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Abstract

This paper studies the generating problem for Moore families ansat (i.e. families closed under
intersection containing the-set) or closure operators. We show a bijection between Moore families
and ideal color sets of the colored poset basea.@h—1, wheren.2"~1 is the sum ofn Boolean
lattices withn — 1 atoms. By applying an algorithm to generate ideal color sets, we can determine
that the number of Moore families on 6 elements is exactly 75973751 474.
© 2005 Elsevier B.V. All rights reserved.
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Enumerating combinatorial objects has been always an attractive research area in combi-
natorics. Advances in computation have helped combinatorists to determine various values
even in cases where they fail to obtain explicit formulas. This yields new motivation to
search for efficient generation algorithms.

The number of Moore families om elements is known for <5 by Higuchi[3] (see
Table J). These values were computed using a lexicographic depth first search of the covering
graph of the lattice of Moore families. Up to now the major drawback of this method is the
time needed for computation of the next Moore family in a given lexicographic order.

In the following, we will present a new method based on a bijection between Moore
families and ideal color sets of a colored pd&gt that leads us to compute the number of
Moore families forn = 6.
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Table 1

Known values of the number of Moore families onraset

n | A 1|

1 2

2 7

3 61

4 2480

5 1385552 Higuchj3]

6 75973751474 This paper

For definitions on lattices and ordered sets not given here, see Davey and Priestley’s
book[2].

1. Some definitions and properties for Moore families

Let X be ann-set and ¥ its power set. A Moore family oiX is a family of subsets of
X closed by set-intersection and containing theXéet Moore family is also known as a
closure system; i.e. the set of all closed sets of a closure operator. Thg, sdtall possible
Moore families on am-set, ordered by set-inclusion is a lattice, called the lattice of all
Moore families, denoted by?,, = (.# ,, ©). The intersection of two Moore families is also
a Moore family, therefore the whole family/,, is also a closure system.

Clearly, the set of all Moore families on a s€tis exactly the set of all meet-sublattices
of the Boolean lattice ® containing the seX (Fig. 1). So, the number of Moore families
on a seX is equal to the number of meet-sublattices containing thX seid equal to the
number of join-sublattices of*2containing the empty set.

Our first strategy to count the number of Moore families on X$&based on counting the
number of join-sublattices o2 Consider the Boolean latticé’2= (2X, ©) with | X| =n.
Let S, denote the set of all join-sublattices of 2ontaining the empty set. The following
simple lemma gives us a method to count the siz&,of

Lemma 1. Let L be a join-sublattice 02X and A € L, A # ¢. ThenL\A is a join-
sublattice of L iff A is a join-irreducible element in the lattice L

Proof. Obvious since a join-irreducible element cannot be the join of two other
elements. O

Let A € 2X be a minimal join-irreducible of the latticeX2 Then, the ses, can be
decomposed into two sets as follows:

e S,/A={L € S,|A € L}: the join-sublattices containing.
e S,\A={L € S,|A¢L}: the join-sublattices not containirfg

This decomposition induces a recursive method to generate all join-sublafficesd
therefore to count them.
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Fig. 1. (a) The Boolean latticel 22}, (b) .4 2: the lattice of Moore families oiX = {1, 2} (i.e. each element of
5 is a meet-sublattice ofi®2}),
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Fig. 2. (a) A colored poset, (b) a simple colored poset.

We first implemented this method (based on Lemma 1) to generate join-sublattices of the
Boolean lattice 2, but we had to stop the computation after several days without any result.
This was due to the time needed to update the covering gralplvbén a join-irreducible
has been deleted from the covering graph.of

To avoid this brute force technique, we use the ideal color sets of a colored poset in-
troduced in[5] as a representation of any lattice. In the following, we show how to count
efficiently the number of join-sublattices of the Boolean latti®e Phis leads us to compute
the number of Moore families fgiX| = 6.

Definition 1. A colored poset, denoted = (X, <, y), isthe poseP = (X, <) equipped
with a coloringy : X — 2¥ such thatr < y impliesy(x) N y(y) = @, whereM is a set of
colors. In other words; is a set-coloring of the comparability graphff

A colored poset is said to be simple if the color set of any element is a singleton (i.e., the
coloringy is from X to M), seeFig. 2b.

Let P = (X, <, y) be a colored poset arida subset oiX. Let us recall that an order
ideall of P satisfiesx € I andy <x impliesy € I. We define thedeal color setas the
set of colors of elements ihideal of P, i.e C(I) = J,; 7(x). In Fig. 2a, if I = {a, c}
thenC (1) = {1, 2, 3, 4}. Notice that two different ideals can have the same color sets, i.e.
if J={a,b,c}thenC(I)=C(J)inFig. 2a.
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Fig. 3. (a) 2 and its atomistic coloring; i.e. numbers from 0 to 3, (b) colored p#sefc) the lattice of ideal color
sets of P> which is dually isomorphic to/» in Fig. 1

The setof allideal color sets Bf denoted byg ( P), is a closed under union and containing
the empty set, and hence a lattice, called the lattice of all ideal color sBts of

Let.#(P) be the set of all order ideals Bf We define the mapping geré'(P) — . (P)
by genC)={x € X|y(] x) € C}where| x ={y € X |y<x} (i.e. genC) is the unique
largest ideal of P with y(I) = C). In Fig. 2a, gen{1, 2, 3, 4}) = {a, b, ¢, d}. Note that the
mapping gen is an order embedding&(P) into .7 (P).

In the following, we construct a simple colored poset in which its ideal color sets are in
bijection with the join-sublattices of the Boolean lattice ¢Fig. 3).

Let Q be a Boolean lattice on atoms, sayig, a1, . . ., a,—1. We consider the mapping
y:Q — [0,2" — 1] as follows:

0_ if X is the bottom element
P(x) = {2’ if x=qa; for somei € [0,n — 1], (2)
ZHEJ(X) y(a) otherwise

whereJ (x) is the set of all atoms belowin Q.

The applicationy is a simple coloring since each element df Bas only one color.
Moreoverx <y implies J(x) C J(y) and thereforg(x) # y(y) (i.e.y(x) N y(y) = 0).

We define the colored posg}, as the disjoint sum of all intervalg, T] of Q whereais
an atom ofQ andT the top element o. The color of an element iR, is equal to its color
in Q. Since two elements @ do not have the same color, we can identify an eleme in
with its color.

Theorem 1. Let L be a subset & andC = {c € 2X |c¢ ¢ L}. L is a join-sublattice oRX
containing the colo0 iff the set C is an ideal color set @,.

Proof. Suppose thdt is a join-sublattice of ¥ containing the color 0. I€ is empty, we are
done so we may assume tl@ais not empty. Let be a color inC. Sincecis not inL, there
must be an atora in 2X with the property that < ¢ and for allb in 2X such that: <b <c,
b is also not inL. If this was not the case, we could expresss the join of elements ib,
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and sincd. is a join-sublatticec would have to be a member bf It is now clear that the
entire set| ¢ in the componenia, T] consists of elements not Inand is an order ideal.
Taking the union of all such order ideals that can be constructed using the calygeildls
an order ideal whose color set is exad@ly

Now, suppose thdt is an ideal color set af,,. We want to show thdt is a join-sublattice
containing 0. Notice thdt andC are complements. Clearly 0 is insince it cannot be in
C by the definition ofP,. Now suppose thad ande are inL, but their joinc is not inL.
Sincecis in C, there must be some atoasuch that| ¢ is a subset o€ and also a subset
of [a, T]. The coloring has been set up so that the numbers corresponding to elements of
2% can be thought of a bit vectors, with join corresponding to bit@& In addition, the
atoms of X are exactly the bit vectors having just a single 1. Sineed + e, eitherd or e
must be ina, T], and hence il€. This contradicts the fact that botkande are inL. Thus,
we see that is closed under joins. [J

Given a numben, let us sketch the algorithm that generates all ideal color seBs.of
Clearly, we can use any algorithm for generating order ideabs mset; but as one can
easily remark, the number of order ideals is greater than the number of ideal color sets of
Pn. For P, we have 9 order ideals and only 7 ideal color sets.

To avoid these extra order ideals, we use the divide and conquer algorithm for generating
order ideals of the posét, [4]. Indeed, for each ideal color s€tof Py, we first generate
the ideal color sets containir@ and then the ideal color sets not containldglLet C be
the empty ideal color set corresponding to the empty order idédleach step we do the
following:

e Choose a minimal elemertof P,.

e ComputeR = gen(C U y(x))\I. Increase the number of ideal color sets by 1.

e Compute the ideal color sets &\ R with C = C U y(x) andl = I U R. Namely, the
color of any element ifRis a color of an element ihU {x}, thus adding these elements
to I U {x} do not change the ideal color set corresponding to{x}. Note that these
ideal color sets contai@ U y(x).

e Compute the ideal color sets #i\{1 y|y € Py andy(y) € C U y(x)} with C andl,
wheret y = {z € P,| y<z}. These ideal color sets do not contéirJ y(x).

We have written a program to count the number of ideal color sets of the coloredAgoset
The whole computation for generatings, used about 24 h on Pentium 111 600 MHz.

The C-program can be found imivw.lirmm.fr/~habib/PROGRAM/Moore.cc”.

Since the enumeration problem of Moore families remains open, we are now studying
structural aspects of colored posets. It could be possible to find an explicit formula or a
better upper bounfd].
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