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Abstract

We tested whether glucocorticoids modulated osteoblast expression of the annexin 1 system, including the ligand and two G-coupled
receptors termed formyl-peptide receptor (FPR) and FPR-like-1 (FPRL-1). In Saos-2 cells, rapid up-regulation of FPR mRNA upon cell
incubation with dexamethasone (0.01–1 lM) was observed, with significant changes as early as 2 h and a more marked response at 24 h;
annexin 1 and FPRL-1 mRNA changes were more subtle. At the protein level, dexamethasone provoked a rapid externalization of
annexin 1 (maximal at 2 h) followed by delayed time-dependent changes in the cell cytosol. Saos-2 cell surface expression of FPR or
FPRL-1 could not be detected, even when dexamethasone was added with the bone modelling cytokines interleukin-6 or interleukin-
1. The uneven modulation of the annexin 1 system (mediator and its putative receptors) in osteoblasts might lead to a better understand-
ing of how these complex biochemical pathways become operative in bone.
� 2007 Elsevier Inc.
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Annexins are a family of structurally related proteins
that exhibit Ca2+-dependent binding to anionic phospho-
lipids and have been associated with several distinct biolog-
ical functions [1]. Amongst different other tissues, annexins
are present in cartilage and matrix vesicles isolated from
chondrocytes where they have been proposed to influence
bone matrix mineralization [2–4]. However, few studies
have investigated annexin expression in bone cells: annexin
1 (Anx-A1), annexin 2, and annexin 5 are expressed in the
human osteosarcoma cell line MG-63 [2] and rat primary
osteoblasts and, at least Anx-A1, might modulate bone
ontogeny as demonstrated for the murine palate [5]. In
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addition, annexin 2 favours osteoclast formation from
bone marrow precursors [6] and promote osteoclast resorp-
tive activity [7].

Within specific cell sources, Anx-A1 is predominantly
found split between a cytosol and a membrane pool but,
upon cell activation, it can be secreted (e.g., neutrophil
[8]). Recent studies have pinpointed putative membrane
receptors for Anx-A1 in members of the formyl-peptide
receptor (FPR) family: whereas Anx-A1-derived N-termi-
nal peptides interact with human FPR, the full-length pro-
tein is directly associated with FPR-like-1 (FPRL-1) on the
cell surface of activated neutrophils [9]. Though initially
identified on myeloid cells, it is now clear that several other
cells types, including microglia and epithelial cells, can
express these receptors [10].

It is of interest that Anx-A1 was originally identified as a
mediator responsible for certain anti-inflammatory actions
displayed by glucocorticoids (GC), drugs widely used in
chronic inflammatory conditions and cancer. However,
long-term therapies with glucocorticoids are known to be
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associated with secondary osteoporosis in vivo [11]. GC
have diverse and complex effects on bone, their action
being explained with increased parathormone release
(favouring bone resorption), decreased recruitment of oste-
oblasts from osteoprogenitor cells, accelerated apoptosis of
osteoblasts and osteocytes, and inhibition of bone forma-
tion [12]. Some of these effects might be secondary to mod-
ulation of two major determinants in bone cell functions,
osteoprotegerin (OPG) and receptor activator of NF-jB
(RANK) ligand (RANKL). In fact, GCs inhibit OPG pro-
duction and stimulate RANKL expression in several osteo-
blastic lineage cells [13].

In the present study, we investigated the role of the Anx-
A1 system in osteoblasts. We report initial description for
the presence of this protein and its putative receptors,
and investigate the modulation by GC and other bone-ac-
tive mediators.
Material and methods

Unless otherwise specified, all reagents were purchased from Sigma–
Aldrich (Poole, UK).

Cell culture and messenger RNA detection. The human osteosarcoma
cell line Saos-2 (ATCC, USA) was cultured in McCoy medium with 10%
FCS (Gibco, Paisley, UK), 100 U/ml penicillin, and 100 lg/ml strepto-
mycin, in atmosphere of 5% CO2/95% air at 37 �C and passaged two times
a week. For mRNA analyses, cells (2 · 106 cells/well) were cultured in 6-
well plates; when sub-confluent, medium was replaced with RPMI without
FCS and stimuli added 24 h later. Plates were washed with PBS and total
cellular RNA was extracted with a Rneasy� Mini kit following the
manufacturer instructions (Qiagen Ltd., UK); RNA was then reverse
transcribed with random primers (RETROscript�, Ambion Inc. TX,
USA) and cDNA amplified using puRE Taq Ready-To-Go�PCR Beads
(Amersham Biosciences, UK) [primers used and PCR conditions are listed
in Table 1]. The expected product sizes for the products are as follows:
1095 bp for FPR, 1055 bp for FPRL-1, 1021 bp for Anx-1A, and 363 bp
for GAPDH. The amplified products were run on 2% agarose gel, and
densitometry analysis was performed using Scion Image, NIH software,
USA.

SDS–PAGE and Western blotting. After different treatments, super-
natants were collected and concentrated in Centricon� centrifugal filter
devices (YM-10, Millipore Ltd., UK Limited) at 4000 rpm for 30 min at
4 �C and cells were washed with 1 mM EDTA to remove cell surface-
bound protein. Cell pellets were homogenized by sonication in 50 mM
Tris buffer rich in protease inhibitors (1 mM phenylmethylsulphonyl-
fluoride, 1.5 mM pepstatin A, and 0.2 mM leupeptin, pH 7.4); protein
concentrations in supernatants were determined by the Bradford assay,
Table 1
Specific primers and PCR cycling parameters for the proteins tested

Target Specific Primer

Forward Reverse

FPR GCGCAAGCTTACAGTCCAGGAG
CAGACAAGATGGCGCAAGCTGT

GCGCGGCCGC
CCTGTAACT

FPRL-1 TTCAGGTGCTGCTGGCAAGATGA
AACCGCGGCGGATCCATGG

GCGCGGCCGC
CCTGTAACT

ANXA1 CAATGGTATCAGAATTCCTC
AAGGTGAAGGTG

GCGGCGTCGA
CTCCACAAA

GAPDH GGAGTGAAC GGCAGAGATG
TTTTGGC
adjusted to 2 mg/ml, mixed 1:5 with loading buffer (Pierce, Perbio-
Science, UK) before boiling for 5 min. Samples (20 lg proteins per
lane), molecular weight markers (Bio-Rad Laboratories Ltd., UK), and
human recombinant Anx-1A (50 ng) were subjected to 10% sodium
dodecyl sulphate–polyacrylamide gel electrophoresis and transferred
onto nitrocellulose membranes. Specific monoclonal antibodies (mAb)
were used: anti-human Anx-1A antibody 1B was a generous gift of Dr.
J.L. Browning (Biogen Corp, Cambridge, MS, USA), anti-human FPR
antibody clone 5F1 was purchased from BD Biosciences Pharmingen,
Oxford, UK; anti-human FPRL-1 antibody clone 6C7-3-A, was a
generous gift of Dr. Duncan Henderson (AstraZeneca, Loughborouhg,
UK). Densitometry analysis was performed using Scion Image, NIH
software, USA.

Flow cytometry. Protein expression on the cell surface was monitored
by flow cytometry, incubating 5 · 105 cells with 5 lg/ml of primary anti-
bodies (see section above) for 1 h at 4 �C, prior to addition of a FITC-
conjugated rabbit anti-mouse IgG (Serotec, Oxford, UK), and analysis by
flow cytometry with a FACScan flow cytometer (FACScalibur, Becton–
Dickinson).

Statistical analysis. Results are expressed as means ± SEM, and data
were analysed for statistical significance by ANOVA followed by Dunnett
post hoc analysis.
Results and discussion

Anx-A1, FPR, and FPRL-1 expression in Saos-2 cells: effect

of dexamethasone

The initial experiments focused on monitoring Anx-
A1, FPR, and FPRL-1 expression in resting Saos-2 cells.
At the message level, Anx-A1 was easily detected
whereas either receptor type was scarcely detected. How-
ever, when dexamethasone (Dex) was added to Saos-2
cells, it produced rapid up-regulation of FPR mRNA
(Fig. 1a). This was evident as early as 2 h post-addition,
being more pronounced and fully concentration-related
at the 24 h time-point (Fig. 1a). In contrast, Anx-A1
mRNA detection did not significantly differ in cells incu-
bated with the steroid (not shown). FPRL-1 mRNA
modulation was somehow intermediate, with lack of
up-regulation at 2 h, but a significant increase seen at
the 24 h time-point, though only for the highest concen-
tration of Dex tested (Fig. 1b). This is at variance from
what we have recently reported in monocytes and differ-
entiated HL-60 cells, where a marked and significant
PCR parameters
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ig. 2. Kinetics of Anx-A1 protein expression induced by dexamethasone.
aos-2 cells were incubated with 1 lM dexamethasone (Dex) for the
ported time-points, and Anx-A1 protein expression was determined in
e medium, cell surface and cell lysate samples. (a) Shows representative

lots, whereas (b) represents the densitometric analysis of three indepen-
ent experiments, mean ± SEM of values shown as percent of control
roup (vehicle only). *P < 0.05, Dex-treated vs. respective control.

Fig. 1. Effect of dexamethasone on Saos-2 FPR and FPRL-1 gene
expression. Saos-2 cells were incubated for 2 and 24 h in the absence and
presence of dexamethasone (0.01, 0.1, and 1 lM). Total RNA was then
extracted and PCR performed for FPR (a) or FPRL-1 (b) gene expression.
Autoradiogram of one representative experiment and densitometric
analysis, normalized for corresponding GAPDH values, expressing the
means of % referring to the control ± SEM of four independent
experiments. P < 0.05, dexamethasone-treated vs. control cells.
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effects of GC upon FPRL-1 mRNA and protein was evi-
dent within this time frame [14].

Next, we tested whether changes in transcription could
be associated with alterations in protein levels. The results
obtained were quite unexpected, since now Dex modified
Anx-A1, but not FPR or FPRL-1, protein expression. Wes-
tern blotting analysis indicated both a rapid and a delayed
Dex-mediated up-regulation of Anx-A1 expression. In
many cell types Anx-A1 exists as a cytosolic pool and a
membrane-bound pool [15,16], and in vitro experimental
conditions, the protein can also be recovered from the incu-
bation medium, as in this case of activated neutrophils [8].
The significance of these pools is partially clear, and might
be associated with distinct biological actions of the protein
occurring both with non-genomic and genomic-derived
pathways. For instance, a direct effect of Anx-A1 and other
members of the family on gene transcriptional activity has
been proposed [17] together with a rapid ability to affect cell
function [18]. This apparent complexity is likely linked to
the specific pool of Anx-A1 as well as to its post-transcrip-
tional status: externalized Anx-A1 is thought to be highly
serine phosphorylated [19,20]. Fig. 2a reports representative
blots as obtained 2 h post-Dex: a clear concentration-de-
pendent decrease of Anx-A1 from the cell surface is evident
and associated with augmented levels in the cytosol
(Fig. 2a). Cumulative data from multiple experiments with
0.1 and 1 lM Dex are in Fig. 2b: in both conditions, induc-
tion in the cytosol is concomitant with (or secondary to) a
F
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decrease of the cell surface pool and this is followed, tempo-
rally, by protein release in the medium. No detection for
either FPR or FPRL-1 protein was obtained by Western
blotting in resting Saos-2 cells or with any of the culture
conditions just discussed (data not shown). This set of data
was then validated by flow cytometry analysis. Dex had no
effect on either FPR or FPRL-1 protein levels (Fig. 3). The
validity of these partially negative data is genuine since the
anti-FPR and anti-FPRL-1 monoclonal antibodies detect-
ed receptor expression on leukocyte samples run in parallel
(data not shown), and published data confirm their effec-
tiveness in flow cytometric assays [14,21,22].

Collectively, these sets of data indicate that Dex exerts
exquisite and tightly controlled effects in Saos-2 cells,
with up-regulation of Anx-A1 protein expression but
not of its putative receptors. However, changes in
mRNA were evident, especially for FPR, adding this
receptor to the list of gene controlled by the steroid.
Of interest, a recent study conducted with primary



Fig. 3. Dexamethasone and FPR, FPRL-1 or Anx-A1 protein expression in Saos-2 cells. Saos-2 cells were incubated with 0.1 lM dexamethasone for 48 h,
and then stained with anti-FPR (a), anti-FPRL-1 (b) or anti-Anx-A1 (c,d) primary antibodies. In one case, panel d, cells were treated for 48 h with 0.1 lM
dexamethasone + 1 ng/ml IL-6. Data are representative of three distinct experiments.
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monocytes has reported fluticasone to markedly upregu-
late FPR expression and function [23]. Next we sought
to determine if a second stimulus was required to achieve
full up-regulation of FPR and FPRL-1 protein expres-
sion in the osteoblast.

Anx-A1, FPR, and FPRL-1 expression in Saos-2 cells: effect

of cytokine addition

Interleukin (IL)-1 and IL-6 are potent cytokines known
to affect bone metabolism. For instance, osteoblast-derived
IL-6 was the major determinant of osteoclast function
before discovery of the RANKL system; the same holds
true for IL-1 [24]. In addition, in other compartments
(e.g., liver) glucocorticoids and these two cytokines are
known to operate in a synergistic/complementary fashion
[25] and, for instance, in vitro glucocorticoids are required
for optimal acute phase protein induction by IL-1 or IL-6
[26]. Saos-2 cell incubation with optimal concentrations of
IL-1 and IL-6 did not significantly modify FPR mRNA
expression; however, when cells were incubated also with
Dex, a synergistic response was measured (Fig. 4a). Of
interest, IL-6 effect disappeared by increasing the concen-
tration indicative perhaps of multiple contrasting effects
of the cytokine. In line with the data obtained with Dex
alone, changes in FPRL-1 mRNA expression were more
subtle and less marked (Fig. 4b). However, these changes
in mRNA were not accompanied by changes in receptor
expression on the cell surface, as investigated by flow
cytometry: we tested several combinations of cyto-
kines ± Dex, and different time-points, but were unable to
unveil detection of the receptor (data not shown). On a sim-
ilar note, Anx-A1 mRNA levels were not modified whereas
subtle changes in protein expression were detected, though
in line with what produced by Dex alone (see Fig. 3d for an
example of Dex + IL-6). Altogether these experiments indi-
cated that (i) Anx-A1 mRNA is quite stable in Saos-2 cells
and (ii) FPR is most promptly modulated by these culture
conditions. The biological significance of these findings will
be addressed by separate studies, however the uneven mod-
ulation of the Anx-A1 system (mediator and its putative
receptors) here revealed is quite a novel finding and may
lead to a better understanding of how these complex bio-
chemical pathways become operative in bone.



Fig. 4. Synergistic effect of dexamethasone and IL-1b, or IL-6, on FPR
mRNA expression. Saos-2 cells were incubated for 24 h in the absence and
presence of dexamethasone (Dex; 0.1 lM) and IL-1b (10 ng/ml) or IL-6 (1,
10, and 100 ng/ml). Total RNA was then extracted and PCR performed
for FPR (a) or FPRL-1 (b) gene expression. Data report the densitometric
analysis of three independent experiments, mean ± SEM of values shown
as percent of control group (vehicle only). P < 0.05, Dex-treated vs.
control cells.
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