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I do not agree with the authors of papers arXiv:0806.2184 and arXiv:0901.1023v1 (published in [Zhe
Chang, Xin Li, Phys. Lett. B 668 (2008) 453] and [Zhe Chang, Xin Li, Phys. Lett. B 676 (2009) 173], respec-
tively). They consider that “In Finsler manifold, there exists a unique linear connection – the Chern connection . . .
It is torsion freeness and metric compatibility . . . ”. There are well-known results (for example, presented in
monographs by H. Rund and R. Miron and M. Anastasiei) that in Finsler geometry there exist an infi-
nite number of linear connections defined by the same metric structure and that the Chern and Berwald
connections are not metric compatible. For instance, the Chern’s one (being with zero torsion and “weak”
compatibility on the base manifold of tangent bundle) is not generally compatible with the metric struc-
ture on total space. This results in a number of additional difficulties and sophistication in definition of
Finsler spinors and Dirac operators and in additional problems with further generalizations for quantum
gravity and noncommutative/string/brane/gauge theories. I conclude that standard physics theories can be
generalized naturally by gravitational and matter field equations for the Cartan and/or any other Finsler
metric compatible connections. This allows us to construct more realistic models of Finsler spacetimes,
anisotropic field interactions and cosmology.

© 2010 Elsevier B.V. Open access under CC BY license. 
There is a recent interest for a new physics beyond the Stan-
dard Model related to Finsler theories of curved spacetime and
quantum gravity and possible applications in modern cosmology,
see [1–4] and references therein. Such theories constructed on
tangent bundles of spacetime manifolds are positively with local
Lorentz violations which may be related to new directions in parti-
cle physics and dark energy and dark matter models in cosmology.
It is very important that researches in particle physics and cosmol-
ogy would became more familiar with some important methods
and perspectives and possible applications of Finsler geometry in
standard and nonstandard theories of physics (a survey and re-
views of main ideas and results oriented to applications in high
energy physics are presented respectively in Refs. [5–7]).

In this Letter I comment on some ambiguities existing in the
above mentioned two papers by Zhe Chang and Xin Li, suggest
possible solutions of the Chern–Finsler “nonmetricity” problem and
speculate about “well-defined” Finsler gravity theories and cosmo-
logical models. The goal is also to present a brief review of the
main concepts and results on Finsler gravity modifications of the
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Einstein gravity theory. We emphasize the possibility to model
(pseudo) Finsler configurations as exact solutions in general rel-
ativity and analyze the most important consequences for quantum
gravity and applications in cosmology.

1. Problems with the Chern–Finsler nonmetricity

Just before formula (5) in [1], the authors wrote: “In Finsler
manifold, there exist a unique linear connection – the Chern con-
nection [22]. It is torsion freenes and metric compatibility . . . ”.1

Perhaps, such a conclusion was drawn from formulas (5) and (9)
in [1] stating that the metric compatibility and zero torsion con-
ditions hold for the Chern connection on the base manifolds of
tangent bundles. In general, Finsler spaces endowed with Chern
and/or Berwald connections, and various their modifications, are
with generic nonmetricity (when the metric and connection struc-
tures are not compatible). The geometry and physical properties
of such Finsler-affine (and generalized Lagrange-affine) spaces and

1 We wrote [22] which means the corresponding citation in [1]; similar sentences
are written also before formula (2) in [2].
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nonholonomic metric-affine gravity theories were studied in de-
tails in Part I of book [7].

We emphasize that a Finsler geometry/gravity model can be de-
fined completely only on the total space of a tangent bundle T M
of a manifold M (see, for instance, [3,4,7–9] and, chronologically,
some most important monographs on Finsler geometry and ap-
plications [10–15]). If a (pseudo) Riemannian geometry on M is
determined only by one fundamental geometric object, the sym-
metric metric tensor g, a (pseudo) Finsler geometry has to be
constructed from three fundamental geometric objects on total
space T M .2 For some canonical Finsler space models, all three
fundamental geometric objects are completely defined by a gen-
erating (fundamental) Finsler function F (x, y) subjected to certain
homogeneity and other conditions, with x denoting the set of lo-
cal coordinates on M (or, alternatively, on hV) and y denoting the
set of “fiber” like coordinates in T M (or, alternatively, on vV). Fol-
lowing well-defined conventions for Cartan/Berwald/Chern–Finsler
spaces, one generates by F on T M: 1) a (Finsler, for instance,
Sasaki type) metric F g = (hF g, v F g), 2) a nonlinear connection (N-
connection) N (associated to a splitting T T M = hT M ⊕ vT M), and
3) a distinguished connection, d-connection F D = (hD, vD) (which
is a linear connection adapted to an N-connection h–v splitting,
i.e. preserving under parallelism such a Whitney sum ⊕ stated on
corresponding tangent spaces). So, a Finsler geometry is completely
defined by a corresponding set of data (F : F g,N,F D).

The authors of [1,2] cited the monograph [15] and used the
Chern d-connection [17], F D = ChD, derived in a unique form to
satisfy the conditions: 1) vanishing torsion, ChT = 0, and “hori-
zontal” metric compatibility, hChD(hF g) = 0. In brief, the Chern
d-connection ChD on T M generalizes the Levi-Civita connection ∇
on M in such a manner that the torsion is “pumped” into a
“vertical” nonmetricity vQ �= 0, when (in general, on T M) Q ≡
ChDF g �= 0. Such a proof exists in details in [15]. So, the authors
of [1,2] were not right stating that ChD is “metric compatible”.
A “weak” compatibility exists only on the h-subspace but not for
a general geometric/physical model on T M . It is also not metric
compatible the Berwald model of Finsler geometry with F D = B D
(label B is from “Berwald”), see details in Refs. [7–9,15].

Alternatively to ChD and/or B D, there is in Finsler geometry
a canonical metric compatible d-connection (called the Cartan d-
connection [10]), F D = cD (historically, it was the first one intro-
duced for a completely defined model of Finsler space). It satisfies
the metricity condition on T M , cDF g = 0, but has a nontrivial
torsion, cT �= 0. The interesting thing is that cT is induced by h-
and v-components of F g and the coefficients of the canonical Car-
tan N-connection, N = cN (with an associated canonical semi-spray
configuration [7–9,15]). All mentioned canonical values are deter-
mined by a fundamental Finsler function F . Such a torsion cT is
very different from those in Einstein–Cartan/gauge/string gravity
when certain additional field equations are used for determining
the torsion components.

In general, there is an infinite number of metric compatible
connections in Finsler and Lagrange geometries (Lagrange geom-
etry is a “nonhomogeneous” generalization of Finsler geometry,
with a nondegenerate fundamental Lagrangian); see a theorem by
R. Miron in [8,9], we discuss the physical implications in [5]. So,
the authors of [1,2] erred stating that the Chern connection is
the “unique” one for Finsler gravity. Here we also emphasize that

2 Physicists use “pseudo” for metric structure with local signature ±. Alterna-
tively, a Finsler geometry/gravity model can be constructed on a nonholonomic
manifold V endowed with a conventional “horizontal–vertical” (h–v), splitting,
T V = hV ⊕ vV, i.e. with a nonholonomic distribution; we follow notations and
results outlined in [5], see also details and bibliography on the geometry and appli-
cations of nonholonomic manifolds in [16,7].
the nonmetricity of Finsler gravity models with Chern/Berwald d-
connection, and with any other nonmetric one, results in more
sophisticate “very nonstandard” physical theories. Together with
an unclear status of nonmetricity fields, the metric incompatibil-
ity make more difficult the definition of spinors and conservation
laws in Finsler gravity (there is a series of our works in this direc-
tion [18–22]) and does not allow “simple” (super) string and non-
commutative generalizations like we proposed [25,26,23,24].3 We
studied in details the so-called Finsler/Lagrange-affine spaces and
gravity models, in general, with nontrivial torsion and nonmetric-
ity, in Part I of monograph [7] and discussed possible connections
of Finsler geometry and methods to standard theories of physics
in [5,27].

2. Ambiguities with Finsler generalizations of the Einstein
equations

Before formula (9) in [2], the authors wrote: “The Ricci ten-
sor on Finsler manifold was first introduced by Akbar-Zadeh [21]”
(we put in this Letter the reference [28] which in that paper
is [21]). Perhaps that was the first attempt to define a Ricci ten-
sor for Finsler spaces with constant sectional curvature for the
Chern d-connection ChD, but this is not correct for all Finsler ge-
ometry/gravity models. In general, there were considered various
types of Ricci type tensors in Finsler geometries (see, for instance,
[11,12,8,9,14,7,5]). There is, for instance, a discussion on Finsler
and Lagrange gravity by S. Ikeda in Appendix to [8]. We also ana-
lyzed in details such generalized Finsler gravity theories, with zero
and non-zero nonmetricity, for “standard” and “nonstandard” the-
ories of particle physics and gravity, providing a number of exact
solutions and applications (together with generalizations to non-
commutative/string/grave gravity), see reviews [5,6,27,7].

We note that in monographs [8,9] (see also references therein),
the Einstein equations were first time written in a self-consistent
form on vector/tangent bundles for the so-called canonical d-con-
nection/h–v-connection (in our works, for instance, [5,27] de-
noted D̂; see there further details and local formulas). For canoni-
cal cN and cD, they contain the Einstein equations for the Cartan–
Finsler gravity model on T M . In brief, we can say that such a
Finsler gravity theory is similar to the Einstein gravity but the
field equations are for cD. The corresponding Ricci, Ric(D̂), and
Einstein, E(D̂), tensors are determined not by the Levi-Civita con-
nection ∇ (which is not a d-connection because it is not adapted
to the N-connection structure) but constructed for D̂. In a more
particular case, for Finsler and Lagrange spaces, we can consider
D̂ = cD.

In Refs. [8,9], for gravity theories on (generalized) Lagrange–
Finsler spaces, on T M , and Finsler like configurations modelled
on nonholonomic manifolds (for instance, defined as exact solu-

3 Briefly, we sketch the problem of definition of Clifford structures and spinors
and of conservation laws in Finsler spaces: In general relativity, we have γμγν +
γνγμ = 2gμν , for gamma matrices γμ , when the Levi-Civita connection ∇ satisfies
the metricity conditions ∇α gμν = 0. This allows us to introduce the Dirac operator
on (psedudo) Riemannian spaces, induced by ∇α and a fixed tetradic basis and to
define the Dirac equations for the Einstein gravity theory when ∇α T μν = 0, for any
matter fields with energy–momentum tensor T μν .

For a Finsler gravity model with nonmetricity, when F DF g �= 0, it is a problem
to define self-consistent analogs of gamma matrices and (Finsler–)Dirac operators.
Working with metric compatible d-connections with nonholonomically induced tor-
sions, the constructions become similar to those in general relativity. Here we also
note that for nonholonomic configurations the Ricci tensor, in general, is not sym-
metric and F Dα T μν �= 0. Both the Finsler–Dirac operators and generalized conserva-
tion laws on Finsler space with metric compatible d-connections, and corresponding
nonintegrable constraints, were constructed/defined in the works to which this foot-
note refers.
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tions in Einstein gravity),4 there were considered gravitational field
equations of type

E(D̂) = ϒ, (1)

where the Einstein tensor E(D̂) and source ϒ are constructed
from D̂, F g and Lagrangians for matter fields following the same
principles as in general relativity theory but extended on cor-
responding vector/tangent bundles, or nonholonomic manifolds,
in N-adapted form (following a corresponding tensor/form/spinor/
variational calculus preserving the h-/v-splitting). We can consider
such ϒ when for D̂ → ∇ Eqs. (1) transform into the usual Einstein
equations (for different purposes, and generality, we have to work
with arbitrary dimensions), see details in [5,27,24]. We emphasize
that

D̂ = ∇ + Ẑ, (2)

when both the linear connections D̂ and ∇ and the distortion ten-
sor Ẑ are defined by the same metric structure g = F g (we can
introduce Finsler variables by certain convenient frame/coordinate
transforms).

The most important property of Finsler like theories of grav-
ity is that the “locally anisotropic” gravitational field equations are
formulated not for the Levi-Civita connection ∇ but for a d-con-
nection D, or F D. In explicit form, a “physical” d-connection has
to be chosen following certain theoretical arguments and compat-
ibility with experimental data. If D = D̂, or D = cD, we work with
metric compatible geometries and more realistic physical models
(admitting fermionic and gauge fields which can be introduced
similarly as in standard particle physics). Even, in general,

D̂
(
E(D̂)

) = D̂ϒ �= 0, (3)

contrary to the general relativity theory when

∇E = ∇T (matter) = 0, (4)

we can consider that relations of type (3) follow from (4) and usual
Bianchi identities for (pseudo) Riemannian spaces; this is uniquely
defined by nonholonomic distortions of type (2). For Cartan–Finsler
spaces, such generalized conservation laws (3) are uniquely deter-
mined by a fundamental Finsler function F (x, y) via corresponding
fundamental data (F g,N, F D).

The solutions for Randers–Finsler gravity and cosmology (with
the Chern d-connection of approximate Berwald type, etc.) pro-
vided in Refs. [1,2] are supposed to solve certain important issues
in modified Einstein/Newton gravity and dark energy and dark
matter new physics. The gravitational field equations considered
in those works are for d-connections which are metric noncom-
patible and resulting in a number of conceptual and theoretical
problems in defining (for instance) conservation laws, spinors and
Dirac equations, and a less clear status for nonmetricity fields. In-
troducing various types of nonmetricity fields we can “suit a lot of
experimental data”. Nevertheless, the main question is this: Why
in Finsler gravity theories we should use metric noncompatible
connections if there are various types of metric compatible ones
with less problems for “standard” physics and without strong ex-
perimental constraints analyzed in [29]? Here we also emphasize
that for the Finsler like configurations derived as exact solutions
of Einstein equations in general relativity, i.e. on nonholonomic
pseudo Riemannian manifolds, the local Lorentz symmetry can be

4 For our purposes, a nonholonomic manifold is a usual (pseudo) Riemannian
one with a prescribed nonholonomic distribution; a Finsler space can be consid-
ered as an example of nonholonomic tangent bundle with a corresponding nonin-
tegrable (equivalently, nonholonomic/anholonomic) distribution determined by an
N-connection structure, see details in [5,6,27,7,9,8].
preserved, see [5,27]. Such constructions can be naturally extended
on (co)tangent bundle theories even in such cases we cannot avoid
models with broken local symmetries. Our conclusion is that we
may construct more “standard” physical Finsler classical/quantum
gravity theories for metric compatible connections like the Cartan
d-connection.

3. On “well-defined” Finsler gravity theories and cosmological
models

It seems that Finsler like gravity theories on (co)tangent
bundles (with metrics and connections depending on veloc-
ity/momentum type variables) are natural consequences of all
models of quantum gravity, see physical arguments and a review
of recent results provided in [30]. A principle of general covariance
coming from the classical version of the Einstein gravity theory re-
sults in very general quantum nonlinear dispersions of Finsler and
non-Finsler type. Perhaps, it is not the case to postulate from the
very beginning that such a generalized Finsler spacetime is of any
special Randers/Berwald/Chern/. . . –Finsler type with fixed (in gen-
eral, non-quadratic) line elements like that, for instance, taken for
the Very Special Relativity, etc.

We argue that the quantum gravity theory is “almost sure” of
generalized Finsler type on a correspondingly quantized (co)tan-
gent bundle which in certain classical limits is described by non-
holonomic gravity configurations on (pseudo) Riemannian/Finsler
spacetimes and possible observable effects in modern cosmol-
ogy and quantum physics. It can be approached following well-
defined geometric and physical principles when the concepts of
metric, connection and frame of reference are postulated to be
the fundamental ones (even, in general, as certain quantized fields
and/or possibly redefined as some almost Kähler/generalized Pois-
son structures, etc.) in any spacetime geometry and gravity theo-
ries:

1. For general nonlinear non-quadratic line elements, we can
consider generating fundamental Finsler, or Lagrange (on
cotangent bundles, respectively, Cartan, or Hamilton; in gen-
eral, of higher order, see Refs. [26,19–21,31–34]) functions.
Lifts of Sasaki type, or another ones, allow us to define
canonical (Finsler type and generalizations) metric, F g, and
N-connection, cN, structures.

2. From the class of infinite number of metric compatible and
noncompatible linear (Finsler type, or generalized) connec-
tions, we can always choose/construct, following the so-called
Kawaguchi and Miron processes [8,9,7,5], a canonical d-
connection D̂. In particular, we can introduce, for any (pseudo)
Finsler geometry, the Cartan d-connection, cD, which is met-
ric compatible and completely defined by F g and cN. This
way we eliminate possible difficulties/sophistication related to
the nonmetricity geometry and fields and may consider, or
derive in certain limits, various types of Finsler–Lagrange (su-
per) string, gauge, nonholonomic Clifford/spinor, Finsler-affine
and/or noncommutative gravity theories [7,18,19,22–26].

3. The Einstein equations for D̂, or cD (using nonholonomic con-
straints, we can include and theories with ∇), can be solved
in very general forms for different models of Einstein and
Finsler gravity, and various noncommutative/supersymmetric,
etc., generalizations, following the anholonomic frame defor-
mation method, see reviews of results in applications in [27,
24,7,5,35]. From various classes of very general generic off-
diagonal solutions (with metrics which cannot be diagonalized
by coordinate transforms), we can chose well-defined sub-
classes having certain physical importance (describing locally
anisotropic black hole/ellipsoid/torus configurations, cosmolog-
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ical inhomogeneous and locally anisotropic solutions, solitons,
etc., see various examples and reviews in [36–38,5,7,27]).

4. For applications in modern cosmology, for instance, with the
aim to elaborate realistic Finsler like inflation, dark energy
and dark matter scenarios, it is important to elaborate Finsler
generalizations (they are, in general, with inhomogeneous and
anisotropic metrics) of the Friedman and Robertson–Walker
(FRW) models. Such cosmological models should be grounded
on solutions of the (Finsler) Einstein equations (1) for cer-
tain types of d-connections (with the above mentioned pri-
orities for the metric compatible ones). If such models may
propose certain important ideas and solutions in modern cos-
mology, they would serve as explicit criteria for choosing as
the fundamental ones certain examples of Finsler like lin-
ear and nonlinear connections, and relevant anisotropic met-
ric configurations. It is not the case to postulate from the
very beginning any particular cases of metric ansatz and/or d-
connections for Randers/Berwald/Chern/. . . –Finsler spacetime
even they may be preferred as some more “simple” general-
izations of the (pseudo) Riemannian spacetimes. Viable grav-
ity theories are with nonlinear field equations and the ex-
act solutions for cosmology and astrophysics, in general, are
for generic off-diagonal metrics and generalized connections.
A rigorous mathematical approach does not obey obligatory
any original assumptions on parametrization of metrics and
connections and conventional splitting into “holonomic” and
“nonholonomic” variables.

5. There are also two another very important properties of the
Cartan d-connection (which do not exist for the Chern/Berwald
and other metric noncompatible d-connections):
• cD and F g, for a fixed cN, define canonical almost Käh-

ler models of Finsler–Lagrange, Hamilton–Cartan, Einstein
gravity and various generalizations. Such models can be
quantized applying a nonholonomically generalized Fedosov
method [39–41], following the A-brane formalism [42], and
developing a two-connection perturbative approach to the
Einstein and gauge gravity theories [43,44]. Such quan-
tum Einstein and/or Finsler–Lagrange gravity theories can be
elaborated to have in certain quasi-classical limits different
terms with locally violated Lorentz invariance, anomalies,
formal renormalization properties, etc. It is also possible to
construct models limiting locally relativistic and covariant
theories.

• Finsler–Lagrange evolutions of geometry/gravity theories
[45,46], and various generalizations with nonsymmetric
metrics [47], noncommutative corrections [23], etc., appear
naturally if Ricci flows of (pseudo) Riemannian metrics are
subjected to nonholonomic constraints on evolution equa-
tions, see also possible applications in modern gravity, cos-
mology and astrophysics [48,49]. They are positively related
via certain nonlinear renorm group flows to fundamental
problems in quantum gravity and “early” stage of anisotropic
quantum universes.

Finally we conclude: There are two general classes of Finsler
type gravity, and geometric mechanics, theories with applica-
tions in modern physics and cosmology. The first class of locally
anisotropic gravity theories originates from E. Cartan works on
Finsler geometry, spinors and bundle spaces.5 Here we cite the
monograph [10] and further developments in [11–13,8,9,14,16,31,

5 He was the first who introduced the N-connections, in component form, put
the basis of Einstein–Cartan theories, elaborated the moving frame method and the
geometry of differential equations in the language of Pfaff forms, etc.
32,25,26,24,7,5]. Even in the just mentioned monographs and re-
view papers a number of geometric and physical constructions and
Finsler geometry methods were considered for both types of met-
ric compatible or noncompatible d-connections in Finsler spaces,
the most related to “standard physics” constructions were elabo-
rated for the Cartan and canonical d-connections which are metric
compatible and follow the geometric and physical principles 1–5
mentioned above. Alternatively (the second class of theories), there
are Finsler geometry and gravity models grounded on the Berwald
and Chern d-connections, see details in [17,15,1,2], and a compar-
ative review of standard and nonstandard physical theories and
applications in Part I of [7] and in Refs. [5,6].

The key issues which should be solved both theoretically and
experimentally are those if certain fundamental problems in quan-
tum gravity and/or modern cosmology can be approached follow-
ing Finsler theories with metric compatible, or not compatible,
d-connections. The recent interest in new Finsler gravity physics
and cosmology was in the bulk oriented to models both with lo-
cal Lorentz violations and nonmetricity, like [1,2]. It would be a
grave error if non-experts in Finsler geometry but physicists and
mathematicians working in gravity and particle physics and/or cos-
mology would consider that the Chern d-connection is a “unique
metric compatible and the best one” for Finsler like theories. The
reality is that only following approaches with metric compatible
connections, like the Cartan d-connection, we can elaborate phys-
ically viable models which are closely related to standard physics
(as we emphasized in our works, see [39–42,44,45,49,35–37,23,24,
26] and reviewed in [5,27,7]).
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