic Quantitifs Obtainable from the Representation

Several fundamental quantities associated with the Markov chain P can be found from the matrices Q and R. In this scction, we shall generalize some of Kemeny's formulas in [2] to cover row-finite $n-k$-s chains.

If P has rows-sums unity, then so does R, and hence so docs Q, since $Q 1-Q(R 1)=-(Q R) 1-1$, where 1 is a column vector of all ones. If $P \mathrm{I} \neq 1$, then the row sum of the $\left(x_{1}, \bar{X}\right)$ row of R, where $x_{1}=m k+r$, $0 \leqslant r<k$, equals

$$
\begin{aligned}
\sum_{Y} P_{(r, X), Y}^{(m)}= & \text { probability that the process, started in state }(r, \bar{X}), \\
& \text { has not stopped with } m \text { steps. }
\end{aligned}
$$

As for the columns of R : the interesting quantity is not $I^{T} R$, which gives column sums, but $V^{A} R$, where V^{A} is a row vector defined for each $A=(r, A)$, $0 \leqslant r<k, a_{i}$ arbitrary, $i=2,3,4, \ldots$, by

$$
\left(V^{A}\right)_{Y}= \begin{cases}1, & Y=(r+s k, \bar{A}) \\ 0 & \text { otherwise }\end{cases}
$$

For,

$$
\left(V^{A} R\right)_{Y}=\sum_{s=0}^{\infty} R_{(r+s k, A), Y}=\sum_{s=0}^{\infty} P_{A Y}^{(s)}=N_{A Y},
$$

the mean number of times Y is eventually reached, starting in A. If all states are transient, we can find all of N. Define

$$
T^{(n)}=\sum_{t=0}^{n} S^{t}, \quad \text { and } \quad T=\lim _{n} T^{(n)}
$$

Then

$$
\begin{aligned}
N & =\lim _{n} Q T^{(n)} R \\
& =Q \lim \left(T^{(n)} R\right) \text { since } Q \text { is row-finite } \\
& =Q(T R) \text { by monotonicity } .
\end{aligned}
$$

Further, it is worth mentioning that $(Q T) R=Q(T R)=N$. For, if $x_{1}=m k+r, 0 \leqslant r<k$, then

$$
(T R)_{X Y} \leqslant\left(V^{(r, X)} R\right)_{Y}=N_{(r, X), Y} \leqslant N_{Y Y} .
$$

So, by row-finiteness of $Q, ; Q \mid T R$ is f.v. Let us note for later that each column of $T R$ is uniformly bounded.

4. The Regular Functions of P

The set of all functions (column vectors indexed by the n-dimensional coordinates) forms a vector space over the reals, where we even allow
infinite sums of functions whenever the sum is well-defined and f.v. in each entry. A countable set of functions $\left\{f_{2}\right\}$ is then linearly independent whenever

$$
\sum_{i=1}^{\infty} a_{i} f_{i}=0 \quad \text { implies that each } \quad a_{i}=0
$$

The set of all f.v. regular functions of a row-finite Markov chain forms a vector subspace. For, assume

$$
g=\sum_{i=1}^{\infty} a_{i} f_{i} \text { is f.v., where each } f_{i} \text { is regular. }
$$

Then

$$
P g=P \sum a_{i} f_{i}=\sum a_{i} P f_{i}=\sum a_{i} f_{i}=g
$$

with the second equality following since P is row-finite.
For each state $A=(r, \bar{A}), 0 \leqslant r<k$, of an n - k-s chain P, define a column vector E^{A} by

$$
\left(E^{A}\right)_{X}= \begin{cases}1, & X=(r+s k, \bar{A}), \quad s=0,1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

Thus $E^{A}=\left(V^{A}\right)^{T}$ (see Section 3).
Theorem 2. Let P be any row-finite $n-k$-s chain P. Then the vectors $Q E^{A}$ form a linearly independent set which spans (allowing infinite sums) the subspace V of $f . v$. regular functions of P. In particular, if $n>1$, then P has a countably infinite number of linearly independent regular functions, and if $n=1$, then the subspace of f.v. regular functions is k-dimensional.

Proof. Each $Q E^{A}$ is well-defined, since Q is row-finite. Each $Q E^{A}$ is regular, since from $P Q-Q S$, we have $P Q E^{A}=Q S E^{A}=Q E^{A}$. Thus, the space spanned by the $\left\{Q E^{A}\right\}$ is contained in V.

The $\left\{Q E^{A}\right\}$ are linearly independent: assume

$$
\sum a_{A} Q E^{A}=0
$$

Then

$$
\begin{aligned}
0 & =R 0 \\
& =R \sum a_{A} Q E^{A} \\
& =\sum a_{A} R Q E^{A} \quad \text { by row-finiteness } \\
& =\sum a_{A} E^{A}
\end{aligned}
$$

and by the obvious linear independence of the $\left\{E^{A}\right\}$, each $a_{A}=0$.

Now assume f is f.r. and regular. Then $R f \quad R P f=S R f$. Since $g=R f$ fulfills $g \quad S g$, we know $(R f)_{X}-(R f)_{\left(x_{1}|m k, \bar{X}\rangle\right.}, m=0$. So,

$$
R f-\sum a_{A} E^{A}, \quad \text { where } \quad a_{A}-(R f)_{A}
$$

'Then

$$
f-Q R f \quad\left(\sum \sum a_{A} E^{A}-\sum a_{A}\left(\left(\cdot E^{A}\right)\right.\right.
$$

${ }^{\prime}$ Tle last statement of the theorem is now obvious by counting the number of $E^{A \prime}$'s.

We now have a representation for f.v. regular functions of a row-finite ,,$--s$ chain. First, write each function

$$
g=\left(\begin{array}{c}
g^{[0]} \\
g^{[1]} \\
g^{[2]} \\
\vdots
\end{array}\right)
$$

where $g^{[2]}$ is a basic subcolumn, indexed by all states X with $x_{1}=i$. Then a function f is regular iff it is of form $Q g$, where $g^{[0]}, g^{[1]}, \ldots, g^{[k-1]}$ are completely arbitrary, and $g^{[2]}=g^{[2]}$ whenever $i \equiv j \bmod k$.

5. A Shortcut for Obtaining Q

At this stage, the only method we have for finding the matrix Q associated with a given n - k-s chain P is to first find R, and then to find Q as the unique two-sided inverse of R. However, it would be desirable to have a more direct way of obtaining Q. The conclusion of the following theorem is completely analogous to the fact that R is characterized by $R_{X Y}=\delta_{X Y}$ for $x_{1}<k$, and $R P=S R$.

Theorem 3. The Q matrix for a row-finite n - k-s chain P is characterized by $Q_{X Y}=\delta_{X Y}$ for $x_{1}<k$, and $P Q=Q S$.

Proof. First, the Q matrix for P obviously fulfills this. Assume some other matrix Q_{1} fulfills these conditions. Then $P Q_{1}=Q_{1} S$ tells us that Q_{1} is indexed by the same states as Q (and P and S). Let $P^{[2,3]}, Q^{[i, j]}, S^{[i, j]}$, and $Q_{1}^{[i, j]}$ be basic submatrices. Then for $i<k$ and arbitrary $j, Q_{1}^{[i, j]}=Q^{[i, j]}$. Assume inductively that $Q_{1}^{[i, j]}=Q^{[2, j]}, i \leqslant r-1$ and all j, where $r \geqslant k$. Then from $P Q_{1}=Q_{1} S$,

$$
\sum_{x=0}^{r} P^{[r-k . x]} Q_{1}^{[x . j]}=Q_{1}^{[r-k . j-k]}=Q^{[r-k . j-k]}
$$

if we define the "basic" submatrix $Q_{1}^{[s, t]}=Q^{[s, t]}=0$ when $t<0$. So,

$$
\begin{align*}
P^{[r-k, r]} Q_{1}^{[r, j]} & =Q^{[r-k, j-k]}-\sum_{x 0}^{r-1} P^{[r-k, x]} Q^{[x, j]} \text { by induction hypothesis } \\
& =P^{[r-k, r]} Q^{[r, j]}, \quad \text { since } \quad P Q=Q S . \tag{1}
\end{align*}
$$

Now $P^{[r-k, r]}$ can be considered as being indexed by the ($n-1$)-dimensional coordinates, and it then fulfills the hypothesis of Lemma 2. Multiply both sides of (1) by ($\left.P^{[r-k, r]}\right)^{-1}$ on the left, and then $Q_{1}^{[r, r]}=Q^{[r, j]}$, completing the induction.

Let us calculate R and $\underset{\sim}{Q}$ for a given example, to demonstrate the usefulness of Theorem 3. Assume P is a row-finite $n-1-s$ chain (that is, an $n-k-s$ chain with $k=1$) of form

$$
\left(\begin{array}{ccccc}
P^{[0,0]} & P^{[0,1]} & & & \\
P^{[1,0]} & 0 & P^{[1,2]} & & \\
P^{[2,0]} & 0 & 0 & P^{[2,3]} & \\
P^{[3,0]} & 0 & 0 & 0 & P^{[3,4]}
\end{array}\right)
$$

R can be found from its recusive definition :

$$
R^{[i, j]}= \begin{cases}I, & i=j=0 \\ \sum_{r=0}^{i-1} R^{[i-1, r] P P^{[r, 0]},} & i>j=0 \\ R^{[i-1, j-1]} P^{[j-1, j]}, & i \geqslant j>0 \\ 0, & i<j .\end{cases}
$$

Obviously it would be difficult to try to find Q as a two-sided inverse of R. However, starting from $Q^{[0, i]}=\delta_{0, i} I$ and $P Q=Q S$, we easily find that for $i \geqslant 1$,

$$
Q^{[i, j]}= \begin{cases}-\left(P^{[i-j-1, i-j]} P^{[i-j, i-j+1]} \cdots P^{[i-1, i]}\right)^{-1} P^{[i-1-\jmath, 0]}, & i>j \\ \left(P^{[0,1]} P^{[1,2]} \cdots P^{[i-1, i]}\right)^{-1}, & i-j \\ 0 \quad \text { otherwise. } & \end{cases}
$$

To verify that these equations correctly define Q, we need only verify now, according to Theorem 3, that $P Q=Q S$, which is easy to check.

6. Infinite-Dimensional K-Spreading Chains

It is certainly natural to try to consider infinite-dimensional coordinates (that is, vectors containing a countable number of natural numbers as entries)
as a set of states. However, this set of vectors forms an uncountable collection, and thus can not be considered as the states of a denumerable Markov chain. One solution is to consider only those vectors which "terminate," that is, which have only zeroes as entrics from some point on, since these form a countable collection.

Definition. Call these vectors the infinite-dimensional terminating coordinates, and order them as we did the finite-dimensional coordinates:

$$
\begin{array}{llll}
\left(x_{1}, x_{2}, \ldots\right)-\left(y_{1}, y_{2}, \ldots\right) & \text { iff } & x_{2}=y_{2} \quad \text { for all } \quad i \\
\left(x_{1}, x_{2}, \ldots\right)<\left(y_{1}, y_{2}, \ldots\right) & \text { iff } & x_{1}<y_{1} &
\end{array}
$$

or

$$
x_{1}=y_{1}, \ldots, x_{s}=y_{s}, x_{s-1}<y_{s+1} \quad \text { for some } \quad s \geqslant 1 .
$$

Adopt the same conventions as before, e.g., $X=\left(x_{1}, \bar{X}\right)$. Define now an infinite-dimensional k-spreading chain ($\omega-k-s$ chain) by carrying over exactly the definition of an $n-k-s$ chain (with the exception, of course, of the set of states).

Assume now that each $\omega-k-s$ chain P fulfills the following additional restricticn: there is scme integer $c \geqslant 1$ asscciated with P such that

$$
P_{\left(x_{2}, \tilde{X}\right),\left(x_{1}+k, \bar{Y}\right)}=0
$$

unless not only $(0, \bar{Y}) \leqslant(0, \bar{X})$, but also

$$
\left(0,0, \ldots, 0, x_{c+1}, x_{c+2}, \ldots\right)=\left(0,0, \ldots, 0, y_{c+1}, y_{c+2}, \ldots\right) .
$$

Thus, when the process takes its maximum jump in the x_{1}-direction, at most $c-1$ other components can change. Our last restriction can be weakened, although we will not consider that here: for example, c can be nonconstant, but instead a function of x_{1}. Let us show that if such a chain P is row-finite, it is representable as $P^{i}=Q S^{i} R$.

Lemma 3. Let T be any f.v., row-finite matrix indexed by the infinitedimensional terminating coordinates. Suppose that T has associated with it a constant $d \geqslant 1$, such that each submatrix $T^{\left\langle i_{1}, i_{2} \ldots . . i_{d}\right\rangle}$ (defined in the proof of Lemma 2) is diagonal. Then T fulfills the conclusions of Lemma 2.

Proof. The proof of Lemma 2 holds, if we only change the initial induction step: the backwards induction runs from d to 0 , with each $T^{\left\langle i_{1}, \ldots, i_{d}\right\rangle}$, being diagonal, fulfilling the conclusions of the lemma.

Theorem 4. Let P be a row-finite ω - k-s chain, with the following additional
restriction: There exists $c \geqslant 1$ such that $P_{\left(x_{1}, X\right),\left(x_{1}+k, \bar{Y}\right)}=0$ unless not only $(0, \bar{Y}) \leqslant(0, \bar{X})$ but also

$$
\left(0,0, \ldots, 0, x_{c+1}, x_{c+2}, \ldots\right)=\left(0,0, \ldots, 0, y_{c+1}, y_{c+2}, \ldots\right) .
$$

Then P fulfills the conclusions of Theorems 1, 2, and 3.
Proof. Each $R^{\left\langle i_{1}, \ldots, i_{c}\right\rangle}$ is diagonal: it is obviously triangular, since it is "on the diagonal" of R. Let $i_{\mathrm{I}}=m k+r, 0 \leqslant r<k$. If

$$
\left(0, \ldots, 0, x_{c+1}, x_{c+2}, \ldots\right) \neq\left(0, \ldots, 0, y_{c+1}, y_{c+2}, \ldots\right)
$$

then

$$
\begin{gathered}
\left.R_{\left(i_{1}, \ldots, i_{c}, x_{c+1}, x_{c+2} \ldots\right.} \ldots\right),\left(i_{1}, \ldots, i_{c}, v_{c+1}, v_{c+2}, \ldots\right) \\
=P_{\left(r, i_{2}, \ldots, i_{c}, x_{c+1}, x_{c+2}, \ldots\right),\left(m k+r, i_{2}, \ldots, i_{c}, v_{c+1}, v_{c+2}, \ldots\right)}^{(m)}=0 .
\end{gathered}
$$

Thus Lemma 3 applies, and the conclusion to Theorem 1 holds.
The proof of Theorem 2 carries over word for word. The dimension of the subspace of regular functions is then, of course, countably infinite, just as in the case $n>1$.

The only change necessary in the proof of Theorem 3 lies in showing that $P^{[r-k, r]}$ has a row-finite left inverse. There are 2 cases. If $c=1$, then $P^{[r-k, r]}$ is diagonal, and the result follows; if $c>1$, then $P^{[r-k, r]}$ can be considered as being indexed by the infinite-dimensional terminating coordinates, and it then fulfills the hypotheses of Lemma 3, with $d=c-1$.

We have shown that all ω-k-s chains with a certain natural restriction are representable ($P^{i}=Q S^{i} R$). Let us show (mainly as an interesting exercise in the renumbering of states) that if we slightly modify the definition of $\omega-k-s$ chains, we can obtain the desirable result that all row-infinite $\omega-k-s$ chains (of the modified variety) are representable.

Define a new ordering on the infinite-dimensional terminating coordinates, as follows:

$$
\begin{array}{lll}
\left(x_{1}, x_{2}, \ldots\right)={ }^{\prime}\left(y_{1}, y_{2}, \ldots\right) & \text { iff } \quad x_{i}=y_{i} \quad \text { for all } \quad i \\
\left(x_{1}, x_{2}, \ldots\right)<{ }^{\prime}\left(y_{1}, y_{2}, \ldots\right) & \text { iff } & p_{1}^{x_{1}} p_{2}^{x_{2}} \ldots<p_{1}^{y_{1}} p_{2}^{v_{2}} \ldots,
\end{array}
$$

where p_{i} is the i th prime ($p_{1}=2, p_{2}=3$, etc.).
Since the entries are all 0 from some point on, this is well-defined.
Definition. A modified ω-k-s chain is a Markov chain with states the infinite-dimensional terminating coordinates, and with
$P_{X Y}=0$ unless either $y_{1} \leqslant x_{1}+k-1$, or $y_{1}=x_{1}+k$ and $(0, \bar{Y}) \leqslant \prime(0, \bar{X})$. Further, $P_{\left(x_{1}, X\right),\left(x_{1}+k, \bar{X}\right)}>0$.

Note that this definition is identical to the definition of an $\omega-k-s$ chain with \mathbb{S}^{\prime} substituted for \leqslant A modified $\omega-k-s$ chain is not merely a weakened $\omega-k-s$ chain, since for example in a modified $\omega-k-s$ chain, the process can move directly from ($1,1,1,0,0,0,0, \ldots$) to $(1+k, 2,0,0,0, \ldots)$, which is impossible in regular $\omega-k-s$ chain.

Theorem 5. A modified ω - k-s chain which is row-finite is representable.
Proof. We will show that by renumbering the states of a modified $\omega-k-s$ chain, we get nothing other than an ordinary $2-k-s$ chain. Then the result will follow immediately, since row-finite $n-k-s$ chains are representable.

Define a $1-1$ correspondence between the infinite-dimensional terminating coordinates and the positive integers by

$$
f:\left(a_{1}, a_{2}, \ldots\right) \rightarrow p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots
$$

Define a 1-1 correspondence between the positive integers and the 2-dimensional coordinates by

$$
g: 2^{a}(2 b+1) \rightarrow(a, b)
$$

Then the 1-1 correspondence $g f$ maps $\left(a_{1}, a_{2}, \ldots\right)$ onto $\left(a_{1},\left(p_{2}^{a_{2}} f_{3}^{a_{3}} \cdots-1\right) / 2\right)$. Relabel states X of P as $g(f(X))$, and let

$$
x_{1}^{\prime}=\frac{p_{2}^{x_{2}} p_{3}^{x_{3}} \cdots-1}{2}, \quad y_{1}^{\prime}=\frac{p_{2}^{y_{2}} p_{3}^{y_{3}} \cdots-1}{2}
$$

Then it is easy to check that the process is now simply a $2-k-s$ chain.

7. Block-Column-Finite n - k-s Chains

We have proved that each row-finite $n-k-s$ chain P has the property that its R matrix has a two-sided inverse. We might naturally hope that this would be true also of column-finite $n-k-s$ chains. However, there is an immediate stumbling block: even if an $n-k-s$ chain P is column-finite, its R matrix is not necessarily column-finite. In fact, it is easy to show that if any two states A and B of P communicate (that is, $P_{A B}^{(r)}>0$ and $P_{B A}^{(s)}>0$ for some $r, s)$, then R is not column-finite. However, as we will see later, the R matrix for a column-finite n - k-s chain does have another property which is similar to column-finiteness, a property we will call "block-column-finiteness."

Definition. A matrix M which is indexed by the n-dimensional or infinite-dimensional terminating coordinates is block-column-finite if each
of its basic submatrices $M^{[i, j]}$ is column-finite. In particular, every columnfinite matrix indexed by multi-dimensional coordinates is block-columnfinite.

Unfortunately, not even all block-column-finite, triangular matrices have a two-sided inverse. In fact, in Section 12 we see a counterexample, of a column-finite, 2-1-s chain P whose R matrix does not have a right inverse. So some further restriction is necessary to guarantee that the R matrix of a column-finite $n-k-s$ chain P be invertible. A very natural restriction is 'that each $P^{[2,2+h]}$ be diagonal-that is, that when the process takes its maximum jump of k units in the first coordinate, then no other coordinate can change. If we adopt this assumption, then we can prove even more: that any such block-column-finite $n-k-s$ (or, in fact, $\omega-k-s$) chain P has a (unique) twosided inverse for its R matrix. This is quite significant, since then with a little more work we can have a representation for a class of Markov chains which need not be either row-finite or column-finite.

We begin with 4 lemmas.

Lemma 4. Assume that a f.v. triangular matrix T is indexed by either the n-dimensional or the infinite-dimensional terminating coordinates, and that each $T^{[i, 2]}$ is diagonal. Then if T has a right inverse C, C is triangular.

Proof. The proof is exactly like that for a finite triangular matrix, except that matrix blocks are used instead of numbers. A diagonal submatrix corresponds to a nonzero number, which always has a unique inverse.

Lemma 5. Let T be as in Lemma 4. Then T has at most one triangular left inverse.

Proof. Assume $L T=I$. Then

$$
\begin{aligned}
& L^{[i, i]} T^{[i, i]}=I \\
& L^{[i, j]} T^{[j, j]}=-\sum_{r=j+1}^{i} L^{[i, r]} T^{[r, j]}, \quad j<i .
\end{aligned}
$$

Denote the (unique), diagonal, two-sided inverse of the diagonal matrix $T^{[2,2]}$ by $\left(T^{[i, 2]}\right)^{-1}$. Then the above two equations give us

$$
\begin{aligned}
& L^{[i, i]}=\left(T^{[i, i]}\right)^{-1} \\
& L^{[i, j]}=-\left(\sum_{r=j+1}^{i} L^{[i, r]} T^{[r, j]}\right)\left(T^{[j, j]}\right)^{-1}, \quad j<i .
\end{aligned}
$$

These are recursion equations in j, which determine first $L^{[2,4]}$, and then $L^{[2, J \mid}(j, i)$ in terms of $L^{|c, 2|}, L^{1,2}{ }^{11}, \ldots, I^{11,1}{ }^{11}$. Hence there is at most one solution for L, which can only exist if all matrix products and sums above are well defined.

Lemma 6. Let A and B be two nonnegative f.v. block-column-finite matrices, both indexed by the n-dimensional, or the infinite-dimensional terminating coordinates. Assume there exists r_{A} such that $l_{X Y}=0$ whenever $y_{1}>x_{1}+r_{A}$, and likewise for B. Then C-- $A B$ has the same properties: it is nonnegative, $f . v .$, block-column-finite, and there exists r_{C} such that $C_{X Y}==0$ whenever $y_{1}>x_{1}+r_{C}$. Thus any product of a finite number of such matrices is again such a matrix, and in particular is f.v.

Proof. Let $C=A B$. Then

$$
C^{[i, j]}-\sum_{m-0}^{i+\tau_{A}} A^{[i, m]} B^{[m, \mu]} .
$$

Since each $A^{[i, m]}$ and each $B^{[m, j]}$ is column-finite, so is $C^{[i, j]}$. Thus, C is f.v. and block-column-finite.

Finally, if $j>i+r_{A}+r_{B}$, then for $m=0,1, \ldots, i+r_{A}$, we have $B^{[m, j]}=0$, so

$$
C^{[i, j]}=\sum_{m=0}^{2+r_{A}} A^{[i, m]} B^{[m, \rho]}=0
$$

Thus $r_{A}+r_{B}$ can serve as r_{C}.
We are now ready to prove:
Lemma 7. Let T be a f.v., block-column-finite triangular matrix, indexed by either the n-dimensional or the infinite-dimensional terminating coordinates. If each $T^{[i, i]}$ is diagonal, then

1. Thas a unique two-sided inverse C.
2. C is f.v., triangular, and block-column-finite and each $C^{[i, i]}$ is diagonal.
3. C is the unique right inverse of T.
4. C is the only left inverse of T which is triangular.

Note. Even if $n=1, C$ is not necessarily the unique left inverse of T, as we see from counterexample 4 in Section 12. The given matrix is block-column-finite, where a number serves as a block.

Proof. By Lemma 4, if T is to have a right inverse C, C must be trian-
gular. Hence a necessary and sufficient condition for a matrix C to be a right inverse of T is

$$
\begin{aligned}
C^{[i, j]} & =0, & & j>i \\
T^{[j, j]} C^{[j, j]} & =I & & \\
-T^{[2, i]} C^{[i, j]} & =\sum_{i=1}^{i-1} T^{[i, t]} C^{[t, 0]}, & & i>j .
\end{aligned}
$$

Since each $T^{[i, 2]}$ is diagonal, an equivalent set of conditions is

$$
\begin{array}{ll}
C^{[i, j]}-0, & j>i \\
C^{[j, j]}=\left(T^{[j, j]}\right)^{-1} & \\
C^{[i, j]}=-\left(T^{[i, i]}\right)^{-1} \sum_{t=1}^{i-1} T^{[i, t]} C^{[t, j]}, & i>j .
\end{array}
$$

Since condition (2) is a set of recursion equations in i, we can get at most one solution for C. Let us prove that we do indeed get a solution, that is, that each $C^{[i, j]}$ is well-defined; simultaneously let us show that each $C^{[i, j]}$ is column-finite. Certainly each $C^{[2, j]}, i \leqslant j$, is well-defined and columnfinite. Assume inductively that $C^{[j, j]}, C^{[t 1, j]}, \ldots,{ }^{[1} C^{[r-1,2]}$ are well-defined and column-finite. Then since products and finite sums of column-finite matrices are column-finite, so is $C^{[i, j]}$.
Since the matrix C we have constructed fulfills the hypothesis of the lemma, C, by an identical argument, has a unique right inverse C^{\prime}, which is f.v., triangular, and block-column-finite. Now, by the final conclusion of Lemma 6 , $|T| \cdot|C| \cdot\left|C^{\prime}\right|$ is f.v. So, $T=T\left(C C^{\prime}\right)=(T C) C^{\prime}=C^{\prime}$.
The final conclusion follows from Lemma 5 .
Theorem 6. Let P be any block-column-finite n-k-s or ω-k-s chain, and assume that each $P^{[i, 2+k]}$ is diagonal. Then:

1. The R matrix associated with P has a unique two-sided inverse Q.
2. R and Q are f.v., triangular, and block-column-finite.
3. Q is the unique right inverse of R, and R is the unique right inverse of Q.
4. Q is the only left inverse of R which is triangular, and R is the only left inverse of Q which is triangular.
5. $P^{i}=Q S^{i} R, i=0,1,2, \ldots$.

Proof. Let us show that R fulfills the hypothesis of Lemma 7. R is f.v. and triangular. R is also block-column-finite: since P is block-column-finite, so is each $P^{m}, m=0,1,2, \ldots$, by the final conclusion of Lemma 6. And, it is easy to show that for $i \geqslant j, R^{[i, j]}=\left(P^{m}\right)^{[r, j]}, i=m k+r, 0 \leqslant r<k$.

Each $R^{[1,6]}$ is diagonal: automatically (by triangularity), $R_{X X}>0$. And, if $(0, \bar{X}) \div(0, \bar{Y})$, and $i-m k \div r, 0 \leqslant r<k$, then

$$
R_{(l, \bar{X}),(i, \bar{Y})}=P_{(r, \bar{X}),(m k+r, \bar{Y})}^{(m)}-0 .
$$

'To show conclusion 5 , we nced only show that P, Q, R, and $S^{2}(i \geqslant 0)$ all frecly associate. This is satisfied if all finite products among themselves of $P, \mid Q \cdot, R$, and S are again f.v. But this holds by Lemma 6 , where $r_{P}=r_{S}=k$, and $r_{R}=r_{|Q|}=0$.

Note that Theorem 3 holds for this class of chains also: we can carry the proof over completely, with only one change $-P^{[r-\kappa, r]}$ has an inverse since it is diagonal.

Surprisingly, unlike the row-finite case it is not necessarily true that the matrix N^{-}of mean number of visits is given by $N-Q T R$. A counterexample is given in Section 12.

8. Another Class of Representable n - k-s Chains

In the previous section, we saw that $n-k-s$ chains P are representable when

1. Each $P^{[2,2+k]}$ is diagonal
2. P is block-column-finite.

Neither condition alone is sufficient, as the counterexamples in Section 12 show. Since condition 1 is so natural-it says that when the process takes its maximum jump of k steps in the first coordinate, no other coordinate changes-we seek another class of $n-k$-s chains which are representable because of this condition along with some other conditions. One such additional condition is
2. There exists $d>0$ such that $P_{(i, X),(i \mid h, S)} \geqslant d$. We can weaken this condition even further to:
2. There exists a set of positive scalars $\left\{d_{i}\right\}$ such that $P_{(i, X),(i+k, X)} \geqslant d_{i}$.

All of these condition 2's together are not sufficient unless we include condition 1 , as counterexample 3 in Section 12 shows.

We begin with two lemmas.
Lemma 8. Let A and B be two nonnegative, f.v. matrices, both indexed by the n-dimensional or the infinite-dimensional terminating coordinates. Assume:

1. There exists a set of nonnegative scalars $\left\{a_{i}\right\}$ such that the row sum of the (i, \bar{X}) row of A is less than or equal to a_{2}, uniformly in \bar{X}.
2. There exists a constant r_{A} such that $A_{X Y}=0$ whenever $y_{1}>x_{1} \rightarrow r_{A}$.

Assume B also has a set of scalars $\left\{b_{i}\right\}$ fulfilling hypothesis 1 , and a constant r_{B} fulfilling hypothesis 2 .
Then $C=A B$ has the same properties: C is nonnegative, f.v., and has a set of scalars $\left\{c_{i}\right\}$ fulfilling 1 , and a constant r_{C} fulfilling 2 . Thus, the product of any finite number of such matrices is again such a matrix, and in particular is f.v.

Proof. Let $C=A B$. Then

$$
C^{[i,,]}=\sum_{m-0}^{i+r_{A}} A^{[i, m]} B^{[m, \nu]} .
$$

As in Lemma 6, $r_{A}+r_{B}$ can serve as r_{C}. So 2 holds for C.
To show 1 holds for C, we need only show that there exists a set of scalars $\left\{c_{\nu}\right\}$ such that $\left.C^{[2,0]}\right\rfloor \leqslant c_{i j} 1$, since then we can set

$$
c_{i}=\sum_{j=0}^{i+r_{A}} c_{i,} .
$$

This will also show, of course, that C is f.v. Now

$$
\begin{aligned}
C^{[i, j]} 1 & \left.=\sum_{m=0}^{i+r_{A}} A^{[i, m]} B^{[m, \cdot]}\right] \text { by nonnegativity } \\
& \leqslant \sum_{m=0}^{i+r_{A}} A^{[i, m]} b_{m} 1 \\
& \leqslant \max \left\{b_{m}\right\} \cdot \sum_{m=0}^{i+r_{A} A} A^{[2, m] 1} \\
& \leqslant a_{i} \max \left\{b_{m}\right\} 1
\end{aligned}
$$

where the maximum is taken over $0 \leqslant m \leqslant i+r_{A}$. We can let

$$
c_{i j}=a_{i} \max \left\{b_{m}\right\} .
$$

Lemma 9. Assume T is any f.v., triangular matrix indexed by either the n-dimensional or the infinite-dimensional terminating coordinates, and assume also that:
A. There exists a set $\left\{a_{i}\right\}$ of scalars, such that the row sum of the (i, \bar{X}) row of $|T|$ is less than or equal to a_{2}, uniformly in \bar{X}.
B. Each $T^{[i, i]}$ is diagonal.
C. There exists a set of positive scalars $\left\{b_{i}\right\}$, such that $b_{i} \leqslant\left|T^{[i, i]}\right|_{X X}$ for all X.

Then:

1. Thas a unique two-sided inverse C.
2. C is f.v. and triangular, and fulfills each of A, B, and C.
3. C is the unique right inverse of T.
4. C is the only left inverse of T which is triangular.

Note. Again, Section 12 shows that C is not necessarily the unique left inverse of T.

Proof. As in Lemma 7, necessary and sufficient conditions for a matrix C to be a right inverse of T are

$$
\begin{array}{ll}
C^{[i, j]}=0, & i<j \\
C^{[i, 0]}=\left(T^{[j, j]}\right)^{-1} & \\
C^{[i,,]}=-\left(T^{[i, 2]}\right)^{-1} \sum_{t=1}^{i-1} T^{[i, t]} C^{[t, j]}, & i>j . \tag{3}
\end{array}
$$

Since these equations are recursion equations in i, we can get at most one solution. The matrix C, if it exists, certainly fulfills hypothesis B and C : $C^{[i, i]}=\left(T^{[i, i]}\right)^{-1}$, which is diagonal; and,

$$
\frac{1}{a_{i}} \leqslant \frac{1}{\left|T^{[i, i]}\right|_{X X}}=\left|C^{[i, i]}\right|_{X X} .
$$

Let us prove that equations (3) give us a well-defined solution C (i.e., that each $C^{\left[i,{ }^{2}\right]}$ is well defined), and simultaneously, let us show that the matrix C fulfills hypothesis A. Fulfiling hypothesis A is equivalent to there being $\left\{a_{i j}^{\prime}\right\}$ such that $\left|C^{[i, j]}\right| \leqslant a_{i j}^{\prime}$. Now $C^{[j, j]}=\left(T^{[j, j]}\right)^{-1}$ is well defined, and satisfies this condition, with $a_{j j}^{\prime}=1 / b$. Assume inductively that $C^{[0,0]}$, $C^{[1+1, j]}, \ldots, C^{[i-1, i]}$ are all well defined and satisfy $\left|C^{[r, j]}\right| 1 \leqslant a_{r j}^{\prime} 1$ for some $a_{r j}^{\prime}<\infty$. Then, first, each $T^{[i, m]} C^{[m .,]}, m<i$, is well defined, since we need only show each entry of $\left|T^{[i, m]}\right|\left|C^{[m, j]}\right|$ is finite, for $m<i$.

$$
\begin{aligned}
\left(\left|T^{[i, m]}\right|\left|C^{[m, j]}\right|\right)_{X Y} & =\sum_{Z}\left|T^{[i, m]}\right|_{X Z}\left|C^{[m, j]}\right|_{Z Y} \\
& \leqslant \sum_{Z}\left|T^{[i, m]}\right|_{X Z} a_{m j}^{\prime} \\
& =a_{m j}^{\prime} \sum_{Z}\left|T^{[i, m]}\right|_{X Z} \\
& \leqslant a_{m \partial}^{\prime} a_{i}
\end{aligned}
$$

Thus the finite sum

$$
\sum_{t=j}^{i-1} T^{[i, t]} C^{[t, j]}
$$

is well defined, and therefore so is

$$
-\left(T^{[i, i]}\right)^{-1} \sum_{i=1}^{i-1} T^{[i . t]} C^{[t . j]}
$$

since $\left(T^{[i, i]}\right)^{-1}$ is diagonal. Thus each $C^{[i, j]}$ is indeed well defined, and so C is well defined. And,

$$
\begin{aligned}
\left|C^{[i, j]}\right| & =\left|\left(T^{[i, i]}\right)^{-1} \sum_{t=9}^{i-1} T^{[i, t]} C^{[t, j]}\right| 1 \\
& \leqslant\left(\sum_{t=1}^{i-1}\left|\left(T^{[i, i]}\right)^{-1}\right|\left|T^{[i, t]}\right|\left|C^{[t, 0]}\right|\right) 1
\end{aligned}
$$

So, to finish off this induction, we need only show that there exists some constant $c=c(i, t, j)$ such that

$$
\left|\left(T^{[i, i]}\right)^{-1}\right|\left|T^{[i, t]}\right|\left|C C^{[t, j]}\right| 1 \leqslant c l, \quad j \leqslant t<i
$$

Now

$$
\begin{aligned}
\left|\left(T^{[i, i]}\right)^{-1}\right|\left|T^{[i, t]}\right|\left|C C^{[t, j]}\right| 1 & =\left|\left(T^{[i, i]}\right)^{-1}\right|\left|T^{[i, t]}\right|\left(\left|C^{[t, j]}\right| 1\right) \\
& \leqslant a_{t j}^{\prime}\left|\left(T^{[i, i]}\right)^{-1}\right|\left|T^{[i, t]}\right| 1 \\
& \leqslant a_{t j}^{\prime} a_{i}\left|\left(T^{[i, i]}\right)^{-1}\right| 1 \\
& \leqslant a_{t j}^{\prime} a_{i} \frac{1}{b_{i}}
\end{aligned}
$$

The induction is complete, and we have proven that T has a unique right inverse C. This matrix C we have constructed fulfills all the hypotheses of the lemma, as we proved, so C has a unique right inverse C^{\prime}, which also fulfills the hypotheses. By the final conclusion of Lemma $8,|T| \cdot|C| \cdot\left|C^{\prime}\right|$ is $\mathrm{f} . \mathrm{v}$. Thus $C^{\prime}=(T C) C^{\prime}=T\left(C C^{\prime}\right)=T$.

Lastly, conclusion 4 follows from Lemma 5.
Theorem 7. Let P be any n - k-s or ω - k-s chain P with the following two properties:

1. Each $P^{[i, i+k]}$ is diagonal.
2. There exists a set of positive scalars $\left\{d_{i}\right\}$ such that $P_{(i, X),(i+k, X)} \geqslant d_{i}$, uniformly.

Then:

1. The matrix R associated with P has a unique two-sided inverse ().
 the row sum of the (i, \bar{X}) roze of O is less than or equal to f_{2}, uniformly.
2. Q is the unique right inverse of R, and R is the unique right inverse of Q.
3. Q is the only left inverse of R which is triangular, and R is the only left inverse of Q which is triangular.
4. $P^{2}=Q S^{2} R, i=0,1,2, \ldots$.

Proof. To prove conclusions 1-4, we need only show that R fulfills hypotheses A, B, and C of Lemma 9 . Then we can apply the results of Lemma 9 to Q also.
A. Set $a_{2}=1$.
B. This follows, as in the proof of Theorem 6.
C. If $i \neq m k+r$, then it is easy to show that we can set

$$
b_{i}=d_{r} d_{k+r} \cdots d_{(m-1) k+r}
$$

To prove conclusion 5, we need only show, as in Theorem 6, that $P,|Q|$, R, and S fulfill the hypotheses of Lemma 8. The $\left\{a_{2}\right\}$ of part 1 exist for $Q \mid$ by conclusion 2 of this theorem, and $a_{i}-1$ for P, R, and S. As for part 2: $r_{|Q|}-r_{R}=-0$, and $r_{P}-r_{S}=k$.

Theorem 3 applies to this class of chains, with the same modification in the proof as in the previous section.

Finally, as in the row-finite case (but unlike the block-column-finite case), the matrix N is given by $N=O T R$. To show this, first note that each column of $T R$ is uniformly bounded, as the last paragraph of Section 3 shows. Then, since $\mid Q{ }^{\prime}$ has finite row sums, we have

$$
\begin{aligned}
N^{r} & -\lim _{n} Q T^{(n)} R \\
& =Q \lim _{n} T^{(n)} R \text { by dominated convergence and the above remarks } \\
& =Q(T R) \text { by monotonicity } \\
& =Q T R \text { since }: Q \mid T R \text { is f.v., by the above remarks. }
\end{aligned}
$$

9. Sums of Vector-Valled Independent Random Variables

By renumbering the states we can turn many Markov chains into representable $n-k-s$ chains. Various classes of sums of independent random variables are of this type. For example, we can represent sums of n-dimensional or infinite-dimensional vector-valued (with integral entries) independent random variables, with the following restrictions: in $S_{1}=X_{1}+\cdots+X_{i}$
(where each X_{1} is identically distributed), X_{r} can only take on a finite number of values in the first coordinate; when X_{r} takes on its maximum a or its minimum b in the first coordinate, all the other coordinates must be 0 . The valucs a and b must not, of course, both be 0 . And, in the infinite-dimensional case, we must also add that each value of X_{r} has 0 's in all but a finite number of entries. Then after renumbering the states, we will have an $n-k-s$ or $\omega-k-s$ chain of the type in Scction 8. The method of renumbering, which is done in [2], is as follows. If $a>0$ and $b<0$, then let $c=-b$, and renumber the first coordinate of the states as follows:

$$
\begin{gathered}
0,1, \ldots, a-1,-1,-2, \ldots,-c, a, a+1, \ldots \\
2 a-1,-c-1,-c-2, \ldots,-2 c, 2 a, 2 a+1, \ldots
\end{gathered}
$$

Then $k=a+c$. If $b \geqslant 0$, do not renumber the first coordinate of the states; then $k=a$. If $a \leqslant 0$, renumber the first coordinate of the states $0,-1,-2, \ldots$; then $k=|b|$. And in all cases, renumber the other coordinates $0,1,-1,2,-2,3,-3, \ldots$.

The inost famous such chains are the n-dimensional random walks. By other renumbering schemes, we can represent reflecting random walks.

10. A Semi-Representation for the Most General Dencmerably Infinite Markov Chain

Because of the great freedom which an $n-k-s$ chain has in all but one dimension, the reader may have already anticipated a theorem of the type we are about to prove.

By P^{E} we mean the process which is obtained by watching a Markov chain only when it enters a given set of states $E . P^{E}$ is easily proven (in [1]) to be a Markov chain in its own right.

Theorem 8. Any Markov chain A with a countably infinite number of states is of form P^{E}, where $E==\{(0,0),(0,1),(0,2), \ldots\}$, with P a representable 2-1-s chain of the type in Section 8.

Proof. Without loss of gencrality, let A be indexed by the natural numbers.

Define

$$
P=\left(\begin{array}{lllll}
1 & 1 & 1 \\
2
\end{array}\right)\left(\begin{array}{llll}
2 & & & \\
\frac{1}{2} A & 0 & 1 \\
\frac{1}{2} A & 0 & 0 & \\
\frac{1}{2} I & \\
\frac{1}{2} A & 0 & 0 & 0
\end{array} \frac{1}{2} I\right)
$$

$\frac{1}{2} A, \frac{1}{2} I$, and 0 are being used as basic submatrices.
P can be considered as being of form

$$
\left.\begin{array}{cc}
E & \tilde{E} \\
E \\
\tilde{E} \\
\tilde{M} & M_{2} \\
M_{3} & M_{4}
\end{array}\right) ; ~ ; ~
$$

by \tilde{E} we mean the set of all states excluding those in E. Thus M_{2} is indexed down by all states in E, and across by all states not in E, etc. It is proven in [1] that P^{E} then equals $M_{1}-M_{2}\left(\sum_{m=0}^{\chi}\left(M_{4}\right)^{m}\right) M_{3}$. So, in this case,

$$
\begin{aligned}
P^{E} & =\frac{1}{2} A+\left(\begin{array}{llll}
\frac{1}{2} I & 0 & 0 & \cdots
\end{array}\right)\left(\begin{array}{cccc}
\left.\sum_{m=0}^{x}\left(\begin{array}{cccc}
0 & \frac{1}{2} I & & \\
0 & 0 & \frac{1}{2} I & \\
0 & 0 & 0 & \frac{1}{2} I \\
& & \vdots &
\end{array}\right)^{m}\right)\left(\begin{array}{c}
\frac{1}{2} A \\
\frac{1}{2} A \\
\frac{1}{2} A \\
\vdots
\end{array}\right) \\
& =\frac{1}{2} A+\left(\begin{array}{llll}
\frac{1}{2} I & \frac{1}{4} I & \frac{1}{8} I & \frac{1}{16} I \\
\cdots
\end{array}\right)\left(\begin{array}{c}
\frac{1}{2} A \\
1 \\
2
\end{array}\right) \\
\frac{1}{2} A \\
\vdots
\end{array}\right) \\
& =\frac{1}{2} A+\frac{1}{4} A+\frac{1}{8} A+\frac{1}{16} A+\cdots \\
& =A .
\end{aligned}
$$

Note that A is the process obtained by projecting P on the x_{2}-axis and watching the process only when it changes x_{2}-values. After projection, the process changes x_{2}-values with probability one, since the probability that it does not is equal to $\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) \cdots=0$.

Certain properties which have a simple formula for a representable P can be used to give information about $A=P^{E}$. For example, if $i, j \in E$ then $N_{i j}$ is the same whether computed for A or for P. The same is true for other quantities, such as "hitting probabilities." So, if such a quantity is obtainable from the representation in some way, then it can thus be obtained for the most general Markov chain A. It is, however, not clear whether this is a useful technique.

11. Advancing Chains

We can generalize row-finite $n-k$-s chans to get an even larger class of representable chains. An n-dimensional advancing chain is a row-finite Markov chain with states the n-dimensional coordinates, and which has associated with it a function f defined on the states, with the following properties:

1. $P_{X, f(X)}>0$ and $P_{X Y}=0$ for $Y>f(X)$. That is, $f(X)$ tells the largest state that the process can move to in one step from X.
2. f is strictly monotone increasing. That is, $X<Y$ implies $f(X)<f(Y)$.
3. $f(X)>X$ for every X.

Note that even when $n=1$, this is still a generalization of $1-k-s$ chains.
Define the matrix S, which is indexed by the n-dimensional coordinates, by $S_{X Y}=\delta_{Y, f(X)}$. Note that S^{i} is still extremely simple to find:

$$
S_{X Y}^{i}=\delta_{X, f^{(0)}(X)},
$$

where $f^{(2)}(X)=f(f(X))$, etc.
Now let us define the matrix R, which is again indexed by the n-dimensional coordinates. Denote the set of states by C. Set

$$
R_{X Y}= \begin{cases}\delta_{X Y}, & X \notin f(C) \tag{4}\\ \sum_{W} R_{Z W} P_{W Y}, & X=f(Z) .\end{cases}
$$

Since $0 \notin f(C)$, the 0 th row of R is certainly well defined. If $X=f(Z)$, then $R_{X Y}$ is well defined, since $X>Z$, and so the X th row of R is defined only in terms of an earlier row.

By construction, $R P=S R$, since

$$
(R P)_{Z Y}=R_{f(Z), Y}=\sum_{W} S_{Z W} R_{W Y}=(S R)_{Z Y}
$$

Let us show that R is f.v., row-finite, and triangular. The 0 th row of R is all right (i.e., such as to make R f.v., row-finite, and triangular). Assume inductively that for all $U<X$, the U th row of R is all right. Then let us show that the X th row of R is all right. This is certainly the case if $X \notin f(C)$. So assume $X \in f(C)$. Write $X=f(Z)$. For each $Y, R_{X Y}$ is finite, since $R_{X Y}$ is defined in (4) as a finite sum of finite numbers by induction hypothesis, since $Z<X$.

Let

$$
\begin{aligned}
& S_{1}=\left\{W \mid R_{Z W}>0\right\} \\
& S_{2}=\left\{Y \mid P_{W Y}>0 \text { for some } W \in S_{1}\right\} .
\end{aligned}
$$

By induction hypothesis, S_{1} is a finite set. Since P is row-finite, S_{2} is also a finite set. Then $R_{X Y}=0$ unless $Y \in S_{2}$, so the X th row of R has a finite number of nonzero entries.
We need now only show triangularity to complete the induction.
$R_{X X} \cdot \sum_{H} R_{Z W} I_{W, J(N)}$
$\sum_{W}^{-} R_{Z W} I_{W, H(L)} b y$ induction hypothesis, since $Z=i$

- $R_{Z Z} I_{\ell, f(Z)}$ since $I_{W, f(Z)} \cdot 0$ for $I W \cdot, Z$
- 0 by induction hypothesis.

Lastly, if $Y>X==f(Z)$, then

$$
R_{X Y}=-\sum_{W} R_{Z} R_{Z W} P_{W Y}=0,
$$

since

$$
P_{W Y}=0 \quad \text { for all } \quad Y>f(Z) \geqslant f(W)
$$

Lemma 2 now holds for R, and so P fulfills the conclusions of Theorem 1 and 3. In particular, for every $i, P^{c}-Q S^{\prime} R$.

12. Five Counterexamples

Before presenting the counterexamples, let us first prove a lemma.

Lemma 10. If a f.r. triangular matrix T which is indexed by the n-dimensional coordinates has a right inverse T_{1}, T_{1} is triangular. Further, the only solution to $T A=0$ is $A=0$.

Proof. By induction on n. The lemma is true for $n=-1$: by Lemma 2, T has a unique right inverse T_{1}, which is triangular, and which is also a left inverse of T. And, $T A=0$ implies

$$
0=T_{1}(T A)=\left(T_{1} T\right) A-A .
$$

Assume inductively that the lemma is true for dimension $n-1$, where $n>1$. Then in terms of basic submatrices, $T T_{1}=I$ becomes

$$
\sum_{s-0}^{i} T^{[i, s]} T_{1}^{[\rho, j]}=\delta_{u} I
$$

Each $T^{[2,3]}$ can be considered as being indexed by the ($n-1$)-dimensional coordinates. From $T^{[0,0]} T_{1}^{[0, J]}=\delta_{i j} I$, we have by induction hypothes is
that $T_{1}^{[0,0]}$ is triangular, and that $T_{1}^{[0,2]}=0$ when $j>0$. Thus all submatrices $T_{1}^{[0 . J]}$ are all right (i.c., such as to make T_{1} triangular). Assume inductively that all subinatrices $T_{1}^{[r, 2]}, r=0,1, \ldots, m-1$ and $i-0,1,2, \ldots$ are all right. Then if $y \geqslant m$,

$$
\delta_{m y} I=\sum_{s \ll m} T^{[m, s]} T_{1}^{[s, y]}=T^{[m, m]} T_{1}^{[m, y]}
$$

since by induction hypothesis, $T_{1}^{[s, y]}=0$ for $s<m \leqslant y$. Thus by induction hypothesis, cach $T_{1}^{[m, y]}$ is all right.

Lastly, if $T A=0$, then $T^{[0,0]} A^{[0,2]}=0$, so $A^{[0,2]}=0$ for all i. And, if $A^{[r, i]}=0$ for all $r<m$ and for all i, then $T^{\left[m, m^{m}\right]} A^{[m, \imath]}=0$, and so $A^{[m, 2]} \ldots 0$ for all i.

Counterexample 1. A simple example of a triangular matrix indexed by the 2 -dimensional coordinates which has no right inverse.

Let

$$
\begin{gathered}
A=\left(\begin{array}{rrrr}
1 & & & \\
-1 & 1 & & \\
0 & -1 & 1 & \\
0 & 0 & -1 & 1 \\
\vdots & &
\end{array}\right) \quad B=\left(\begin{array}{cccc}
1 & & & \\
1 & 1 & & \\
1 & 1 & 1 & \\
1 & 1 & 1 & 1 \\
& \vdots &
\end{array}\right) \\
E=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & \cdots \\
1 & 1 & 1 & 1 & \cdots \\
1 & 1 & 1 & 1 & \cdots \\
1 & 1 & 1 & 1 & \cdots
\end{array}\right) .
\end{gathered}
$$

Then $A B=I$, and by Lemma $2, B$ is the unique right inverse of A. Set

$$
T=\left(\begin{array}{ccccc}
A & & & \\
E & A & & \\
E & E & A & \\
E & E & E & A \\
& & \vdots & &
\end{array}\right)
$$

By Lemma 10 , if T has a right inverse T_{1}, T_{1} is triangular. So, the basic submatrix in the upper left corncr of T_{1} would be B. But then $T T_{1}$ involves the product $E B$, which has all infinite entries, a contradiction.

Colnterexample 2. A $2-1-s$ chain P with each $P^{[i, i+1]}$ diagonal, but whose R matrix does not have a right inverse.

Define:

$$
\begin{gathered}
P_{(0,0) Y}=-\delta_{Y,(1,0)} \\
P_{(0, a), Y}= \begin{cases}(a=1,2,3, \ldots) & \begin{cases}\frac{1}{2}, & Y=(0,0) \\
\frac{1}{2}-\left(\frac{1}{2}\right)^{a}, & Y-=(0,1)\end{cases} \\
\left(\frac{1}{2}\right)^{a}, & Y=(1, a) \\
0 & \text { otherwise }\end{cases} \\
P_{(1,0), Y}= \begin{cases}\frac{1}{2}, & Y=(2,0) \\
\left(\frac{1}{2}\right)^{a+2}, & Y=(1, a), \quad a=0,1,2, \ldots \\
0 & \text { otherwise }\end{cases} \\
P_{(a, b), Y}=\delta_{Y,(a+1, b)} \\
\\
(a=1 \text { and } b \geqslant 1, \text { or } a \geqslant 2) .
\end{gathered}
$$

From our recursive definition of R, we easily find:

$$
\begin{align*}
R^{[0,0]} & =I \\
R^{[1.1]} \text { is diagonal with }\left(R^{[1,1]}\right)_{i i} & =\left(\frac{1}{2}\right)^{i} \\
\left(R^{[1,0]}\right)_{i 0} & =\frac{1}{2}\left(1-\delta_{i 0}\right) \\
\left(R^{[2,1]}\right)_{02} & =\left(\frac{1}{2}\right)^{i+2} . \tag{5}
\end{align*}
$$

Assume now R has a right inverse $Q . Q$ is triangular, by Lemma 10. From $R Q=I$, we get:

$$
\begin{align*}
& Q^{[0,0]}=I, \quad R^{[1,0]} Q^{[0,0]}+R^{[1,1]} Q^{[1,0]}=0 \\
& R^{[2,0]} Q^{[0,0]}+R^{[2,1]} Q^{[1,0]}+R^{[2,2]} Q^{[2,0]}=0 \tag{6}
\end{align*}
$$

From the first two of Eqs. (6), $-R^{[1,0]}=R^{[1,1]} Q^{[1,0]}$. Since $R^{[1,1]}$ is triangular and row-finite, $Q^{[1,0]}=-\left(R^{[1,1]}\right)^{-1} R^{[1,0]}$. So the third equation becomes

$$
\begin{equation*}
R^{[2,0]}-R^{[2,1]}\left(\left(R^{[1,1]}\right)^{-1} R^{[1,0]}\right)+R^{[2,2]} Q^{[2,0]}=0 \tag{7}
\end{equation*}
$$

When we use Eqs. (5) to obtain the entry in the 0th row and 0th column of the matrix Eq. (7), an infinite entry appears, which is a contradiction.

Counterexample 3. A $2-1-s$ chain P which is column-finite and which fulfills $P_{\left(x_{1}, x_{2}\right),\left(x_{1}+1, x_{2}\right)} \geqslant \frac{1}{6}$, but whose R matrix does not have a right inverse.

Define

$$
\begin{aligned}
& P_{(0,0), Y}= \begin{cases}\frac{1}{2}, & Y=(0,0) \\
\frac{1}{2}, & Y=(1,0) \\
0 & \text { otherwise }\end{cases} \\
& P_{(0, a), Y}= \begin{cases}\frac{1}{2}, & Y=(0, a) \\
\frac{1}{3}, & Y=(1, a-1) \\
\frac{1}{6}, & Y=(1, a) \\
0 & \text { otherwise }\end{cases} \\
&(a=1,2,3, \ldots) \\
& P_{(1,0), Y}= \begin{cases}\frac{1}{2}, & Y=(2,0) \\
\left(\frac{1}{2}\right)^{a+1}, & Y=(1, a), \quad a=1,2,3, \ldots \\
0 & \text { otherwise }\end{cases} \\
& P_{(a, b), Y}=\delta_{Y,(a+1, b)} \\
&(a=1 \text { and } b \geqslant 1, \text { or } a \geqslant 2)
\end{aligned}
$$

We easily find that:

$$
\begin{aligned}
R^{[1,0]} & =\frac{1}{2} I \\
\left(R^{[2,1]}\right)_{0, i} & =\left(\frac{1}{2}\right)^{i+2} \\
\left(R^{[1,1]}\right)_{i j} & = \begin{cases}\frac{1}{2}, & i=j=0 \\
\frac{1}{3}, & j+1=i \geqslant 1 \\
\frac{1}{8}, & j=i \geqslant 1 \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

By Lemma 2, $R^{[1,1]}$ has a unique two-sided inverse, which is triangular. $\left(R^{[1,1]}\right)_{i, 0}^{-1}=(-1)^{i} 2^{i+1}$, as we can easily show by induction on i.

Now assume that R has a right inverse Q. By Lemma $10, Q$ is triangular. Equation (7) of the previous counterexample holds, just as before. But

$$
R^{[2,1]}\left(\left(R^{[1,1]}\right)^{-1} R^{[1,0]}\right)=\frac{1}{2} R^{[2,1]}\left(R^{[1,1]}\right)^{-1}
$$

which is undefined in the upper left entry.
Counterexample 4. A nonnegative triangular matrix indexed by the natural numbers with more than one left inverse.

This example will also have row sums less than one.
Define
$T_{a b}= \begin{cases}\left(\frac{1}{2}\right)^{a+1}, & a \text { odd and } b \leqslant a, \text { or } a \text { even and } b \text { even and } b \leqslant a \\ \left(\frac{1}{2}\right)^{a}, & a \text { even and } b \text { odd and } b \leqslant a \\ 0, & b>a\end{cases}$
$V_{a b}=\left\{\begin{aligned}-2^{(b-2) / 2}, & b \text { even } \\ 2^{(b-1) / 2}, & b \text { odd } .\end{aligned}\right.$
'Then T is triangular and of course row-finite, so it has a left inverse T_{1} by Lemma 2. It is easy to check that $V T=0$. Hence $T_{1}-V$ is a second left inverse of T.

Counterexample 5. A representable transient 2-1-s chain for which $N \neq Q T R$.

We will show that $N \not \equiv Q(T R)$ and also $N^{T} \neq(Q T) R$ for this chain.
Define P as follows:

$$
\begin{aligned}
& \begin{array}{r}
P_{(0, a), Y}=- \\
(a-=0,1,2, \ldots)
\end{array} \begin{cases}1-\left(\frac{1}{2}\right)^{a-1}, & Y=(0, a) \\
(1-2)^{a+1}, & Y=(1, a) \\
0 & \text { otherwise }\end{cases} \\
& P_{(1,0), Y}= \begin{cases}\binom{1}{2}^{a+1}, & Y=(1, a), \quad a=1,2,3, \ldots \\
\frac{1}{2}, & Y=(2,0) \\
0 & \text { otherwise }\end{cases} \\
& P_{(1, a), Y}=\delta_{(2, u), Y} \\
& \text { (} a=1,2,3, \ldots \text {) } \\
& \begin{aligned}
P_{(a, 0), Y}=-= \\
(a=2,3,4, \ldots)
\end{aligned}\left\{\begin{array}{lll}
=\frac{a(a+2)}{(a+1)^{2}}, & Y=(a+1,0) & \\
>0, & Y<(a+1,0) & \text { (This is obviously possi- } \\
>0, & Y \ddot{ } \quad \text { ble to bring about, and } \\
-0+1,0) & \text { with } \left.\sum_{Y} P_{(a, 0), Y}=1\right)
\end{array}\right. \\
& \left.\begin{array}{rll}
\quad P_{(a, b), Y}= \\
(a=2,3,4, \ldots) \\
(b=-1,2,3, \ldots)
\end{array}\right) \begin{array}{lll}
\delta_{a+1, b}, & b>a & \\
\frac{1}{2}, & Y=(a \div 1, b) & \text { and } \\
\frac{1}{2}, & Y=(0,0) & \text { and } \\
0 & & b \leqslant a
\end{array} \\
& \text { otherwisc. }
\end{aligned}
$$

It is straightforward to check that P is a 2-1-s chain of the type in Section 7, and with all row sums unity. One can also check that $(0,0)$ communicates with every state, and so all states communicate. To show that all states of P are transient, we need only to show that $(0,0)$ is transient, since all states communicate. Now the chain, starting in (0,0), can "drift off to infinity" along the x_{1}-axis: that is, from $(0,0)$ the process can move to $(1,0)$, and from there to $(2,0)$, and from there to $(3,0)$, ctc., with probability

$$
\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) \prod_{a=2}^{\infty} \frac{a(a+2)}{(a+1)^{2}}
$$

The infinite product is easily shown to converge to ${ }_{3}^{2}>0$.

Now let us show that $N \neq Q(T R)$ and $N \neq(Q T) R$. The basic submatrix (assuming it exists) $(Q(T R))^{[2,0]}$ must equal

$$
Q^{[2,0]}(T R)^{[0,0]}-Q^{[2,1]}(T R)^{[1,0]}+Q^{[2,2]}(T R)^{[2,0]}
$$

So to show that the f.v. matrix N^{\top} does not equal $Q(T R)$, we need only show that there is an infinite entry in ${ }^{\text {. }}$

$$
Q^{[2,1]}(T R)^{[1,0]}=-Q^{[2,1]}\left(\sum_{k=1}^{\infty} R^{[k, 0]}\right) .
$$

Let us now show that this condition is also sufficient to prove that $N \neq\left(Q^{\prime} T\right) R$.

Assuming it exists, the basic submatrix $((Q T) R)^{[2,0]}$ is easily shown to equal

$$
Q^{[2,0]}+\left(Q^{[2,0]}+Q^{[2,1]}\right) R^{[1,0]}+\sum_{k=2}^{\infty}\left(\left(Q^{[2,0]}+Q^{[2,1]}+Q^{[2,2]}\right) R^{[\pi, 0]}\right)
$$

Since each $Q^{[i, 3]}$ and $R^{[2, j]}$ is column-finite (by Theorem 6, conclusion 2), we can distribute in the previous expression. Hence, we can reach our contradiction if we can show that

$$
\begin{equation*}
\sum_{k=1}^{\infty} Q^{[2,1]} R^{[k, 0]} \tag{8}
\end{equation*}
$$

has an infinite entry. By "solving" $R Q=I$, and frecly associating and distributing by column-finiteness of the basic submatrices, we get

$$
-Q^{[2,1]}=\left(R^{[2,2]}\right)^{-1} R^{[2,2]}\left(R^{[1,1]}\right)^{-1} \geqslant 0
$$

So we can distribute in (8) by nonnegativity (the minus sign can be pulled outside), and to show that $N \neq(Q T) R$, we now need only show that

$$
\begin{equation*}
Q^{[2,1]} \sum_{k=1}^{\infty} R^{[k, 0]} \tag{9}
\end{equation*}
$$

contains an infinite entry. As promised, this is precisely the condition we found as sufficient to prove that $N \neq Q(T R)$.

Index $Q^{[2,1]}$ and each $R^{[i, j]}$ by the natural numbers. Then

$$
\begin{aligned}
\left(Q^{[2.1]}\right)_{0, a} & =-\left(\left(R^{[2,2]}\right)^{-1} R^{[2,1]}\left(R^{[1,1]}\right)^{-1}\right)_{0, a} \\
& =-\left(\left(R^{[2,2]}\right)^{-1}\right)_{0,0}\left(R^{[2,1]}\right)_{0, a}\left(\left(R^{[1,1]}\right)^{-1}\right)_{a, a} \\
& =-(4)\left(\left(\frac{1}{2}\right)^{a+2}\right)\left(2^{a+1}\right), \text { as simple calculations show } \\
& =-2
\end{aligned}
$$

where the second equality follows since $\left(R^{[2,2]}\right)^{-1}$ and $\left(R^{[1,1]}\right)^{-1}$ are diagonal.

Now

$$
\left(\sum_{k=1}^{x} R^{[k, 0]}\right)_{u, 0}=-\sum_{k=1}^{x} P_{(0, a),(0,0)}^{(k)}=N_{(0, a),(0,0)}-\delta_{r, 0} .
$$

So, the entry in the 0th row and 0th column of (9) is

$$
\begin{gathered}
-2\left(N_{(0,0),(0,0)}-1\right)-2 \sum_{a=1}^{\infty} N_{(0, a),(0,0)} \\
=-2\left(N_{(0,0),(0,0)}-1\right)-2 N_{(0,0),(0,0)} \sum_{a=1}^{\infty} H_{(0, a),(0,0)}
\end{gathered}
$$

where $H_{X Y}$ is the probability that the process, starting in state X, eventually reaches state Y. We are clearly through if we now show that

$$
H_{(0, a),(0,0)} \geqslant \frac{1}{2}, \quad a \geqslant 3 .
$$

With probability one, the process moves from $(0, a)$ to $(1, a)$ in a finite number of steps, since the probability that it does not is the probability that it remains at $(0, a)$ at every stage, which is

$$
\left(1-\frac{1}{2^{a+1}}\right)\left(1-\frac{1}{2^{a+1}}\right)\left(1-\frac{1}{2^{a+1}}\right) \cdots=0
$$

From ($1, a$) the process moves deterministically to $(2, a)$, from $(2, a)$ deterministically to $(3, a), \ldots$, and then deterministically to (a, a), and then to $(0,0)$ on the next step with probability $\frac{1}{2}$. So $H_{(0, a),(0,0)} \geqslant \frac{1}{2}$, and we are through.

References

1. J. G. Kemeny. Representation theory for denumerable Markov chains. Trans. Amer. Math. Soc. 125 (1966), 47-62.
2. J. G. Kemeny, J. L. Snell, and A. W. Knapp. "Denumerable Markov Chains." Van Nostrand, New York, 1966.

[^0]: ${ }^{1}$ Written in partial fulfillment of the degree of Bachelor of Arts at Dartmouth College.
 ${ }^{2}$ The preparation of this paper was supported in part by the National Science Foundation, Grant No. GP-5260.
 ${ }^{3}$ I would like to express my sincere appreciation to Professor John Kemeny for his help in the writing of this paper.
 ${ }^{4}$ A further generalization of this representation is presented in Section 11.

