

Discrete Mathematics 207 (1999) 65-72

DISCRETE MATHEMATICS

prov

n and similar papers a<u>t core.ac.</u>uk

# wagie rectangles revisited

Thomas R. Hagedorn

Department of Mathematics and Statistics, The College of New Jersey, P.O. Box 7718, Ewing, NJ 08628-0718, USA

Received 6 May 1998; revised 16 December 1998; accepted 4 January 1999

#### Abstract

Magic rectangles are a generalization of magic squares that have been recently investigated by Bier and Rogers (European J. Combin. 14 (1993) 285–299); and Bier and Kleinschmidt (Discrete Math. 176 (1997) 29–42). In this paper, we present a new, simplified proof of the necessary and sufficient conditions for a magic rectangle to exist. We also show that magic rectangles, under the natural multiplication, have a unique factorization as a product of irreducible magic rectangles. © 1999 Elsevier Science B.V. All rights reserved.

MSC: 05B15

Keywords: Magic squares; Magic rectangles

## 1. Introduction

Magic rectangles are a natural generalization of the magic squares which have long intrigued mathematicians and the general public. A magic (m, n)-rectangle R is an  $m \times n$  array in which the first mn positive integers are placed so that the sum over each row of R is constant and the sum over each column of R is another (different if  $m \neq n$ ) constant. They were first studied a century ago by Harmuth who proved in [5,6] that

**Theorem 1.** For m, n > 1, there is a magic (m, n)-rectangle R if and only if  $m \equiv n \mod 2$  and  $(m, n) \neq (2, 2)$ .

Recently, Sun [7], Bier and Rogers [2], and Bier and Kleinschmidt [3] have published modern proofs of Harmuth's result. In [4], the concept of magic rectangles was generalized to *n*-dimensions and several existence theorems were proven.

E-mail address: hagedorn@math.tcnj.edu (T.R. Hagedorn)

In this paper, we present an elementary proof of Theorem 1. We use the ideas of [3,4], to give a very simple construction of the even magic rectangles. We also give a new construction of the odd magic rectangles. Our method is entirely theoretical and does not depend on any experimental constructions of magic rectangles (see [3, Section 2.7]). This last point was important philosophically for the work in [4] as the experimental calculation of magic rectangles in higher dimensions is computationally unfeasible. Finally, in Section 5, we extend Adler's result [1] that magic squares have a unique prime factorization to the case of magic rectangles.

# 2. Properties of centrally symmetric rectangles

Let  $R = (r_{ij})$  be a magic (m, n)-rectangle. Since the row sums of R are n(mn + 1)/2and the column sums of R are m(mn + 1)/2 and both are integral, we have

**Lemma 1.** If R is a magic (m, n)-rectangle, then  $m \equiv n \mod 2$ .

Lemma 1 allows the set of magic rectangles to be divided into the set of odd and even rectangles. Inspection quickly shows that an even magic (2,2)-rectangle does not exist. To show the existence of the other even magic rectangles, we introduce the closely related concept of centrally symmetric (m, n)-rectangles.

**Definition 1.** Let x > -1 and let *R* be an even  $m \times n$  rectangular array whose entries are the numbers  $\pm(x+1), \ldots, \pm(x+mn/2)$ . *R* is a centrally symmetric (m, n)-rectangle of type *x* if the sum of all the rows and columns is zero. Additionally, if *R* has an equal number of positive and negative numbers in each row and column, we say that *R* is balanced.

If R is an even magic (m,n)-rectangle then by subtracting (mn + 1)/2 from each entry of R, we obtain a centrally symmetric (m,n)-rectangle of type -1/2. Similarly, every centrally symmetric (m,n)-rectangle of type -1/2 determines an even magic (m,n)-rectangle. Thus, we can use the existence of centrally symmetric (m,n)-rectangles to prove results about magic (m,n)-rectangles. The following propositions are proved in [4].

**Proposition 1.** If a balanced centrally symmetric (m, n)-rectangle exists, then a magic (m, n)-rectangle exists.

**Proposition 2.** If balanced centrally symmetric  $(m_i, n)$ -rectangles exist for i=1, 2, then a balanced centrally symmetric  $(m_1 + m_2, n)$ -rectangle exists.

**Proposition 3.** Suppose a magic  $(m_1, n)$ -rectangle and a balanced centrally symmetric  $(m_2, n)$ -rectangle exist. Then a magic  $(m_1 + m_2, n)$ -rectangle exists.

### 3. Even magic rectangles

Using the concept of a centrally symmetric rectangle, we can quickly prove the existence of even magic rectangles. Our tools are the balanced centrally symmetric (2,4)-rectangle

| A = | ( 1  | -2 | -3 | 4 ) |
|-----|------|----|----|-----|
| A = | ( -1 | 2  | 3  | _4) |

and the magic (2,6)-rectangle

 $B = \begin{pmatrix} 1 & 11 & 3 & 9 & 8 & 7 \\ 12 & 2 & 10 & 4 & 5 & 6 \end{pmatrix}.$ 

**Proposition 4.** Let n > 2 be an even integer. Then a magic (2, n)-rectangle exists.

**Proof.** We induct on *n*. The existence of rectangles *A* and *B* shows that we need only prove the proposition for  $n \ge 8$ . Assume we know that a magic (2, m)-rectangle exists for all even m < n. Then we know a magic (2, n - 4)-rectangle *R* exists. By Proposition 3, we can add *R* and *A* together to form a magic (2, n)-rectangle.

**Proposition 5.** Let *m* and *n* be even positive integers with  $(m,n) \neq (2,2)$ . Then a magic (m,n)-rectangle exists.

**Proof.** By Proposition 4, we can assume that n > 2. Using A and Proposition 2, induction shows that a balanced centrally symmetric (m, 4)-rectangle R exists. Thus a magic (m, 4)-rectangle exists and we can assume that n > 4. Now assume that a magic (m, n')-rectangle exists for all even n' < n. Then a magic (m, n - 4)-rectangle S exists. By Proposition 2, adding R and S together gives a magic (m, n)-rectangle.

### 4. Odd magic rectangles

In this section, we present a simplified proof that odd magic 2-rectangles exist. Our proof is inspired by the centrally symmetric rectangles of [3], but eliminates the need for the explicit calculation of examples. We first prove:

**Proposition 6.** For n > 1 an odd integer, there exists a magic (3,n)-rectangle R such that one row of R contains all the integers from n + 1 to 2n - 1, with the exception of (3n + 1)/2.

Our construction of *R* will use smaller rectangles as building blocks. Define the  $3 \times 2$  matrices

$$B_{+}(i) = \begin{pmatrix} i+1 & n+1-i \\ \frac{3n+1}{2}+i & \frac{3n+1}{2}-i \\ 3n-2i & 2n+2i \end{pmatrix},$$
$$B_{-}(i) = \begin{pmatrix} 3n-2i & 2n+2i \\ \frac{3n+1}{2}+i & \frac{3n+1}{2}-i \\ i+1 & n+1-i \end{pmatrix}.$$

The column sums of both matrices are 3(3n + 1)/2. The row sums of  $B_+(i)$  are n + 2, 3n + 1, and 5n respectively and the row sums of  $B_-(i)$  are 5n, 3n + 1, and n + 2. Hence when a  $3 \times 4$  matrix is formed from the matrices  $B_+(i)$  and  $B_-(j)$ , it has constant row and column sums.

**Proof of Proposition 6.** Since a magic (3,3)-square exists, we can assume that n > 3. We first consider the case  $n \equiv 1 \mod 4$ . Let

$$A = \begin{pmatrix} 1 & 2n & \frac{n+3}{2} \\ 3n & \frac{n+1}{2} & n+1 \\ \frac{3n+1}{2} & 2n+1 & 3n-1 \end{pmatrix}$$

and let R be the  $3 \times n$  rectangle obtained by glueing to A the (n-5)/4 matrices  $B_+(i)$ , for i = 1, ..., (n-5)/4 and the (n-1)/4 matrices  $B_-(j)$ , for j = (n-1)/4, ..., (n-3)/2. By construction, the column sums of R are constant. The rows sums of R are also constant since glueing A to  $B_-(i)$ , and glueing  $B_+(i)$  to  $B_-(j)$  gives rectangles whose row sums are constant. A straightforward calculation shows that the entries of R are precisely the integers from 1 to 3n. Hence R is a magic rectangle.

We now consider the case when  $n \equiv 3 \mod 4$ . Let  $m = \lfloor (n+1)/3 \rfloor$ . Then n - 3m = 0 or  $\pm 1$ . We let

$$A = \begin{pmatrix} 1 & \frac{n+3}{2} \\ 3n & n+1 \\ \frac{3n+1}{2} & 3n-1 \end{pmatrix},$$

$$B = \begin{cases} \begin{pmatrix} m+1 & 2n+1 & 2n+2m \\ \frac{3n+1}{2} + m & \frac{n+1}{2} & \frac{3n+1}{2} - m \\ 3n-2m & 2n & n+1-m \end{pmatrix} & \text{if } n-3m = 1, \\ \begin{pmatrix} m+1 & 2n & 2n+2m \\ \frac{3n+1}{2} + m & \frac{n+1}{2} & \frac{3n+1}{2} - m \\ 3n-2m & 2n+1 & n+1-m \end{pmatrix} & \text{if } n-3m = 0, \\ \begin{pmatrix} \frac{3n-2m}{2} & 2n+1 & n+1-m \\ \frac{3n+1}{2} + m & \frac{n+1}{2} & \frac{3n+1}{2} - m \\ m+1 & 2n & 2n+2m \end{pmatrix} & \text{if } n-3m = -1 \end{cases}$$

In all three cases, when we glue A and B with the matrix  $B_{-}(1)$ , we have a  $3 \times 7$  matrix whose row sums are all equal. We now construct our magic (3, n)-rectangle R by adding the (n - 7)/4 blocks  $B_{+}(i)$ ,  $2 \le i \le (n - 3)/4$  and the (n - 7)/4 blocks  $B_{-}(i)$ ,  $(n + 1)/4 \le i \le (n - 3)/2$ ,  $i \ne m$  to A and B. We note that we omit the block  $B_{-}(m)$  since its entries already appear in A and that we know  $m = [(n + 1)/3] \ge (n + 1)/4$ . The respective row and column sums of our rectangle are constant. Again, it is straightforward to see that the entries in R are the integers from 1 to 3n.  $\Box$ 

# **Proposition 7.** For odd numbers m, n > 1, a magic (m, n)-rectangle exists.

**Proof.** We can assume that  $m \le n$ . Then the existence of a magic (m, n)-rectangle follows from the more general proposition:

**Proposition 8.** Suppose  $n \ge m > 1$  are odd integers and  $d = \frac{1}{2}(m-1)$ . Then there exists a magic (m, n)-rectangle R that contains the n - 2d integers  $d(n+1) \le x \le d(n-1) + n, x \ne dn + (n+1)/2$ , in a single row.

To construct R, we introduce the following matrices. Let

$$C_{+}(i) = \begin{pmatrix} i & n+1-i \\ mn+1-i & mn-n+i \end{pmatrix},$$

$$C_{-}(i) = \begin{pmatrix} mn+1-i & mn-n+i \\ i & n+1-i \end{pmatrix},$$

and

$$D_n = \begin{cases} \binom{(n+1)/2}{mn+(1-n)/2} & \text{if } n \equiv 1 \mod 4, \\ \binom{mn+(1-n)/2}{(n+1)/2} & \text{if } n \equiv 3 \mod 4. \end{cases}$$

**Proof of Proposition 8.** By the proof of Proposition 6, we can assume that  $m \ge 5$ . We will prove the general case by induction on m. Assume that the proposition is true for m-2 and let S be the desired magic (m-2,n)-rectangle. By adding n to each entry of S, we obtain a rectangle R. The entries of R are the integers [n+1,mn-n] and one row of R, row i, contains the integers  $x \ne dn + (n+1)/2$  from dn + d - 1 to dn+n+1-d. We now obtain a magic (m,n)-rectangle by adding two rows containing the integers in [1,n] and [mn+1-n,mn] to R. By interchanging the columns of R, we can assume that the integers dn + d - 1 and dn + n + 1 - d in row i appear in the first and second columns of R. We now let

$$A = \begin{pmatrix} d - 1 & d & n + 2 - d & n + 1 - d \\ mn + 2 - d & mn + 1 - d & mn - n + d - 1 & mn - n + d \end{pmatrix}$$

Now, there are (n-5)/2 positive integers less than n/2 which are not equal to d-1 or d. If  $n \equiv 1 \mod 4$ , divide these numbers into a collection of (n-1)/4 integers  $a_i$  and a group of (n-9)/4 integers  $b_i$ . If  $n \equiv 3 \mod 4$ , divide these integers into a collection of (n-3)/4 integers  $a_i$  and a group of (n-7)/4 numbers  $b_i$ . Let  $R_1$  be the rectangle obtained by appending to the bottom of R the two rows formed by glueing in order the rectangles A, the  $C_{-}(a_i)$ , the  $C_{+}(b_i)$ , and  $D_n$ . The column sums of  $R_1$  are all equal. However, the sums of the last two rows of  $R_1$  are not equal. The sum of row m-1is easily checked to be mn - n less than the sum of the last row. But we can correct this problem by exchanging the positions of d-1 and dn+d-1 in the first column of  $R_1$  and the positions of mn + 1 - d and dn + n + 1 - d in the second column of  $R_1$ . This does not change the column sums. And the sum of row i of R is unchanged as dn + d - 1 and dn + n + 1 - d lie in the same row i of R and their sum 2dn + n = mnequals (d-1) + (mn+1-d). Now, the row sums of the last two rows of  $R_1$  both equal the desired n(mn+1)/2. Hence  $R_1$  is a magic (m, n)-rectangle and the integers from dn + d to dn + n - d, with the exception of dn + (n + 1)/2, lie in row *i*. So the induction hypothesis is satisfied and the proposition has been proven.  $\Box$ 

### 5. Unique prime factorization

Proposition 3 shows that in certain cases one can add two magic rectangles together to form a third magic rectangle. We now recall a classical method for multiplying magic rectangles. If  $A = (a_{ij})$  is a magic  $(m_1, n_1)$ -rectangle and  $B = (b_{ij})$  is a magic  $(m_2, n_2)$ -rectangle, then we define the magic  $(m_1m_2, n_1n_2)$ -rectangle C = A \* B by letting  $C = (c_{ij})$ , where

$$c_{ij} = a_{i_0 j_0} + m_1 n_1 (b_{i_1 j_1} - 1),$$

where  $i = m_1 i_1 + i_0$ , with  $0 \le i_0 < m_1$  and  $j = n_1 j_1 + j_0$ , with  $0 \le j_0 < n_1$ . *C* can be shown to be a magic rectangle [2]. For this multiplication, the magic (1,1)-rectangle *e* is the identity element. The multiplication's definition immediately shows that we have left and right cancellation laws:

**Proposition 9.** Suppose A, B, and C are magic rectangles. If A \* B = A \* C, then B = C. If A \* C = B \* C, then A = B.

We call A an irreducible magic rectangle if A cannot be expressed as a product B \* C of two magic rectangles B,  $C \neq e$ . Since the size of the factors of A must be smaller than A, we can factor every magic rectangle as a product of irreducible magic rectangles. In [1], Adler showed that for magic squares this decomposition is unique. We now show the analogous proposition for magic rectangles:

**Proposition 10.** A magic rectangle has a unique decomposition as a product of irreducible magic rectangles.

**Proof.** We will derive a contradiction by supposing that the magic rectangle *A* can be written in two different ways as the product of irreducible magic rectangles. Let  $\prod_{i=1}^{n} R_i$  and  $\prod_{i=1}^{m} S_i$  be the two different factorizations. Using the left cancellation law, we can assume that  $R_1 \neq S_1$ . However, this contradicts Proposition 11 and the proposition is proven.

**Proposition 11.** Let A, B, C, and D be magic rectangles with A \* B = C \* D. Suppose that A and C are irreducible. Then A = C.

**Proof.** Let  $A = (a_{ij})$  be a magic  $(m_1, n_1)$ -rectangle and  $C = (c_{ij})$  a magic  $(m_2, n_2)$ rectangle. We can assume that  $m_1n_1 \leq m_2n_2$ . Suppose that the integer 1 appears in Bat the  $(b_1, b_2)$ -th place. If  $A * B = (\alpha_{ij})$ , then  $a_{ij} = \alpha_{m_1b_1+i, m_2b_2+j}$  and thus a copy  $A_0$  of A occurs in A \* B. Similarly there is a copy  $C_0$  of C inside of C \* D. Since these are
equal, and A and C consist of the first  $m_1n_1$  (resp.  $m_2n_2$ ) positive integers, we must
have that  $A_0 \subset C_0$ . If  $m_1n_1 = m_2n_2$ , then  $A_0 \subset C_0$  implies that  $m_1 = m_2$  and  $n_1 = n_2$ . And
since the entries agree, we see that  $A_0 = C_0$  and A = C.

Hence we can assume that  $m_1n_1 < m_2n_2$ . Let  $A_k$  be the translate of A in A \* B obtained by adding  $km_1n_1$  to all the entries of A. Now a similar argument as above shows that  $C_0$  is covered by the translates  $A_0, \ldots, A_t$  of A, where  $A_t \cap C_0 \neq \emptyset$ . Since the entries of  $C_0$  and each translate  $A_k$  are consecutive positive integers, the first t translates of A must be contained in  $C_0$ . The last translate  $A_t$  may or may not be contained in  $C_0$ . If  $A_t \subset C_0$ , then the rectangle  $C_0$  is tiled by the t + 1 translates of A. By the geometry of A \* B, these tiles are obtained by horizontal and vertical translations of  $A_0$ . Thus,  $m_2$  (resp.  $n_2$ ) must be a multiple of  $m_1$  (resp.  $n_1$ ). We then have C = A \* E, where  $E = (e_{ij})$  is defined by  $c_{m_1i+i_0,n_1j+j_0} = a_{i_0,j_0} + m_1n_1(e_{ij} - 1)$ . Since C and A are magic rectangles, it is straightforward to show that E is a magic rectangle. But this contradicts the irreducibility of C.

So we can assume that  $A_t \not\subset C_0$ . But the only way that  $A_t$  can be the only translate of A not contained in  $C_0$  is if either  $m_1 = m_2$  or  $n_1 = n_2$ . Without loss of generality, we can assume  $n_1 = n_2$ . Let r > 0 be the remainder of the quotient  $m_2/m_1$ . Then the translate  $A_t$  will have r of its rows contained in  $C_0$  and  $m_1 - r$  of its rows not contained in  $C_0$ . Since  $C_0$  consists of the first  $m_2n_2$  positive integers, all the entries of the *r* rows of  $A_t$  contained in  $C_0$  will be less than the entries of the rows of  $A_t$  not in  $C_0$ . Hence the sums of the rows of  $A_t$  will not be the same. But since  $A_t$  is a translate of the magic rectangle A, its row sums must be equal. We have a contradiction. Hence our assumption that  $m_1n_1 < m_2n_2$  is incorrect and A = C. The proposition is proved.

#### Acknowledgements

The author would like to thank Dan Shapiro for sparking the author's interest in this subject, and to Allan Adler and the referees for their suggestions.

### References

53-63.

- [1] A. Adler, N-cubes form a free monoid, Electron. J. Combin. 4 (1) (1997) Research Paper 15 (electronic).
- [2] T. Bier, G. Rogers, Balanced Magic Rectangles, European J. Combin. 14 (1993) 285-299.
- [3] T. Bier, A. Kleinschmidt, Centrally symmetric and magic rectangles, Discrete Math. 176 (1997) 29–42.
  [4] T. Hagedorn, On the existence of magic *n*-dimensional rectangles, Discrete Math. 207 (this Vol.) (1999)
- [5] T. Harmuth, Über magische Quadrate und ähniche Zahlenfiguren, Arch. Math. Phys. 66 (1881) 286–313.
- [6] T. Harmuth, Über magische Rechtecke mit ungeraden Seitenzahlen, Arch. Math. Phys. 66 (1881) 413–447.
- [7] R. Sun, Existence of magic rectangles, Nei Mongol Daxue Xuebao Ziran Kexue 21 (1) (1990) 10-16.