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Abstract

Magic rectangles are a generalization of magic squares that have been recently investigated by
Bier and Rogers (European J. Combin. 14 (1993) 285–299); and Bier and Kleinschmidt (Discrete
Math. 176 (1997) 29–42). In this paper, we present a new, simpli�ed proof of the necessary
and su�cient conditions for a magic rectangle to exist. We also show that magic rectangles,
under the natural multiplication, have a unique factorization as a product of irreducible magic
rectangles. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Magic rectangles are a natural generalization of the magic squares which have long
intrigued mathematicians and the general public. A magic (m; n)-rectangle R is an m×n
array in which the �rst mn positive integers are placed so that the sum over each row
of R is constant and the sum over each column of R is another (di�erent if m 6= n)
constant. They were �rst studied a century ago by Harmuth who proved in [5,6] that

Theorem 1. For m; n¿1; there is a magic (m; n)-rectangle R if and only if
m ≡ nmod 2 and (m; n) 6= (2; 2).

Recently, Sun [7], Bier and Rogers [2], and Bier and Kleinschmidt [3] have pub-
lished modern proofs of Harmuth’s result. In [4], the concept of magic rectangles was
generalized to n-dimensions and several existence theorems were proven.
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In this paper, we present an elementary proof of Theorem 1. We use the ideas
of [3,4], to give a very simple construction of the even magic rectangles. We also
give a new construction of the odd magic rectangles. Our method is entirely
theoretical and does not depend on any experimental constructions of magic
rectangles (see [3, Section 2.7]). This last point was important philosophically for
the work in [4] as the experimental calculation of magic rectangles in higher
dimensions is computationally unfeasible. Finally, in Section 5, we extend Adler’s
result [1] that magic squares have a unique prime factorization to the case of magic
rectangles.

2. Properties of centrally symmetric rectangles

Let R= (rij) be a magic (m; n)-rectangle. Since the row sums of R are n(mn+1)=2
and the column sums of R are m(mn+ 1)=2 and both are integral, we have

Lemma 1. If R is a magic (m; n)-rectangle; then m ≡ nmod 2:

Lemma 1 allows the set of magic rectangles to be divided into the set of odd and
even rectangles. Inspection quickly shows that an even magic (2; 2)-rectangle does not
exist. To show the existence of the other even magic rectangles, we introduce the
closely related concept of centrally symmetric (m; n)-rectangles.

De�nition 1. Let x¿− 1 and let R be an even m× n rectangular array whose entries
are the numbers ±(x+1); : : : ;±(x+mn=2). R is a centrally symmetric (m; n)-rectangle
of type x if the sum of all the rows and columns is zero. Additionally, if R has an
equal number of positive and negative numbers in each row and column, we say that
R is balanced.

If R is an even magic (m; n)-rectangle then by subtracting (mn + 1)=2 from each
entry of R, we obtain a centrally symmetric (m; n)-rectangle of type −1=2. Similarly,
every centrally symmetric (m; n)-rectangle of type −1=2 determines an even magic
(m; n)-rectangle. Thus, we can use the existence of centrally symmetric (m; n)-rectangles
to prove results about magic (m; n)-rectangles. The following propositions are proved
in [4].

Proposition 1. If a balanced centrally symmetric (m; n)-rectangle exists; then a magic
(m; n)-rectangle exists.

Proposition 2. If balanced centrally symmetric (mi; n)-rectangles exist for i=1; 2; then
a balanced centrally symmetric (m1 + m2; n)-rectangle exists.
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Proposition 3. Suppose a magic (m1; n)-rectangle and a balanced centrally symmetric
(m2; n)-rectangle exist. Then a magic (m1 + m2; n)-rectangle exists.

3. Even magic rectangles

Using the concept of a centrally symmetric rectangle, we can quickly prove the
existence of even magic rectangles. Our tools are the balanced centrally symmetric
(2,4)-rectangle

A=
(
1 −2 −3 4
−1 2 3 −4

)

and the magic (2,6)-rectangle

B=
(
1 11 3 9 8 7
12 2 10 4 5 6

)
:

Proposition 4. Let n¿ 2 be an even integer. Then a magic (2; n)-rectangle exists.

Proof. We induct on n. The existence of rectangles A and B shows that we
need only prove the proposition for n¿8. Assume we know that a magic (2; m)-
rectangle exists for all even m¡n. Then we know a magic (2; n − 4)-rectangle R
exists. By Proposition 3, we can add R and A together to form a magic (2; n)-
rectangle.

Proposition 5. Let m and n be even positive integers with (m; n) 6= (2; 2). Then a
magic (m; n)-rectangle exists.

Proof. By Proposition 4, we can assume that n¿ 2. Using A and Proposition 2,
induction shows that a balanced centrally symmetric (m; 4)-rectangle R exists.
Thus a magic (m; 4)-rectangle exists and we can assume that n¿ 4. Now assume
that a magic (m; n′)-rectangle exists for all even n′¡n. Then a magic (m; n − 4)-
rectangle S exists. By Proposition 2, adding R and S together gives a magic (m; n)-
rectangle.

4. Odd magic rectangles

In this section, we present a simpli�ed proof that odd magic 2-rectangles exist. Our
proof is inspired by the centrally symmetric rectangles of [3], but eliminates the need
for the explicit calculation of examples. We �rst prove:
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Proposition 6. For n¿ 1 an odd integer; there exists a magic (3; n)-rectangle R such
that one row of R contains all the integers from n+ 1 to 2n− 1; with the exception
of (3n+ 1)=2.

Our construction of R will use smaller rectangles as building blocks. De�ne the 3×2
matrices

B+(i) =




i + 1 n+ 1− i
3n+ 1
2

+ i
3n+ 1
2

− i
3n− 2i 2n+ 2i


 ;

B−(i) =




3n− 2i 2n+ 2i
3n+ 1
2

+ i
3n+ 1
2

− i
i + 1 n+ 1− i


 :

The column sums of both matrices are 3(3n + 1)=2. The row sums of B+(i) are
n + 2; 3n + 1, and 5n respectively and the row sums of B−(i) are 5n; 3n + 1, and
n + 2. Hence when a 3 × 4 matrix is formed from the matrices B+(i) and B−(j), it
has constant row and column sums.

Proof of Proposition 6. Since a magic (3; 3)-square exists, we can assume that n¿ 3.
We �rst consider the case n ≡ 1mod 4. Let

A=




1 2n
n+ 3
2

3n
n+ 1
2

n+ 1
3n+ 1
2

2n+ 1 3n− 1




and let R be the 3 × n rectangle obtained by glueing to A the (n − 5)=4 matri-
ces B+(i), for i = 1; : : : ; (n − 5)=4 and the (n − 1)=4 matrices B−(j), for j = (n −
1)=4; : : : ; (n − 3)=2. By construction, the column sums of R are constant. The rows
sums of R are also constant since glueing A to B−(i), and glueing B+(i) to B−(j)
gives rectangles whose row sums are constant. A straightforward calculation shows
that the entries of R are precisely the integers from 1 to 3n. Hence R is a magic
rectangle.
We now consider the case when n ≡ 3mod 4. Let m= [(n+1)=3]. Then n− 3m=0

or ±1. We let

A=




1
n+ 3
2

3n n+ 1
3n+ 1
2

3n− 1


 ;
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B=







m+ 1 2n+ 1 2n+ 2m
3n+ 1
2

+ m
n+ 1
2

3n+ 1
2

− m
3n− 2m 2n n+ 1− m


 if n− 3m= 1;




m+ 1 2n 2n+ 2m
3n+ 1
2

+ m
n+ 1
2

3n+ 1
2

− m
3n− 2m 2n+ 1 n+ 1− m


 if n− 3m= 0;




3n− 2m 2n+ 1 n+ 1− m
3n+ 1
2

+ m
n+ 1
2

3n+ 1
2

− m
m+ 1 2n 2n+ 2m


 if n− 3m=−1:

In all three cases, when we glue A and B with the matrix B−(1), we have a 3 × 7
matrix whose row sums are all equal. We now construct our magic (3; n)-rectangle
R by adding the (n − 7)=4 blocks B+(i); 26i6(n − 3)=4 and the (n − 7)=4 blocks
B−(i); (n + 1)=46i6(n − 3)=2; i 6= m to A and B. We note that we omit the block
B−(m) since its entries already appear in A and that we know m =
[(n + 1)=3]¿(n + 1)=4. The respective row and column sums of our rectangle are
constant. Again, it is straightforward to see that the entries in R are the integers from
1 to 3n.

Proposition 7. For odd numbers m; n¿ 1; a magic (m; n)-rectangle exists.

Proof. We can assume that m6n. Then the existence of a magic (m; n)-rectangle
follows from the more general proposition:

Proposition 8. Suppose n¿m¿ 1 are odd integers and d=1
2(m−1). Then there exists

a magic (m; n)-rectangle R that contains the n− 2d integers d(n+1)6x6d(n− 1)+
n; x 6= dn+ (n+ 1)=2; in a single row.

To construct R, we introduce the following matrices. Let

C+(i) =
(

i n+ 1− i
mn+ 1− i mn− n+ i

)
;

C−(i) =
(
mn+ 1− i mn− n+ i

i n+ 1− i
)
;

and

Dn =




(
(n+ 1)=2

mn+ (1− n)=2
)

if n ≡ 1mod 4;
(
mn+ (1− n)=2
(n+ 1)=2

)
if n ≡ 3mod 4:
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Proof of Proposition 8. By the proof of Proposition 6, we can assume that m¿5. We
will prove the general case by induction on m. Assume that the proposition is true for
m− 2 and let S be the desired magic (m− 2; n)-rectangle. By adding n to each entry
of S, we obtain a rectangle R. The entries of R are the integers [n + 1; mn − n] and
one row of R, row i, contains the integers x 6= dn + (n + 1)=2 from dn + d − 1 to
dn+n+1−d. We now obtain a magic (m; n)-rectangle by adding two rows containing
the integers in [1; n] and [mn + 1 − n; mn] to R. By interchanging the columns of R,
we can assume that the integers dn+ d− 1 and dn+ n+1− d in row i appear in the
�rst and second columns of R. We now let

A=
(

d− 1 d n+ 2− d n+ 1− d
mn+ 2− d mn+ 1− d mn− n+ d− 1 mn− n+ d

)
:

Now, there are (n−5)=2 positive integers less than n=2 which are not equal to d−1 or
d. If n ≡ 1mod 4, divide these numbers into a collection of (n− 1)=4 integers ai and
a group of (n− 9)=4 integers bi. If n ≡ 3mod 4, divide these integers into a collection
of (n− 3)=4 integers ai and a group of (n− 7)=4 numbers bi. Let R1 be the rectangle
obtained by appending to the bottom of R the two rows formed by glueing in order the
rectangles A, the C−(ai), the C+(bi), and Dn. The column sums of R1 are all equal.
However, the sums of the last two rows of R1 are not equal. The sum of row m − 1
is easily checked to be mn− n less than the sum of the last row. But we can correct
this problem by exchanging the positions of d− 1 and dn+ d− 1 in the �rst column
of R1 and the positions of mn+1−d and dn+ n+1−d in the second column of R1.
This does not change the column sums. And the sum of row i of R is unchanged as
dn+ d− 1 and dn+ n+1− d lie in the same row i of R and their sum 2dn+ n=mn
equals (d − 1) + (mn + 1 − d). Now, the row sums of the last two rows of R1 both
equal the desired n(mn + 1)=2. Hence R1 is a magic (m; n)-rectangle and the integers
from dn+ d to dn+ n− d, with the exception of dn+ (n+ 1)=2, lie in row i. So the
induction hypothesis is satis�ed and the proposition has been proven.

5. Unique prime factorization

Proposition 3 shows that in certain cases one can add two magic rectangles together
to form a third magic rectangle. We now recall a classical method for multiplying
magic rectangles. If A = (aij) is a magic (m1; n1)-rectangle and B = (bij) is a magic
(m2; n2)-rectangle, then we de�ne the magic (m1m2; n1n2)-rectangle C=A∗B by letting
C = (cij), where

cij = ai0j0 + m1n1(bi1j1 − 1);
where i = m1i1 + i0; with 06i0¡m1 and j = n1j1 + j0; with 06j0¡n1. C can be
shown to be a magic rectangle [2]. For this multiplication, the magic (1; 1)-rectangle e
is the identity element. The multiplication’s de�nition immediately shows that we have
left and right cancellation laws:
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Proposition 9. Suppose A; B; and C are magic rectangles. If A∗B=A∗C; then B=C.
If A ∗ C = B ∗ C; then A= B.

We call A an irreducible magic rectangle if A cannot be expressed as a product
B ∗ C of two magic rectangles B, C 6= e. Since the size of the factors of A must be
smaller than A, we can factor every magic rectangle as a product of irreducible magic
rectangles. In [1], Adler showed that for magic squares this decomposition is unique.
We now show the analogous proposition for magic rectangles:

Proposition 10. A magic rectangle has a unique decomposition as a product of
irreducible magic rectangles.

Proof. We will derive a contradiction by supposing that the magic rectangle A can be
written in two di�erent ways as the product of irreducible magic rectangles. Let

∏n
i=1 Ri

and
∏m
i=1 Si be the two di�erent factorizations. Using the left cancellation law, we can

assume that R1 6= S1. However, this contradicts Proposition 11 and the proposition is
proven.

Proposition 11. Let A; B; C; and D be magic rectangles with A ∗ B= C ∗ D. Suppose
that A and C are irreducible. Then A= C.

Proof. Let A = (aij) be a magic (m1; n1)-rectangle and C = (cij) a magic (m2; n2)-
rectangle. We can assume that m1n16m2n2. Suppose that the integer 1 appears in B
at the (b1; b2)-th place. If A ∗ B= (�ij), then aij = �m1b1+i;m2b2+j and thus a copy A0 of
A occurs in A ∗ B. Similarly there is a copy C0 of C inside of C ∗ D. Since these are
equal, and A and C consist of the �rst m1n1 (resp. m2n2) positive integers, we must
have that A0⊂C0. If m1n1 =m2n2, then A0⊂C0 implies that m1 =m2 and n1 =n2. And
since the entries agree, we see that A0 = C0 and A= C.
Hence we can assume that m1n1¡m2n2. Let Ak be the translate of A in A ∗ B

obtained by adding km1n1 to all the entries of A. Now a similar argument as above
shows that C0 is covered by the translates A0; : : : ; At of A, where At ∩ C0 6= ∅. Since
the entries of C0 and each translate Ak are consecutive positive integers, the �rst t
translates of A must be contained in C0. The last translate At may or may not be
contained in C0. If At ⊂C0, then the rectangle C0 is tiled by the t + 1 translates of A.
By the geometry of A∗B, these tiles are obtained by horizontal and vertical translations
of A0. Thus, m2 (resp. n2) must be a multiple of m1 (resp. n1). We then have C=A∗E,
where E = (eij) is de�ned by cm1i+i0 ; n1j+j0 = ai0 ; j0 + m1n1(eij − 1). Since C and A are
magic rectangles, it is straightforward to show that E is a magic rectangle. But this
contradicts the irreducibility of C.
So we can assume that At 6⊂C0. But the only way that At can be the only translate

of A not contained in C0 is if either m1 = m2 or n1 = n2. Without loss of generality,
we can assume n1 = n2. Let r ¿ 0 be the remainder of the quotient m2=m1. Then the
translate At will have r of its rows contained in C0 and m1−r of its rows not contained
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in C0. Since C0 consists of the �rst m2n2 positive integers, all the entries of the r rows
of At contained in C0 will be less than the entries of the rows of At not in C0. Hence
the sums of the rows of At will not be the same. But since At is a translate of the
magic rectangle A, its row sums must be equal. We have a contradiction. Hence our
assumption that m1n1¡m2n2 is incorrect and A= C. The proposition is proved.
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