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There is a worldwide epidemic of obesity and type 2 diabetes, two major public health concerns associated with
alterations in both insulin and glucose signaling pathways. Glucose is not only an energy source but also controls
the expression of key genes involved in energetic metabolism, through the glucose-signaling transcription factor,
Carbohydrate Responsive Element Binding Protein (ChREBP). ChREBP has emerged as a central regulator of de
novo fatty acid synthesis (lipogenesis) in response to glucose under both physiological and physiopathological
conditions. Glucose activates ChREBP by regulating its entry from the cytosol to the nucleus, thereby promoting
its binding to carbohydrate responsive element (ChoRE) in the promoter regions of glycolytic (L-PK) and
lipogenic genes (ACC and FAS). We have previously reported that the inhibition of ChREBP in liver of obese ob/ob
mice improves the metabolic alterations linked to obesity, fatty liver and insulin-resistance. Therefore, regulating
ChREBP activity could be an attractive target for lipid-lowering therapies in obesity and diabetes. However, before
this is possible, a better understanding of the mechanism(s) regulating its activity is needed. In this review, we
summarize recent findings on the role and regulation of ChREBP and particularly emphasize on the cross-
regulations that may exist between key nuclear receptors (LXR, TR, HNF4a) and ChREBP for the control of hepatic
glucose metabolism. These novel molecular cross-talks may open the way to new pharmacological opportunities.

This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In mammals, the liver is responsible for the conversion of excess
dietary carbohydrates into triglycerides (TG), through de novo
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lipogenesis. Appropriate control of lipogenesis is crucial since excess
fatty acid storage leads to hepatic steatosis and other related
metabolic diseases [1]. Increased lipogenesis results from transcrip-
tional activation of many genes encoding glycolytic and lipogenic
enzymes including glucokinase (GK) [2], liver-pyruvate kinase (L-PK)
[3], acetyl CoA carboxylase (ACC) [4], fatty acid synthase (FAS) [5] and
stearoyl CoA desaturase (SCD1) [6]. Uptake of glucose by liver is
concomitant with increased concentrations of substrates such as
glucose but also in the ratio of pancreatic hormones: insulin/glucagon.
Until recently, it was thought that insulin and glucagon were the main
transcriptional regulators of glycolytic and lipogenic gene expression
(respectively up and down regulators).

The transcriptional effect of insulin is mediated by sterol
regulatory element binding protein-1c (SREBP-1c) [7], a transcription
factor from the basic-helix-loop-helix leucine zipper (bHLH/Zip)
transcription factor family. SREBP-1c induces lipogenic genes by its
capacity to bind a sterol response element (SRE) present in the
promoter of its target genes [8]. SREBP-1c is not only regulated by
itself but also by liver X receptors (LXRs) [9]. LXRs are ligand-activated
transcription factors that belong to the nuclear receptor super-family.
LXRs, which activity is controlled by cholesterol metabolites called
oxysterols, are important regulators of the lipogenic pathway, since
LXRs are central for the transcriptional control of SREBP-1c by insulin
[10] and lipogenic genes such as FAS and SCD1 [11]. Transgenic mice
that overexpress SREBP-1c in liver or mice gavaged by an agonist of
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LXRs have an increased expression of most lipogenic genes and
develop liver steatosis [12]. Interestingly, mice devoid of SREBP-1c
result only in a 50% reduction in fatty acid synthesis [13].

Although insulin is a central regulator of the lipogenic pathway, it is
now accepted that glucose also generates an independent signal [ 14,15].
Glucose should not be uniquely considered as an energy fuel but also asa
signaling molecule necessary for de novo lipogenesis, acting in synergy
with insulin. L-PK gene expression is stimulated by glucose indepen-
dently of insulin, in primary cultures of hepatocytes expressing GK [16].
Therefore, metabolism through GK is required to initiate glucose
signaling [17]. Glucose-regulated genes share a conserved consensus
sequence, named carbohydrate response element (ChoRE), which is
required for their glucose-responsiveness [18,19]. The identification of
ChREBP [20], which belongs to the Mondo family of bHLH/Zip
transcription factors, has shed light on the mechanism whereby glucose
affects gene transcription [21,22]. ChREBP silencing prevents the
glucose-mediated induction of L-PK, ACC and FAS genes in hepatocytes
[17].In a physiopathological context, liver-specific inhibition of ChREBP
improves hepatic steatosis and insulin resistance in ob/ob mice [23,24].
Since ChREBP may represent a potential target for lipid-lowering
therapies in obesity and diabetes, an accurate knowledge of the
mechanism regulating its expression and activity is needed. ChREBP
expression can be regulated by key nuclear receptors of energy
homeostasis, namely LXR [25,26] and the thyroid hormone receptor
(TR) [27,28]. Furthermore, ChREBP interacts with the nuclear receptors
HNF4a [29] and COUP-TF II [30] to modulate the transcription of its
target genes such as the L-PK. The aim of this review is to report novel
findings on the function and the regulation of ChREBP. In particular, we
will describe how, depending on the hormonal and/or nutritional status,
specific nuclear receptors establish cross-talks with ChREBP to regulate
the signaling pathways that control glucose and lipid homeostasis.

1.1. Identification of ChREBP and of its partner Mix

ChREBP was discovered in 2001 by the group of Uyeda [20] on the
basis of complementary studies revealing a glucose response element
in the promoter of several lipogenic genes (called ChoRE), and
composed of two E box (CACGTG) or “E box like” sequences separated
by 5 base pairs [19,31-33]. Using the ChoRE of the glycolytic enzyme
L-PK, Yamashita et al. [20] identified ChREBP as a protein enriched in
liver nuclear extracts from high carbohydrate diet fed rats. Binding of
ChREBP was affected by change of spacing between the two E-box or
mutation of the ChoRE. Following these experiments, ChREBP was
purified and recognized as the homolog of the human protein named
WBSCR14 or MondoB, and known to be deleted in the Williams-
Beuren syndrome (WBS) [34]. Seventy-five percent of WBS patients
exhibit impaired glucose tolerance or silent diabetes that may be due
to a loss of ChREBP [35]. Several features of ChREBP are consistent
with a role as a glucose-regulated transcription factor. Its expression is
most abundant in liver, small intestine, kidney, white and brown
adipose tissue [36], which are the most active sites of de novo
lipogenesis in the body. ChREBP mRNA has also been detected in
distinct brain regions [37] and in rat pancreatic islets [38]. In addition,
ChREBP expression is induced in liver in response to high carbohy-
drate diet, but not in response to polyunsaturated fatty acids diet fed
or fasting [39]. Similarly to SREBP-1c, ChREBP is a member of the
bHLH/Zip (basic-helix-loop-helix leucine zipper) family of transcrip-
tion factors, highly conserved among species. ChREBP was first shown
to induce the transcriptional activity of the L-PK promoter in
hepatocytes cultured under high glucose concentrations [20]. To
address the direct role of ChREBP, we used a siRNA approach to down
regulate ChREBP expression in mouse hepatocytes. Our studies
revealed, for the first time in a physiological context, that ChREBP
mediates the glucose effect on L-PK but also on lipogenic genes (ACC,
FAS) and that this transcription factor is a key determinant of lipid
synthesis in liver [17]. ChREBP was later shown to directly bind the

promoter sequences of L-PK and of lipogenic genes using chromatin
immunoprecipitation (CHiP) analysis [22]. These results were
confirmed by the characterization of mice lacking the ChREBP gene
(ChREBPX® mice) [36]. When maintained on a standard diet,
ChREBPX® mice display larger, glycogen-laden livers, smaller adipose
depots, and decreased plasma free fatty acid levels. Importantly,
ChREBPX® mice show impaired glycolytic and lipogenic pathways in
liver and exhibit glucose and insulin intolerance.

Soon after ChREBP discovery, using yeast two-hybrid system,
Towle and co-workers identified a bHLHZiP protein, MIx (Max-like
protein X) that interacts with the bHLHZiP domain of ChREBP [21]
(Fig. 1). Mlx is a member of the Myc/Max/Mad family of transcription
factors that can serve as a common interaction partner of a
transcription factor network [40]. The evidence that MIx is the
functional partner of ChREBP was demonstrated through the use of an
adenovirus expressing a dominant negative form of Mlx (dn-MIx)
[41]. The inhibition of MIx directly interferes with the endogenous
ChREBP/MIx complex and abrogates the glucose-response of the ACC
reporter gene in primary cultures of hepatocytes [41]. The response to
glucose can be however partially restored when ChREBP is over-
expressed. The regulatory domains of the ChREBP and MIx proteins
have been studied in great details over the last years [21,41,42].
According to the model proposed by Ma et al. [42], two ChREBP-MIx
heterodimers bind the two E boxes of the ChoRE to provide a
transcriptional complex necessary for glucose regulation. Using a
structural ChREBP/MIx structural model followed by specific mutation
experiments, three critical residues (F164, 1166 and K170) within the
Mix loop that play a crucial role in the binding of the ChREBP/MIx
complex to the ChoRE have been identified [42]. Therefore, it appears
that the MIx loop region, but not the one of ChREBP, is determinant for
mediating the response of glucose. Mlx has a significantly longer loop
domain than most other bHLHZiP proteins, allowing it to potentially
interact across the interface between heterodimer pairs. It is therefore
possible that other proteins, via interactions involving the MIx loop,
could assist the binding of the ChREBP/MIx complex to the ChoRE. It
was recently reported that adenoviral overexpression of dn-MIx in
25-week-old male C57BL/6] mice reduces hepatic TG content and
improves glucose intolerance by inhibiting expression of glucose-6-
phosphatase (G6Pase) in addition to lipogenic enzymes [59]. A distal
promoter region of the G6Pase promoter was previously reported to be
glucose responsive in 832/13 INS-1 cells. The fact that ChREBP binds
this region in a glucose-dependent manner [43] supports the fact that
G6Pase is most likely a direct target of the ChREBP/MIx complex.

1.2. Regulation of ChREBP activity by glucose

The regulation of ChREBP activity in response to glucose is complex.
To date, two mechanisms reporting the glucose-mediated activation of
ChREBP have been proposed: one involving on a two-step activation by
dephosphorylation on specific residues [44] and one independent
involving a dynamic intra-molecular inhibition between two regulatory
domains within the ChREBP protein [45] (Figs. 1 and 2). ChREBP is a
large protein (864 amino acids and M, =94,600) that contains several
important domains including a nuclear localization signal (NLS) near
the N-terminus, polyproline domains, a basic loop-helix-leucine-zipper
(bHLH/Zip), and a leucine-zipper-like (Zip-like) domain (Fig. 1).
Deletion of the NLS impairs ChREBP localization in the nucleus and
prevents the glucose-induced transcriptional activation of an L-PK
luciferase reporter construct in hepatocytes [46]. By studying the
importance of ChREBP regulation by phosphorylation, Yamashita et al.
reported that incubation of the protein ChREBP with the catabolic
subunit of protein kinase (PKA) and ATP leads to an increase of its
phosphorylation rate and a decrease of both nuclear content and DNA
binding activity [20]. This effect could be reversed when a PKA inhibitor
and/or the phosphatase 2A (PP2A) was added [20]. From these studies
emerged a PP2A-dependent model of ChREBP activation and two
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Fig. 1. ChREBP protein structure. The ChREBP protein (864 amino acids; M, = 94,600) contains several domains: a nuclear localization signal (NLS) (residues 158-173 in the rat
isoform); two nuclear export signals (NES1 and NES2) located near the N-terminus (residues 5-15 and 85-95 in the rat isoform) [55]; a polyproline domain and a leucine-zipper-like
(Zip-like) domain (residues 382-585 and 795-835, respectively in the human isoform) [34]; and a basic loop-helix-leucine-zipper (bHLH/Zip) (residues 660-736 in the rat isoform)
[45]. The MCRII (MCR: Mondo Conserved Region) (containing the NES1) [55] [56] and the MCRIII (containing the 14-3-3 binding site, localized between residues 125 and 135 in the
rat isoform) [55-57] are also indicated. ChREBP contains at least three phosphorylation sites by protein kinase (PKA) (Ser196, Ser626 and Thr666 (mouse)/ Thr665 (rat)). Several
other phosphorylation sites have been identified but are not indicated on this figure [141]. The functional partner of ChREBP, MIx, interacts with ChREBP bHLHZiP domain as
indicated. By structure function analysis, a glucose-sensing module (GSM) containing a low glucose inhibitory domain (LID, residues 37-192) and a glucose response conserved
element (GRACE, residues 197-298) was identified in the rat ChREBP protein [45]. LID inhibits the ChREBP transactivative activity conferred by GRACE, and this inhibition is lifted
under high glucose conditions. A deleted form of ChREBP 196 first amino acids lacking LID in the N-terminus is active even under low glucose concentration, despite the integrity of
Thr666 and more surprisingly despite the loss of the NLS. In addition, although not indicated on this figure, several acetylation sites on specific lysines have been identified on the

mouse ChREBP protein [53].

important residues (Ser-196 and Thr-666) were identified as potential
PKA target sites (Fig. 1). Using a phospho-serine antibody, we showed
that the glucagon-mediated phosphorylation of Ser-196 was correlated
with ChREBP cytosolic localization [47]. Upon glucose stimulation,
xylulose 5-phosphate (X5P), a metabolite of the pentose-phosphate
pathway, was shown to promote ChREBP nuclear entry based on the
specific activation of PP2A which dephosphorylates ChREBP on residue
Ser-196, located near the NLS (Figs. 1 and 2). Within the nucleus,
ChREBP DNA binding and transcriptional activation, would be triggered
by a second dephosphorylation on Thr-666, also through a X5P- and
PP2A-dependent mechanism [44,46] (Fig. 2). Consistent with this
model, Wu et al. [48] reported that ChREBP global phosphorylation
status was decreased when glucose flux through GK, the rate-limiting
enzyme of glycolysis was increased.

However, the regulation model of ChREBP by phosphorylation/
dephosphorylation raised some controversy, due to questions con-
cerning the involvement of X5P and/or PP2A [45,49]. Some arguments
suggested that glucose 6-phosphate (G6P) produced by GK could be,
rather than X5P, the signal metabolite. First, the pentose phosphate
pathway is not very active in pancreatic 3-cells [50] while ChREBP is
expressed and active in these cells [38,51]. In fact, Li et al. [52] recently
showed that G6P is sufficient and necessary to activate ChREBP
transcriptional activity in 832/13 INS-1 cells. Notably, the authors
demonstrated that inhibition of the hexokinase by mannoheptulose
or overexpression of G6Pase, which reverses hexokinase reaction by
dephosphorylating G6P, abolishes glucose responsiveness of a gal4-
ChREBP reporter construct. Overexpression of glucose 6-phosphate
dehydrogenase (G6PDH), the limiting enzyme of the pentose
pathway which converts G6P to 6-phosphogluconolactone, is accom-
panied by a dramatic decrease in G6P concentrations and leads to an
inhibition of ChREBP glucose response in 832/13 INS-1 cells [52]. In
contrast, silencing of the enzyme leads to the reverse phenotype, with
enhanced G6P concentrations associated with increased ChREBP
transcriptional activity [52]. Based on these recent findings in 832/

13 INS-1 cells, it would be also important to determine the exact
nature of the metabolite signal (G6P vs. X5P) that mediates the effect
of glucose in liver cells.

Another important point against the potential X5P-mediated
activation of ChREBP is that 2-deoxyglucose (2-DG), a glucose analog
which is phosphorylated by hexokinase but cannot be metabolized
downstream of the glycolytic metabolic pathway, is able to activate the
transcriptional activity of ChREBP in 832/13 INS-1cells [52]. In addition,
the fact that inactivating mutations of ChREBP on PKA phosphorylation
sites including Ser-196 and Thr-666 are still responsive to high glucose
concentrations, is not in favor of the model proposed reporting that
mutated ChREBP (i.e. on both Ser-196 and Thr-666) acts as a
constitutive active ChREBP isoform, under low and high glucose
concentrations [49]. Since inhibition of PP2A by cantharic acid did not
alter the glucose responsiveness of a ChREBP construct fused with a
gal4-DNA binding domain, Li and coworkers proposed an alternate
model of post-translational regulation for ChREBP in 832/13 INS-1cells
[45] (Figs. 1 and 2). By structure function analysis, a glucose-sensing
module (GSM) evolutionally conserved in Mondo proteins, which
contains a low glucose inhibitory domain (LID) and a glucose response
conserved element (GRACE) was identified within the ChREBP protein
[45] (Fig. 1). LID is able to inhibit the ChREBP transactivative activity
conferred by GRACE, and this inhibition is lifted under high glucose
conditions. A deleted form of the 196 first amino acids of ChREBP lacking
LID in N-ter is active even in low glucose concentration, despite the
integrity of Thr665 (equivalent to Thr666 in mice) and more
importantly despite the loss of the NLS. So far, phosphorylation has
been the only post-translational modification described to modulate
ChREBP activity, but recent work from our laboratory revealed that
ChREBP is also regulated by acetylation on specific lysines in response to
glucose [53].

Lastly, ChREBP is exported from the nucleus by a mechanism
requiring the 14-3-3 protein and CRM1 (chromosome maintenance
region 1), a protein that shares sequence similarities with the
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Fig. 2. Transcriptional activation of lipogenic genes by ChREBP/MIx, SREBP-1c and LXRa in liver. Insulin activates the transcription of the SREBP-1c gene leading to the synthesis of a
precursor form of SREBP-1c (pSREBP-1c), which will be anchored in the membranes of the endoplasmic reticulum. Insulin activates the proteolytic cleavage of the precursor form and the
processed mature SREBP-1¢ (mSREBP-1c) translocates to the nucleus where it activates lipogenic genes after binding to its regulatory binding elements (SRE) [7]. The phosphorylation of
glucose in G6P by hepatic GK, is an essential step for glucose metabolism as well as for the induction of lipogenic genes. To date, two mechanisms reporting the glucose-mediated activation
of ChREBP have been proposed: one involving on a two-step activation by dephosphorylation on specific residues (Ser-196 and Thr-666) two target sites of protein kinase A (PKA) [44] and
one independent involving a dynamic intra-molecular inhibition between two regulatory domains (LID and GRACE) within the ChREBP protein [45]. One and/or both of these mechanisms
lead to ChREBP translocation into the nucleus under both high glucose and insulin concentrations. Within the nucleus, ChREBP binds the ChoRE and activates its target genes. ChREBP
heterodimerizes with MIx to mediate the glucose response: two ChREBP-MIx heterodimers bind to the two E boxes of the ChoRE to provide a transcriptional complex necessary for glucose
regulation. It remains to be determined where (cytosol vs. nucleus) the association between ChREBP and MIx occurs and whether Mlx is regulated by glucose metabolism like ChREBP. LXR
directly binds to its regulatory binding site (LXRE) and contributes to the induction of lipogenic genes. However, the activation of LXRat in response to insulin and/or glucose remains

unclear as discussed. Location of the ChoRE, LXRa and SRE motifs on the rat FAS promoter are indicated.

karyopherin (3 family of proteins involved in nuclear import pathway
[54]. When the nuclear export signal (NES1, located at residues 5-15
in the rat isoform) (Fig. 1) is mutated [55], the binding of ChREBP to
14-3-3 and CRM1 is dramatically decreased [55]. Deletions or
mutations of the key ChREBP domains, MCRII (MCR: Mondo
Conserved Region) (containing the NES1) [55] [56] or MCRIII
(containing the 14-3-3 binding site) [56,57] (Fig. 1) lead to an
increase in ChREBP nuclear localization and both mutants keep DNA
binding activity [55]. Oddly, these ChREBP mutants display a
significant loss in transactivative activity under both low and high
glucose conditions, suggesting that ChREBP nuclear localization is not
sufficient to mediate its transcriptional effects. In fact, another study
casts doubt on the importance of ChREBP nuclear translocation.
Davies et al. [57] reported that the majority of ChREBP protein is
localized in the cytosol under both low and high glucose conditions in
832/13 INS-1 cells. Inhibition of the CRM1-induced nuclear export
using leptomycin B treatment trapped ChREBP protein in the nucleus
in both glucose conditions, suggesting a continuous shuttle of the
protein between cytosol and nucleus [57] rather than an active

translocation. Nevertheless, in this study the rate of nuclear entry of
ChREBP was greater under high glucose concentrations.

1.3. Transcriptional regulation of ChREBP: novel implication of nuclear
receptors Liver X receptor (LXR) and thyroid hormone nuclear receptor (TR)

Much research has been directed toward determining the post-
translational control of ChREBP by glucose/glucagon (Figs. 1 and 2)
while only fewer studies have started to document its transcriptional
regulation (Fig. 3). ChREBP is induced at the mRNA level in liver in
response to high carbohydrate diet but not in response to high fat diet
[39]. ChREBP expression clearly depends on the metabolization of
glucose via GK. We have shown that the induction of ChREBP is
markedly reduced in the liver of high carbohydrate diet fed GK deficient
mice [17]. Overexpression of GK rescues the expression of glucose-
dependent genes in liver of streptozotocin (STZ) treated mice and this
independently of insulin/SREBP-1¢, underlining the importance of
glucose metabolism for ChREBP activity [58]. However, the molecular
mechanism triggering the glucose-mediated regulation of ChREBP
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Fig. 3. Transcriptional regulation of ChREBP. The heterodimers LXRat/RXRow and TRB1/RXRa transactivate the ChREBP promoter and induce its expression in the liver in response to
their synthetic (LXRat) or natural (TRB1) ligands. However, neither LXRa nor TR31 seem to be implicated in the regulation of ChREBP by glucose. Although it has been suggested that
ChREBP could regulate its own expression [42], a functional ChoRE still awaits to be identified and characterized on the ChREBP promoter. However, an SRE motif was also identified

suggesting a potential cross-regulation between SREBP-1c¢ and ChREBP.

expression has not yet been elucidated. Despite the lack of identification
of a well-conserved ChoRE on the mouse ChREBP promoter (Fig. 3), it
has been suggested that ChREBP could regulate its own expression [42].
Indeed, overexpression of dn-Mlx decreases glucose-induced ChREBP
expression. The hypothesis of ChREBP/MIx self-regulation is interesting
although it cannot be excluded that other transcription factors/co-
receptors be recruited for the transcriptional control of ChREBP in
response to glucose. A direct control of ChREBP expression by insulin
was even reported. First, Satoh et al. showed that SREBP-1c binds an SRE
(—101 to —110 bp) motif (Fig. 3) within the ChREBP promoter in
response to refeeding [60]. However, the fact that SREBP-1c over-
expression failed to induce ChREBP in liver of fasted mice does not
support the hypothesis of a direct control of ChREBP by SREBP-1¢[17].In
addition, ChREBP is adequately induced upon refeeding in liver of LXR
deficient (LXR*®) mice, and this in the absence of mature form (i.e.
transcriptionally active) of SREBP-1c [47]. Interestingly, Sirek et al. [61]
recently reported that the stimulatory effect of insulin on ChREBP could
be independent of SREBP-1c but would rather involve Oct1, another
transcription factor. Oct1 would act as a repressor of ChREBP activity:
insulin would stimulate ChREBP transcriptional activity by inhibiting
the binding of Oct1 on a POU domain. However, it should be noted that
the reported effect of Oct1 on ChREBP transcriptional activity was very
modest [61].

Recently, two nuclear receptors playing important roles in energy
homeostasis, namely LXR and TR, were shown to regulate ChREBP at
the transcriptional level in liver [25,27,28] (Fig. 3). LXRs (LXRa and
LXRP) act as sterol sensors activated by oxidized cholesterol de-
rivatives called oxysterols [62,63]. In contrast to LXRp whose
expression is ubiquitous [64-67], LXRa expression is particularly
high is liver, adipose tissue, intestine, but it is also present in spleen
kidney and lung. LXR forms a heterodimer with RXR (retinoid X
receptor) and binds LXRE sequence(s) within target gene promoter
region [64]. LXRs are particularly important for cholesterol metabo-
lism, in which they contribute to excess cholesterol elimination. LXRa
controls bile acids synthesis via the induction of Cyp7A1 gene in
rodents [62,68], cholesterol excretion in bile acids in liver [69-71] and
cholesterol efflux from several cell types via the regulation of ABCA1

and ABCG1 transporters [9,72-74]. The transcriptional activity of the
thyroid hormone L-triiodothyronine (T3) has been known since 1960
[75], but the cloning of its responsive receptor, the thyroid hormone
nuclear receptor (TR), occurred only in 1986 [76,77]. In mammals,
two different genes TR and TR code for the thyroid receptors TRa1,
TRB1, TRP2, and TRP3 [78]. The expression of TRP1 is high in liver, in
which TRal is less abundant [78]. Interestingly, several studies
reported that LXR and TR are closely related. First, LXRs and TR
recognize the same consensus sequence: AGGTCA repeated with a 4
base pair gap (DR4) [79-81]. In some cases, both nuclear receptors can
bind the same responsive element on a promoter. For example, TR
competes with LXR for the binding of the LXRE on the ABCA1 promoter
and can inhibit the LXR-induced ABCA1 expression [82]. Moreover, un-
liganded TRB1, which is known to act as a transcriptional repressor
[83], interacts with co-repressors to repress the transactivative activity
of LXRa by competing on the LXRE of the SREBP-1c promoter in vitro
[84]. Furthermore, LXRa has been described as a direct TR31/T3 target
gene in mouse liver, through the recruitment of TRB1/RXRa (site A:
—1300 to — 1240 bp) [85]. However, this induction of LXRa and of its
target gene ABCA1 by T3 was not confirmed in a follow-up study [28].

The implication of LXR in the control of the lipogenic pathway was
evidenced in LXRo*® mice, as they present a decrease in SREBP-1c and
in several of its target genes in liver [8,86-91]. Two functional LXREs
have been identified on the SREBP-1c promoter [9,92]. LXR stimula-
tion with its most efficient synthetic agonist, T0901317, allows the
increase of SREBP-1¢, ACC, FAS and SCD1 expression in liver and
increases hepatic and plasma TG in wild type but not in LXRat/B*°,
LXRa®© mice or SREBP-1c*© mice [11,13,93,94]. The physiological
stimulation of SREBP-1c expression occurs in the presence of insulin,
but the link between LXR and insulin remains unclear. Tobin et al.
suggested that insulin stimulates LXRa expression in rat hepatocytes
[95]. However, the physiological relevance of this regulation is
disputed since supra-physiological concentrations of insulin (up to
500 nM) were used in this study [95]. Nevertheless, SREBP-1c is not
induced by insulin in LXRot/3° mice and the functional LXREs within
the SREBP-1c promoter are necessary for its induction by insulin [10].
The most logical link between insulin and LXR would be that the


image of Fig.�3

1000 A. Poupeau, C. Postic / Biochimica et Biophysica Acta 1812 (2011) 995-1006

hormone somehow stimulates the synthesis of a LXR ligand necessary
for the action of the nuclear receptor.

Treatment of wild type mice with thyroid hormone (TH) induces
lipogenic gene expression (including ACC and FAS) and TRR1%° mice
display decreased expression of these genes [96]. The identification of
ChREBP as a novel LXR and TR target gene [25,27,28] (Fig. 3) is
interesting and underlines the role of these two nuclear receptors in the
control of the lipogenic pathway. First, Cha and Repa reported that
ChREBP mRNA levels were increased by about 3 fold in livers of fed mice
treated with either dietary RXR or LXR agonists, (and by 6 fold when a
combination of both agonists was used) [25]. These effects are specific
since ChREBP expression was not induced in liver of LXR® mice treated
with the LXR agonist (T0901317) for short (12 h) or longer periods of
treatment (10 days). This treatment was associated with a loss of
induction of ChREBP-target gene, L-PK. In addition, the effect of
T0901317 on lipogenic genes (ACC, FAS and SCD1) was attenuated in
ChREBPX® mice [25]. The mouse ChREBP promoter contains two
functional LXREs able to bind the LXR/RXR complex thereby conferring
its receptor/ligand transactivation (Fig. 3). It should be noted that LXRE1
showed a greater activity than LXRE2 for LXR binding.

Two recent studies supported the control of ChREBP by thyroid
hormones (TH) [27,28]. In mice turned into a hypothyroid state by a
MMI/PTU diet (containing methimazole and propylthiouracil, two
inhibitors of TH synthesis), hepatic ChREBP expression (mRNA and
protein content) was decreased by about 40% compared to controls. In
parallel, hypothyroid mice injected with TH (T3), thus becoming
thyrotoxic, present a 3- to 4-fold increase in ChREBP expression [27].
Importantly, in two models of hypothyroid states, pax8® mice
(deprived of thyroid gland) and wild type mice submitted to PTU
(PTU: Propylthiouracil used to decrease the synthesis of endogenous
TH) treatment, ChREBP expression can be rescued to control levels
after TH injection, and this to a greater extent in white adipose than in
liver [28]. Modulation of hepatic ChREBP expression in relation to the
thyroid state in PTU/MUI mice [27] or in pax8*° mice injected with TH
[28] were paralleled with changes in its target genes [28]. In both liver
and adipose tissue, the effect of TH on lipogenic gene expression in
PTU-treated mice was lost in TREXC but not in TR mice, reinforcing
the previously described role of TRR in lipogenesis [96] and revealing
its control on ChREBP expression. Interestingly, ChREBP expression
was repressed when wild type mice, but not TRRX® mice, were
submitted to a PTU diet, suggesting that un-liganded TRP represses
ChREBP expression [28].

Both TRB and TR were able to activate the mouse ChREBP promoter
in vitro [ 28]. Luciferase assays confirmed that T3 increases the activity of
the mouse and the human wild type ChREBP promoter but not when the
LXRE1 and LXRE2 were deleted [27]. Interestingly, mutation of each or
both LXREs on the ChREBP promoter did not lead to a complete loss of
LXR or TR response, raising the possibility that other regions mediating
the LXR and/or TR response may exist on the ChREBP promoter [28]. The
heterodimer TR-31/RXRa was able to bind the LXRE2 of the mouse
ChREBP promoter, but not the LXRE1, which was shown to be the
preferential site for LXRat/RXRax [25] (Fig. 3).

This interesting crosstalk between LXR and TR was further
explored in LXRXC mice [28]. In PTU-treated LXR*® mice, hepatic
ChREBP expression was induced in response to TH, demonstrating
that the TH-mediated induction of ChREBP was independent of LXR.
Surprisingly, ChREBP expression in response to TH was higher in liver
of LXRX® than in wild type mice, suggesting that LXR, when bound to
the LXRE1, might limit the access of TRs on the LXRE2. Co-transfection
assays of LXR and TR with one of the two specific ligands (T0901317
or TH) confirmed this hypothesis. Transfected alone TRR or LXR
induced the ChREBP promoter activity in the presence of their cognate
ligands (TH and T0901317) while co-transfection of both (TRB and
LXR) decreased the response of the ChREBP promoter to each ligand
(TH and T0901317). Altogether, these data reveal that TH induces
ChREBP transcription and protein content in liver in vivo and in cells,

and that the LXRE2 is central in this regulation (Fig. 3). Paradoxically,
Hashimoto et al. previously reported that SREBP-1c was repressed by
T3 in mouse liver [97] and similar results were reported in human
adipocytes [98]. These results are controversial since studies in chick
embryo hepatocytes (CEH) [99] and in HepG2 cells [84] led to
opposite results. The understanding of the physiological relevance of
such an antagonism between ChREBP and SREBP-1c requires further
investigation.

1.4. Physiological relevance of the regulation of ChREBP by LXR and/or TR
in liver: a role in glucose-sensing?

An important point that remains to be determined is the
physiological relevance of the regulation of ChREBP by LXR and/or
TR. Since ChREBP is mostly regulated by glucose/glucose metabolism,
studies were first performed to determine the potential implication of
LXR and/or TR in the nutritional regulation of ChREBP. Fasting/
refeeding experiments in wild type or TRRXC mice revealed that
ChREBP expression was increased to comparable levels in livers of
refed mice from both genotypes, suggesting that TR is not involved in
the nutritional regulation of ChREBP [28]. In fact, addition of TH led to
an increase in ChREBP and lipogenic genes (FAS for example) in the
fasted state but did not allow further induction in the fed state [28].

The implication of LXR remains, to date, somehow controversial
since some set of studies reported that LXR might be implicated in the
glucose signaling pathway [26,100], while some were against this
hypothesis [47,101]. A lot of emphasis came from the study of Mitro
et al. [26], which placed LXR at the center of the glucose-mediated
regulation of hepatic lipogenesis. It was reported that a gal4 reporter
construct of the ligand binding domain (LBD) of LXR fused to a DNA
binding domain (DBD) of yeast gal4 was highly responsive to p-glucose
in HepG2 cells. In addition, the activity of a LXRE-luciferase reporter
construct was found to be activated in the presence of p-glucose and/or
G6P in HepG2 cells co-transfected with a LXR expression plasmid.
Interestingly, this stimulatory effect of -glucose/D-G6P on LXR reporter
activity was comparable to the one of T0901317. FRET assay revealed
that p-glucose and D-G6P induced the recruitment of LXRs co-activators
and this to similar levels than T0901317. Surprisingly, L-glucose was also
presented as a direct agonist in FRET assay. Moreover, Mitro et al
reported that addition of glucose to a maximal dose of synthetic ligand
further increased the recruitment of LXR co-activators [26]. Since
labeled p-glucose and D-G6P were able to compete with synthetic LXR
ligands, the authors suggested that glucose was able to bind on specific
LXR sites. Altogether, this study suggested that LXRa could serve as a
glucose-sensor detecting glucose excess and converting it into TG by
inducing lipogenic genes directly or indirectly via ChREBP and SREBP-1c
[26]. Several objections were raised against this model. First, we [47] and
Oosterveer et al. [102] reported that ChREBP expression, its nuclear
translocation and the induction of its target gene, L-PK, were not altered
in response to high carbohydrate diet in liver of LXRa/3*° mice,
suggesting that effect of glucose on ChREBP is independent of LXR [47].
Secondly, the expression of LXR target genes ABCG1, ABCA1, ABCG5 and
ABCG8 was not affected by high carbohydrate diet feeding in liver of
wild type or LXRot/3° mice, suggesting that direct LXR targets are not
nutritionally regulated [47,102]. The relevance of a direct binding of
glucose/G6P on LXR was also challenged because of the hydrophilic
nature of glucose, its weak affinity (in mM) compared to other nuclear
receptor ligands and more importantly due to the inability of G6P to
properly enter the cells. Finally, L-glucose was presented as very rarely
active in biological process [101]. Along these lines, we were not able to
reproduce in a cell-free assay the ability of either p-glucose or G6P to
influence the interaction between LXRa or LXRf3, and their known co-
activator peptides [47]. Interestingly, the respective roles of ChREBP and
LXR in controlling lipogenic genes were further addressed in a mouse
model of glycogen storage disease type 1 (GSD-1) [103]. Treatment of
mice with S4048, a pharmacological inhibitor of the glucose 6-
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phosphatase transporter, which is part of G6Pase, recapitulated the
metabolic defects associated with GSD-1: reduction in blood glucose
levels, increased G6P, glycogen and TG concentrations. S4048-treatment
was also associated with a marked increased in lipogenic gene
expression, through a ChREBP-dependent mechanism. More impor-
tantly, this study reveals that G6P is not able to activate LXRa in vivo and
therefore does not support the hypothesis that G6P could be a direct
ligand for LXR as previously reported [26].

Taken together, a direct link between glucose/G6P and LXR seems
uncertain. However, could LXR be modified at the post-translational
level in response to glucose? A study reported that LXRs could be
modified by O-linked B-N-acetylglucosamine (O-GlcNAcylation or O-
GIcNAc) in Huh7 cells [100]. O-GIcNAcylation plays an important role
in the modulation of protein stability, cellular localization, activity and
partner interactions [106] and key transcription factors were recently
shown to be modified by O-GlcNAcylation in liver [100,104,105]. O-
GlcNAcylation is the end product of the hexosamine biosynthetic
pathway (HBP), a metabolic pathway which has recently emerged as a
major determinant of metabolic disorders associated with insulin
resistance and/or type 2-diabetes. Anthonisen et al. [100] demon-
strated that O-GIcNAcylation of LXR is elevated in liver of fed mice and
in Huh7 cells incubated in high glucose concentrations. In liver of mice
rendered diabetic with a STZ treatment, (i.e. characterized by
hyperglycemia in nearly absence of insulin), LXR O-GlcNacylation
was higher than in non-diabetic controls and was correlated with a
greater induction of its target gene SREBP-1c [100]. In this study, it
would have been interesting to determine the effects of LXR O-
GlcNAcylation on ChREBP activity in order to establish a potential link
between glucose, LXR and ChREBP. Nevertheless, it would be
important to determine whether enhanced LXR O-GlcNAcylation
levels in liver of diabetic mice can explain the induction of ChREBP
under hyperglycemic states.

One interesting physiological situation in which a cross-regulation
between ChREBP, LXR and TR could occur is the suckling-weaning
transition. Bobard et al. [107] reported that LXR expression and
binding activity is high during the suckling period (a period during
which mice consume milk rich in cholesterol and lipids but poor in
carbohydrates), leading in turn to an increase in SREBP-1c precursor
protein levels. The SREBP-1c protein is not cleaved during this period
because insulin concentrations are low, and as a consequence the
expression of its target genes (GK and FAS) remains low. This suggests
that the increase in SREBP-1c precursor forms during the suckling
period, in response to activated LXRa, could prepare the liver to
rapidly convert in fat the increase of carbohydrates that occurs at
weaning due to the switch of diet. Following the same model, and
given that rodents display an increase of T3 concentrations during the
last days of the suckling period [108], it could be envisioned that LXRo
and/or TRPB increase ChREBP expression in a carbohydrate-indepen-
dent manner during this period of development.

Lastly, a potential link between polyunsaturated fatty acids
(PUFAs), LXR and/or TR and ChREBP could be envisioned. Through
mechanisms only partially understood, long-chain n-3 PUFAs have the
ability to control the transcriptional activity of nuclear receptors and,
thereby, the transcription rate of specific genes related to lipid and
carbohydrate metabolism [109]. n-3 long-chain PUFAs bind to
peroxisome proliferator-activated receptors (PPARs) o, (3, Y1 and y2
[110] and the actions of PUFAs are, in great part, mediated by PPARs.
However, PUFAs also bind to other nuclear receptors such as LXR
[111], hepatocyte nuclear factor-4 (HNF4a and y) [112,113] and RXR
[114]. Another mechanism involved in the actions of PUFAs is the
decrease in the nuclear abundance of SREBP-1¢, ChREBP [39] and MIx
[115]. Considering the transcriptional control exerted by LXR on
ChREBP [25], it would be interesting to determine whether some of
beneficial effects of PUFA on hepatic lipogenesis and TG synthesis, are
triggered, at least in part by ChREBP through a LXR dependent
pathway. A similar molecular mechanism for TR does not seem

conceivable since it was reported that long-term consumption of n-3
PUFAs enhances thyroid hormone action in mouse liver [116]. Further
studies will be required to better understand a potential contribution
of TR to the TG-lowering effect of PUFA.

1.5. The glucose-regulated L-PK gene model: an interplay between
ChREBP and key nuclear receptors

With the discovery of ChREBP, our understanding of the
transcriptional effect of glucose in liver has made considerable
progress. The glycolytic enzyme L-PK, whose expression is strictly
dependent on glucose/glucose metabolism is now widely considered
as a ChREBP-dependent gene. Its expression has been studied for
many years as it represents a model gene for other glucose-regulated
genes. A 200 bp of the 5’ region of the L-PK promoter was shown to be
glucose-responsive in rat hepatocytes [18]. Within this region four
response elements, including L3 and L4 were identified [117]. The L3
and L4 are closely located from nucleotides — 145 to — 125 for the L3
and from — 168 to — 144 for the L4 (Fig. 4). In 1992, Bergot et al.
demonstrated that the maximal induction of the L-PK promoter by
glucose requires a necessary interaction between the sequence
responsive for HNF4o, the L3 site and the L4 site, now known as
containing the ChoRE [19] (Fig. 4). HNF4q, also called NR2A1, is a
nuclear receptor that has recently be reported to bind in a reversible
way linoleic acid in liver of fed mice [118]. HNF4a is expressed in
adult liver but also in the gastrointestinal tract, kidney and pancreas
[119]. This transcription factor, conserved in evolution, plays an
important role in embryonic development in xenopus [120] and in
mammals. Liver specific HNF4aw knockout mice die at about the 8th
week of life with alterations of gene expression involved in lipid and
bile acid metabolism [121]. HNF4ax mutations are also implicated in
rare case of Maturations Onset Diabetes of the Young (MODY)
[122,123]. Diaz-Guerra et al. demonstrated that the principal factor
binding to the L3 sequence of the L-PK promoter in rat liver nuclear
extracts was HNF4q, despite the presence of other several transcrip-
tion factors including nuclear receptor COUP-TFII as we will discuss
below [124]. Overexpression of HNF4a alone is able to induce the
activity of the L-PK promoter in fibroblastic NIH 3T6 cell lines devoid
of endogenous HNF4. Interestingly, transfection of the HNF4«
isobinder COUP-TFII in primary hepatocytes inhibits in a L3-
dependent manner the activity of an L-PK promoter, probably due
to a competition between these two nuclear receptors. While the
implication of HNF4x on the transcriptional control of the L-PK gene
is well admitted, its regulation in response to glucose is controversial
and remains to be clearly determined. On one hand, Xu et al. reported
that the nuclear abundance of HNF4a was not modified in liver of
refed rats, nor its binding to the L-PK promoter in primary rat
hepatocytes in response to glucose [115]. Secondly, Eckert et al.
showed that HNF4a was constitutively bound to the L-PK promoter
under low glucose concentrations, and that this binding was increased
by high glucose concentrations [125]. Recently, Burke and co-workers
presented an elegant model in which a protein complex containing
ChREBP, HNF4a and the co-activator CBP is necessary for the glucose-
mediated induction of the L-PK gene (Fig. 4) [29]. SeqChIP
experiments in 832/13 INS-1 cells revealed the recruitment of
ChREBP, HNF4a and CBP in response to high glucose concentrations
on the L-PK promoter, a recruitment that is decreased by forskolin,
demonstrating that the cAMP pathway alters their occupancy on the
L-PK promoter despite the presence of glucose. Previous studies
evidenced an association between HNF4a and the transcription co-
activator CBP [126,127] (Fig. 4). Decreased CBP expression by siRNA
led to the loss of glucose-induced L-PK expression [29] and in contrast,
CBP overexpression was sufficient to overcome the repression by
forskolin of the wild type L-PK promoter activity but not of the L-PK
promoter construct mutated on the ChoRE. Furthermore, when the
responsive element of HNF4q, L3, was mutated, the glucose induction
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Fig. 4. Nutritional and/or hormonal regulation of the L-PK gene. In the fed state (in response to glucose metabolism), the ChREBP/MIx heterotetramer, the nuclear receptor

homodimer HNF4« and the co-activator CBP form a complex that binds to the glucose sen

sing domain L3/L4 on the L-PK promoter. As a result, L-PK expression is induced, allowing

the last step of glycolysis to be activated. In response to glucose/glucose metabolism, ChREBP would repress COUP-TFII expression/activity by a mechanism not yet elucidated,
thereby preventing COUP-TFII binding to the L3/L4 domain. Under fasting conditions (in response to the glucagon/camp signal), the ChREBP/MIx/HNF4ct/CBP complex is disrupted,
does not bind to the ChoRE, thereby preventing the stimulation of the L-PK gene. In addition, COUP-TFII and/or FXR, acting as transcriptional repressors on the L3/L4, would maintain

L-PK gene silent.

of L-PK promoter activity was blocked, in the presence or the absence
of CBP overexpression. Interestingly, overexpression of wild type
ChREBP or a mutant of the three known PKA phosphorylation sites
(mutants S196A, S626A, T666A), did not overcome the repression
induced by forskolin on the L-PK promoter [29].

These results demonstrate that CBP is limiting for the formation or
the disruption of the CHREBP/HNF4/CBP complex in response to
glucose or cAMP signal (Fig. 4). Lastly, Perilhou et al. established a
potential link between COUP-TFII and ChREBP. COUP-TFII was first

identified as a homodimer that binds the direct repeat site (DR-1) on
the chicken ovalbumin promoter [128]. Later it was shown that this
nuclear receptor acts mostly as a transcriptional repressor through its
interaction with co-repressors [129] or through a titration of the
nuclear receptor RXR, a transcriptional partner of several other
nuclear receptors. COUP-TFII is expressed, among others, in metabolic
tissues such as liver, adipose tissue, skeletal muscle and endocrine
pancreas [130]. COUP-TFII represses insulin genes and insulin
secretion in 832/13 INS-1 cells [30]. Specific deletion of COUP/TFII in
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p-cells leads to an impairment of glucose tolerance and of the glucose-
induced insulin secretion in mice [131].

COUP-TFII was cloned in rat liver nuclear extracts using one-hybrid
selection approach in yeast. While COUP-TF Il was previously shown to
bind the L3 sequence and compete with HNF4«x as we discussed above,
it was reported that COUP-TFII was also able to bind on two direct repeat
sequences (DR-1 and DR-7 sites) within the L4 region of L-PK promoter
[132]. These DRs sites overlap with the first E-box of the ChoRE.
Interestingly, COUP-TFII was reported to induce and to be induced by
HNF4a, and COUP-TFII can repress its own expression by competition
with HNF4 oo for binding on its own promoter [30]. COUP-TFII
expression is repressed by glucose and insulin signals in liver in vivo
and in primary cultures of hepatocytes suggesting that glucose
metabolism is essential for COUP-TFII inhibition [30]. In agreement
with this hypothesis, the glucose-mediated repression of COUP-TFII is
lost in liver of GKX® mice. In addition, in liver of obese and diabetic ob/ob
mice in which ChREBP expression is elevated [23], a parallel decrease in
COUP-TFII expression was observed. This decrease can be rescued when
ChREBP is down-regulated using a shARN strategy [30]. Altogether,
these results support the idea that ChREBP may indirectly or directly
repress COUP-TFII expression and suggest that an active ChREBP may
prevent the mediated repression of COUP-TFII on the L-PK promoter in
hepatocytes within the L4 site under fed or high glucose conditions
(Fig. 4).

FXR, another important nuclear receptor was suggested to prevent
the glucose/ChREBP-mediated induction of the L-PK gene [133]. FXR is
a nuclear receptor controlling bile acid levels, notably by decreasing
Cyp7A1 expression [134]. Interestingly, FXR*® mice display increased
hepatic TG levels in the fed state along with an accelerated induction
of glycolytic (LPK) and lipogenic (ACC) gene in response to high
carbohydrate feeding [133]. Treatment of primary hepatocytes with
GW4064, a FXR agonist decreases the glucose-induced expression of
these genes. Therefore, FXR could be a direct mediator of the
repression of glycolytic/lipogenic genes as it binds as a homodimer
to the L3 region but not the L4 region on a L4-L3 luciferase L-PK
promoter construct [133] (Fig. 4). Although ChREBP expression was
not modified in liver of FXR*C mice, analysis of ChREBP nuclear
localization and/or activity upon FXR activation would be useful in
order to further understand the mechanism(s) by which FXR
represses glucose-regulated gene expression.

2. Concluding remarks

The molecular control of hepatic glucose metabolism is complex as it
requires an interplay of transcription factors and/or nuclear receptors in
response to hormonal stimuli and/or nutrients [135]. Among them, we
focused our attention on the action and regulation of ChREBP, which has
emerged over the recent years, as a major determinant of glycolysis and
lipogenesis control in response to glucose. Future studies will help
identify other nuclear receptors that can either regulate and/or interact
with ChREBP for the molecular regulation of the lipogenic pathway. For
example, a recent study reported that agonists of PPARYy, VDR (vitamin
D receptor), PXR (pregnane X receptor) or antagonists of FXR, CAR
(constitutive androstane receptor), and ERa (estrogen receptor) are
able to stimulate lipid accumulation in human hepatocytes and/or
hepatoma cell lines [136]. For instance, the activation of PXR, a nuclear
receptor mostly implicated in sensing and elimination of xenobiotic and
drugs [137], leads to an increase in FAS and SCD1 expression, that is
independent of a variation in SREBP-1c expression or nuclear
abundance [138]. Although Moreau et al. [139] reported that the PXR-
mediated activation of de novo lipogenesis in human hepatocytes was
also independent of a variation in ChREBP expression, additional studies
will be required to determine whether PXR agonists affect somehow
ChREBP transcriptional activity and/or nuclear abundance. Interestingly,
a study also recently reported that ChREBP acts as a critical and direct
mediator of glucose repression of the PPARx gene in pancreatic 3-cells

suggesting that ChREBP may be important for glucose-suppression of 3-
oxidation in B-cells [140]. Altogether, these potential novel molecular
cross-talks may help identify new molecular targets for control of fatty
acid synthesis and for the prevention of hepatic steatosis and related
metabolic alterations.
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