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The number of Moore families onn=6
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Abstract

This paper studies the generating problem for Moore families on ann-set (i.e. families closed under
intersection containing then-set) or closure operators. We show a bijection between Moore families
and ideal color sets of the colored poset based onn.2n−1, wheren.2n−1 is the sum ofn Boolean
lattices withn − 1 atoms. By applying an algorithm to generate ideal color sets, we can determine
that the number of Moore families on 6 elements is exactly 75973751474.
© 2005 Elsevier B.V. All rights reserved.
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Enumerating combinatorial objects has been always an attractive research area in combi-
natorics. Advances in computation have helped combinatorists to determine various values
even in cases where they fail to obtain explicit formulas. This yields new motivation to
search for efficient generation algorithms.
The number of Moore families onn elements is known forn�5 by Higuchi [3] (see

Table1).Thesevalueswerecomputedusinga lexicographicdepthfirst searchof thecovering
graph of the lattice of Moore families. Up to now the major drawback of this method is the
time needed for computation of the next Moore family in a given lexicographic order.
In the following, we will present a new method based on a bijection between Moore

families and ideal color sets of a colored poset[5], that leads us to compute the number of
Moore families forn = 6.
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Table 1
Known values of the number of Moore families on ann-set

n |Mn|

1 2
2 7
3 61
4 2480
5 1385552 Higuchi[3]
6 75973751474 This paper

For definitions on lattices and ordered sets not given here, see Davey and Priestley’s
book[2].

1. Some definitions and properties for Moore families

Let X be ann-set and 2X its power set. A Moore family onX is a family of subsets of
X closed by set-intersection and containing the setX. A Moore family is also known as a
closure system; i.e. the set of all closed sets of a closure operator. The setMn of all possible
Moore families on ann-set, ordered by set-inclusion is a lattice, called the lattice of all
Moore families, denoted byMn = (Mn, ⊆). The intersection of two Moore families is also
a Moore family, therefore the whole familyMn is also a closure system.
Clearly, the set of all Moore families on a setX is exactly the set of all meet-sublattices

of the Boolean lattice 2X containing the setX (Fig. 1). So, the number of Moore families
on a setX is equal to the number of meet-sublattices containing the setX and equal to the
number of join-sublattices of 2X containing the empty set.
Our first strategy to count the number ofMoore families ona setX is basedon counting the

number of join-sublattices of 2X. Consider the Boolean lattice 2X = (2X, ⊆) with |X| = n.
Let Sn denote the set of all join-sublattices of 2X containing the empty set. The following
simple lemma gives us a method to count the size ofSn.

Lemma 1. Let L be a join-sublattice of2X andA ∈ L, A �= ∅. ThenL\A is a join-
sublattice of L iff A is a join-irreducible element in the lattice L.

Proof. Obvious since a join-irreducible element cannot be the join of two other
elements. �

Let A ∈ 2X be a minimal join-irreducible of the lattice 2X. Then, the setSn can be
decomposed into two sets as follows:

• Sn/A = {L ∈ Sn |A ∈ L}: the join-sublattices containingA.
• Sn\A = {L ∈ Sn |A /∈ L}: the join-sublattices not containingA.
This decomposition induces a recursive method to generate all join-sublatticesSn, and
therefore to count them.
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Fig. 1. (a) The Boolean lattice 2{1,2}, (b)M2: the lattice of Moore families onX = {1,2} (i.e. each element of
M2 is a meet-sublattice of 2{1,2}).
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Fig. 2. (a) A colored poset, (b) a simple colored poset.

We first implemented this method (based on Lemma 1) to generate join-sublattices of the
Boolean lattice 26, but we had to stop the computation after several days without any result.
This was due to the time needed to update the covering graph ofL when a join-irreducible
has been deleted from the covering graph ofL.
To avoid this brute force technique, we use the ideal color sets of a colored poset in-

troduced in[5] as a representation of any lattice. In the following, we show how to count
efficiently the number of join-sublattices of the Boolean lattice 2X. This leads us to compute
the number of Moore families for|X| = 6.

Definition 1. A colored poset, denoted byP =(X, < , �), is the posetP =(X, <) equipped
with a coloring� : X → 2M such thatx < y implies�(x) ∩ �(y) = ∅, whereM is a set of
colors. In other words,� is a set-coloring of the comparability graph ofP.
A colored poset is said to be simple if the color set of any element is a singleton (i.e., the

coloring� is fromX toM), seeFig. 2b.

Let P = (X, < , �) be a colored poset andI a subset ofX. Let us recall that an order
ideal I of P satisfiesx ∈ I andy < x impliesy ∈ I . We define theideal color setas the
set of colors of elements inI ideal ofP, i.e C(I) = ⋃

x∈I �(x). In Fig. 2a, if I = {a, c}
thenC(I) = {1,2,3,4}. Notice that two different ideals can have the same color sets, i.e.
if J = {a, b, c} thenC(I) = C(J ) in Fig. 2a.
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Fig. 3. (a) 22 and its atomistic coloring; i.e. numbers from 0 to 3, (b) colored posetP2, (c) the lattice of ideal color
sets ofP2 which is dually isomorphic toM2 in Fig. 1.

Theset of all ideal color sets ofP, denotedbyC(P ), is a closedunder unionandcontaining
the empty set, and hence a lattice, called the lattice of all ideal color sets ofP.
LetI(P ) be the set of all order ideals ofP.We define themapping gen: C(P ) → I(P )

by gen(C) = {x ∈ X | �(↓ x) ⊆ C} where↓ x = {y ∈ X | y�x} (i.e. gen(C) is the unique
largest idealI of Pwith �(I ) = C). In Fig. 2a, gen({1,2,3,4}) = {a, b, c, d}. Note that the
mapping gen is an order embedding ofC(P ) intoI(P ).
In the following, we construct a simple colored poset in which its ideal color sets are in

bijection with the join-sublattices of the Boolean lattice 2X (Fig. 3).
LetQ be a Boolean lattice onn atoms, saya0, a1, . . . , an−1. We consider the mapping

� : Q → [0,2n − 1] as follows:

�(x) =
{0 if x is the bottom element,
2i if x = ai for somei ∈ [0, n − 1],∑

a∈J (x) �(a) otherwise,
(1)

whereJ (x) is the set of all atoms belowx in Q.
The application� is a simple coloring since each element of 2X has only one color.

Moreoverx<Qy impliesJ (x) ⊂ J (y) and therefore�(x) �= �(y) (i.e. �(x) ∩ �(y) = ∅).
We define the colored posetPn as the disjoint sum of all intervals[a, �] of Qwherea is

an atom ofQand� the top element ofQ. The color of an element inPn is equal to its color
in Q. Since two elements ofQ do not have the same color, we can identify an element inQ
with its color.

Theorem 1. Let L be a subset of2X andC = {c ∈ 2X | c /∈ L}. L is a join-sublattice of2X

containing the color0 iff the set C is an ideal color set ofPn.

Proof. Suppose thatL is a join-sublattice of 2X containing the color 0. IfC is empty, we are
done so we may assume thatC is not empty. Letc be a color inC. Sincec is not inL, there
must be an atoma in 2X with the property thata�c and for allb in 2X such thata�b�c,
b is also not inL. If this was not the case, we could expressc as the join of elements inL,
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and sinceL is a join-sublattice,cwould have to be a member ofL. It is now clear that the
entire set↓ c in the component[a, �] consists of elements not inL and is an order ideal.
Taking the union of all such order ideals that can be constructed using the colors inC yields
an order ideal whose color set is exactlyC.
Now, suppose thatC is an ideal color set ofPn.Wewant to show thatL is a join-sublattice

containing 0. Notice thatL andC are complements. Clearly 0 is inL since it cannot be in
C by the definition ofPn. Now suppose thatd ande are inL, but their joinc is not inL.
Sincec is inC, there must be some atoma, such that↓ c is a subset ofC and also a subset
of [a, �]. The coloring has been set up so that the numbers corresponding to elements of
2X can be thought of a bit vectors, with join corresponding to bitwiseOR. In addition, the
atoms of 2X are exactly the bit vectors having just a single 1. Sincec = d + e, eitherd or e
must be in[a, �], and hence inC. This contradicts the fact that bothd andeare inL. Thus,
we see thatL is closed under joins.�

Given a numbern, let us sketch the algorithm that generates all ideal color sets ofPn.
Clearly, we can use any algorithm for generating order ideals ofa poset; but as one can
easily remark, the number of order ideals is greater than the number of ideal color sets of
Pn. ForP2, we have 9 order ideals and only 7 ideal color sets.
To avoid these extra order ideals, we use the divide and conquer algorithm for generating

order ideals of the posetPn [4]. Indeed, for each ideal color setC of Pn, we first generate
the ideal color sets containingC and then the ideal color sets not containingC. Let C be
the empty ideal color set corresponding to the empty order idealI. At each step we do the
following:

• Choose a minimal elementx of Pn.
• ComputeR = gen(C ∪ �(x))\I . Increase the number of ideal color sets by 1.
• Compute the ideal color sets ofPn\R with C = C ∪ �(x) andI = I ∪ R. Namely, the
color of any element inR is a color of an element inI ∪ {x}, thus adding these elements
to I ∪ {x} do not change the ideal color set corresponding toI ∪ {x}. Note that these
ideal color sets containC ∪ �(x).

• Compute the ideal color sets ofPn\{↑ y | y ∈ Pn and�(y) ∈ C ∪ �(x)} with C andI,
where↑ y = {z ∈ Pn | y�z}. These ideal color sets do not containC ∪ �(x).

We have written a program to count the number of ideal color sets of the colored posetP6.
The whole computation for generatingM6, used about 24h on Pentium III 600MHz.
The C-program can be found in “www.lirmm.fr/∼habib/PROGRAM/Moore.cc”.
Since the enumeration problem of Moore families remains open, we are now studying

structural aspects of colored posets. It could be possible to find an explicit formula or a
better upper bound[1].
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