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1. INTRODUCTION

There are many applications involving nonnegative matrices. We mention areas like game theory,
Markov chains (stochastic matrices), theory of probability, probabilistic algorithms, numerical
analysis, discrete distribution, group theory, matrix scaling, theory of small oscillations of elastic
systems (oscillation matrices), and economics.

Many references concerning properties of nonnegative matrices are available. Some fundamen-
tal results are collected into the following main theorem of Perron and Frobenius [1].

THEOREM 1. Let A be a nonnegative irreducible n x n matrix. Then,
1. A has a positive real eigenvalue r(A) equal to its spectral radius p(A),
2. to r(A) there corresponds a positive eigenvector,
3. r(A) increases when any entry of A increases,
4. r(A) is a simple eigenvalue of A.

The eigenvalue (A} is called the Perron root of A and the corresponding positive eigenvector
is called the Perron vector of A.
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The general inverse eigenvalue problem for nonnegative matrices is the following.

PrOBLEM 1. Given a set 0 = {A1, A3, As,..., A, } of complex numbers, find necessary and suffi-
cient conditions for ¢ to be the spectrum of a nonnegative matrix.

An important particular case of Problem 1 follows.

PROBLEM 2. Given a set 0 = {A1, Ay, Az, ..., A} of real numbers, find necessary and sufficient
conditions for o to be the spectrum of a nonnegative matrix.

These problems have been studied by many authors and very important results have been
obtained by Suleimanova [2], Perfect [3], Salzman [4], Ciarlet [5], Kellogg [6], Fiedler [7], Soules {§],
Borobia [9], Radwan [10], and Wumen [11].

However, “very few of these results are ready for implementation to actually compute this
watrix” {12, p. 18].

We recall the first and perhaps the most important sufficient condition, due to Suleimanova [2],
for the existence of a symmetric nonnegative matrix with a prescribed real spectrum.

THEOREM 2. Let o = {1, Aq,..., Ay} be a real set satisfying

A+ Ao+ An 20,

1
Aj <0, j=2,3,...n. (1)

Then there exists a nonnegative n x n matrix with spectrum o.

Perfect [3] proved this theorem showing that the companion matrix of the polyﬁomial p(A) =
H;’: , (A = Aj) is nonnegative. The construction of the companion matrix of the polynomial p
requires to evaluate the elementary symmetric functions at Ay, Aa,..., A,. That is,

(4] :)\1 +)\2‘|‘"'+)\na
Co = /\1/\2 -+ )\1/\3 +oe+ )\n——l)‘Th
c3 = /\1)\2)\3 + )\1/\2/\4 + -t /\71—2/\71—1/\117

Cp = )\1/\2/\3/\71

This computation requires a number of arithmetic operations which increases exponentially
with n. In addition, it is well known that the zeros of a polynomial are very sensitive to changes
in its coefhicients.

The most constructive result is the sufficient condition studied by Soules. The construction of
the matrix depends on the specification of the Perron vector; in particular, the components of
the Perron vector need to satisfy some inequalities in order for the construction to work.

In this paper, we relax the sufficient condition of Suleimanova and we obtain a fast and stable
procedure based on the fast Fourier transform [13] to construct a symmetric nonnegative matrix
with a prescribed real spectrum. The procedure does not require to know the Perron vector.

The fast Fourier transform is a very fast and a very stable algorithm to compute the discrete
Fourier transform. In particular, this algorithm can be used to compute very efficiently the
eigenvalues of a circulant matrix. Thus, for the purpose of this paper, we begin considering
the case of the inverse eigenvalue problem for a circulant nonnegative matrix. This is done
in Section 2. In Section 3, we consider a prescribed real spectrum. This spectrum is used to
define an inverse eigenvalue problem for a real circulant (2n) x (2n) matrix. We arrive to a real
syminetric persymmetric nonnegative matrix. Then, using properties of this class of matrices,
a real symmetric nonnegative n x n matrix which realizes the prescribed real spectrum is easily
obtained. In Section 4, some experimental results are included.
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2. CIRCULANT NONNEGATIVE MATRICES

In this section, we recall basic facts of the circulant matrices and we study the inverse eigenvalue
problem for circulant nonnegative matrices.

An n x n matrix C = (¢;;) is a circulant matrix if ¢;; = ¢;41,741 and the subscripts are taken
modulo n, that is,

Co C1 Co . Cn-2 Cp—1]
Cn-1 Co 1 - - Cn-2
C= Cp—2 Cp-1 . . - . ) (2)
. . . . . C2
(&) . . . - C1
L C1 C2 - Cp—2 Cp-1 co

The circulant matrix given in (2) is denoted by
C = circ (e, ¢1, -+ yCn1) -

The circulant matrices have very nice properties. We recall some of them.

1. If w = exp (2mi/n), i? = —1, then the vectors

1, =[1,1,...,1]T,

3
v = [ij_l,wQ(j_l),...,w("'l)(j'l)]T7 ©)
7 =2,3,...,n, form an orthogonal basis of eigenvectors of any complex circulant n x n
matrix.
2. Moreover,
— . n+1
vn—j+2:vj, ‘7:2,3,...,{ 5 :|, (4)

where ¥; denotes the vector whose components are the complex conjugates of the com-
ponents of v; and [(n + 1)/2] is the greatest integer not exceeding (n + 1)/2.
3. If C is the circulant n x n matrix given in (2) then its eigenvalues are

M=co+ctecat - Fonoa,

()

A =co+ w4 e 4 g, g0 DEED)

i =2,...,n, with eigenvectors 1,,va, Vs, ..., V,, respectively. If, in addition, C is a real
matrix, then

< , n+1
/\n_j_J,_Q:)\j, j=2,3,...,[ 5 ] (6)
4. Let
F:(fkj):[1n7v27v31°-'7vn]' (7)
Then,
frj =k DUD <k <, and FF =FF = nl,, (8)

where I, denotes the identity matrix of order n. In the literature, (1/y/n) F is called the
Fourier matrix.

We consider the following subset of C»~1)

_ - . +1
S(n 1):{(/\27)‘37"’7/\71) | )\n—j+2 :/\]7 J :2737~-~7 |:In2 ]}
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EXAMPLE 1. We have

(5+3i,\/§—2i,6—4i,—1+z‘,—1 ~¢,6+4i,\/§+2i,5—3z’) €S8
(=2 +14,3 — 1,5, -3, -3, 51,3 + 4, -2 — ) € S%,
(5+3i,6 —di, 1+, —4 — 20,5, —4 +2i, —1 — 4,6 + 44,5 — 3i) € S,
(5+3i,6 —4i,—1, -4 — 20,5, 4 + 2, 1,6 + 43,5 — 3i) € S,
(-2,-3,-5,-7,0, -7, -5,-3,-2) € 8.
The following lemma is clear.

LEMMA 3. If (A2, As,..., A,) € SOV, then {Xa, A3, ... , An } Is closed under complex conjugation
and A,12 € Rifn=2m+2.

REMARK 1. If {Xg, As,..., Ay} is closed under complex conjugation and ImA; # 0, 2 < j < n,
then the elements of the set can be reindexed such that (Ay, As,...,\,) € S~ 1.

LuMMA 4. Ifp € R and (A2, A3, ..., M) € S| then there exists a real circulant n x n matrix
C = circ{cy,¢1,...,Cn-1) such that

U(C) = {/1‘7 /\Qv )\3a e »)\n} .

Proor. Let
q-= [[L, /\27 /\37 e 7/\n—17 )‘TL]T .

Since (A2, Az, ..., An) € SO,

q= [H,/\Q,)\S,n 'aX31X2JT .

Let P be the permutation matrix P = [e;,e,,€,_1,...,€3,es], where e; denotes the j " column
of I,,. Then,
- T 7 . - o
€ M M
T _
€, )\2 )\2
T _
_ €1 )\3 )\3
e; As A3
L e; 1 L /\2 J ..XQ J

Also, using the property in (4), one can see that PF = FP = F. Let
C =circ {¢p,¢1,C2, ..« oy Cne1) -
Taking in consideration that the eigenvalues of C are given by the expressions in (5), we impose

co+crtceat-+ ooy =4,
co+wer +wlea 4+ -+ w el = Ay,

co +wer +wleg + -+ WP e, = Ay,

(n—1)

Co + u)SCI + LUSCQ + 4 W Cn—1 = A4,

(:0+wn—3(:1+w2(n~3)02+.“_%_w(n—l)(n—‘\l)an_I :XL"

(n—2)

co+ w0 + W Ve 4 gt Cno1 = M3,

(30+wn'1(31 +w2("_1)02+-~-+w(”_1)("_1)cn4 :XQ.
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This system of linear equation in the unknowns ¢p, c1,¢2,...,cn—1 can be written as follows
Fc=q, (9)
where
. T
C= [C0a013027 s scnvl]

After complex conjugation, from (9), we obtain F€ = . Then, PFe = Pq. Since PF = F
and Pq = q, we have F¢ = q. Therefore, Fc = F€. Finally, using the fact that F is an invertible
matrix, we conclude that ¢ = €. Thus, system (9) has a real solution ¢ = F~'q = (1/n)Fq
and p1, Ag, A3, ..., A, are eigenvalues of the real circulant 2 x 7 matrix C. The proof is complete.
REMARK 2. The matrix C in Lemma 4 can be computed as follows.

1. Compute ¢ = (1/n) Fq.

2. Define C = circ (co,c1,¢2,- - - s Cp-1)-
The product Fq may be accomplished by the fast Fourier transform. A direct calculation of the
product requires (n—1)? multiplications and n(n—1) additions. For large n this would require too
much computer time. The advantage of the fast Fourier transform consists of the tremendous
savings that it gives in the number of multiplications and additions; in particular, if n is a
power of 2, the number of operations to compute the product Fq is (1/2) nlog, n multiplications
and nlog, n additions. For instance, if n = 210 then the fast Fourier transform requires 5,120
multiplications as opposed to 1,046,529 multiplications for a direct calculation. Moreover, since
the singular values of F are the nonnegative square roots of the eigenvalues of FF = nl, its
spectral condition number is equal to 1. Therefore, Fc = q is a very well conditioned system of
linear equations.

REMARK 3. For . .
p=—3 A+ [Imhl
j=2 §=2

the explicit formulas for the entries of the circulant matrix C of Lemma 4 follow.

1. If n = 2m + 1, then

mt1 2k(j — 1)m
2 ——— —1)Re);
1 JZ:Q <COS 2m+1 ©A
Cl = — .
n mi1 _2k(j - ’
+2 ]§2 (Im Ajsin omT1 + |Im |

for k=0,1,...,2m.
2. If n = 2m + 2, then

metl k(j —m ]
2 S C AT AL , ~1)% —
j§:2 (cos e LI ReA; + ((=1)% = 1) Ao

el K=
+2 7;2 <Im/\] sin -Tn‘—;-l—‘ + |Im)\]|

for 0,1,...,2m + 1.

For the rest of this section, let

==X+ [ImAl. (10)
J=2 j=2
and let C = circ(¢p,¢1,¢2,...,¢,—1) be the real circulant of Lemma 4 and

¢ =min{eg,c1,C0,. .., Cn_1} (11)
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THEOREM 5. If (Ao, As,..., An) € SV and

Ao = max < g, max |Aglp, wherever ¢ > 0,
2<k<n
or
Ao = max < g —ne, max |[Ag| ¢, wherever ¢ < 0,
2<k<n
then there exists a circulant nonnegative matrix Ag such that r(Ag) = Ao and a(Ap)

O ==
{X0, Aoy s An ). And, for A > A, there exists a circulant positive matrix Ay such that r(Ay) = A
and o{Ay) = {\ g, ... A\ )
Proor. From Lemma 4, there exists a real circulant n X n matrix
C =circ (cg, €140y Crm1)
such that {Aa, Az, ..., Ay} C 0(C). The other cigenvalue of Cis p = — Z;’l=2 Aj +Z]"’:2 ImA;| =

n—1 . . . .
Z'].L:U ¢;. We recall that 1,,,vy,..., vy, given in (3), are orthogonal eigenvectors corresponding

to g, Agy Ag, - - -, Ay, respectively. Let
A=t
A)\ = C+T£‘1n]_z.

Then,

7cl+ 102+ :--"7(:7L—1+
n n n

A=t A— A— -
A, = circ ((rg + a a o A M)

and
A1, =Cl, + (A — )1, = pul, + (A= )1, = AL,
Morcover, since l;lr v; = 0, we have
Ayv; =Cv; = Ajvy, for j=2,3,...,n—1.

We have proved that
g {Ay) = {\ A As, . At
Let ¢ be as defined in (11).
Casr 1. Suppose ¢ > (. Then, 1t > 0. Let

Ag = max , max |Ag
0 H 2<hin ‘ ]\,| 9

and Ay = A, is a circulant nonnegative matrix.

CASE 2. l‘]OW, sSuppose ¢ < 0. Let
A = max L —nc, max )\ .
0 f 2<k<n | k|

Then. Ay > g and

Xo — Ao —
07K S L TR Sy forj=0,1.2,...,n 1.
" n

C; +

Therefore, Ag = A, is a circulant nonnegative matrix.

In both cases, o(Ag) = {Xo, A2, Az, ... An} and 7(Ag) = Ag. Clearly, if A > Ag, then A, is a
circulant positive matrix and, o(Ay) = {\ A2, Az...., Ap} and r(Ay) = A. |
EXAMPLE 2. Let Ay =5+3i, Ay = —=2—11i, Ay = 7+8i, Ay =7—8i, \¢ = —24+11i, Ay =5-3¢.
For these given numbers, the use of Theorem 5 gives A\g = 50.0214 and

Ay = cire (10.0031, 7.7640, 8.1776, 0.0000, 11.1150, 9.0021, 4.9596),

to four decimal places.
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COROLLARY 6. If 0 = {A1,Az,..., An} is such that (Ao, Az,...,An) € S and Ay = ),
(respectively, A\; > Xg), where Xy is as in Theorem 5, then there exists a circulant nonnegative,
(respectively, positive) n x n matrix with spectrum {Xi, Aa, ..., )}

ExAMPLE 3. Consider \;, j =2,3,4,5,6,7, of Example 2, and let A; = 51. Since A\; > Ao, there
exists a circulant positive matrix A with spectrum {}; }]7-21,

51—\
A:A0+—731717T

= circ(10.1429, 7.9038, 8.3174, 0.1398, 10.2548, 9.1419, 5.0994).
COROLLARY 7. Ifo = {A1, Ma,..., An} C R is such that (M2, A3, ..., An) € S™D and

Mt A4+ A, =0, (respectively, > 0),
>\j<0, 71=2,3,...n.

Then there exists a circulant nonnegative, (respectively, positive) n x n matrix with spectrum o.

PROOF. Since ImA; = 0 for all j, it follows that u = —3°7_, A;. From the proof of Theorem 5

there exists a circulant matrix C = circ(cp, ¢y, ..., ¢y ) such that
n
a(C) =< =3 X A2 da o hn
j=2

Now, from the formulas given in Remark 3 and from the hypothesis A; <0, j = 2,3,...n, we have
that co=0and ¢, > 0for k=1,...,n—1. Then, ¢>0 and thus, Ao =max {i, maxo<p<n |Axl}=p.
Finally, since A\; > u, from Corollary 6, we have that A; and {A1, A2,..., Ay} are the Perron root
and the spectrum, respectively, of the circulant nonnegative matrix

)\1+Z)\j

Jj=2 T
C+ — 1.1,.

Clearly, if A; > u, then the matrix is positive. The proof is complete. ]
EXAMPLE 4. Let A1 = 13, 3 = —1,A3 = —2,A4 = =3, A5 = —3,26 = —2,A; = —1. This
prescribed spectrum satisfies the hypothesis of the previous lemma and it is realized by the
circulant positive matrix

A = circ(0.1429, 2.5784, 1.9011, 1.9490, 1.9490, 1.9011, 0.5784).

COROLLARY 8. Ifo = {A1,A2,..., Ay} C C is such that (A2, A3, ..., \n) € S™=V and if

i3 n
ALY A=) Im)l >0,
j=2 j=2
Re();) <0, j=23,...n,

then there exists a circulant nonnegative n X n matrix with spectrum o.

ProOF. We have

n n
p=—=> N+ [Imil
=2 j=2
From the proof of Theorem 5 there exists a circulant matrix C = circ (cp, ¢1, .. -, ¢ ) such that

O’(C) = {,u,,)\g,)\g,...,)\n}.
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Without loss of generality, we may suppose ImA; < 0 for j = 2,3,...,[(n + 1)/2]. We assume
n = 2m + 2. The proof for n = 2m + 1 is similar. From the formulas given in Remark 3, we have

(kG = D ,
~ 1 2 ]gz <COS W - 1) Re/\j + ((—1)k - 1) /\m+2

Ck = — m+1 k(vl
k(- D
2 sin ————— —~ 1 ) ImA;
+ ]22 <51n o ) mA;

Now, using the hypothesis ReA; <0, j =2,3,...n, we have that ¢y > 0 for k =1,...,n - 1.
Then, ¢ > 0, and thus, Ag = max{y, maxocr<n |[Ag|} = . Finally, since Ay > p, from Corollary 6,

we have that {A;, A2,..., A} is the spectrum of the circulant nonnegative matrix C + ((A —
w)/n)L 1
EXAMPLE 5. Let Ay = 48, Ag = =7 —14, A3 = =6 —5i, Ay = =5, Ay = =5, A\g = —6 + 51,
and A7 = —7 + 4. This set satisfies the conditions of the previous corollary and it is the spectrum

of the matrix
A = circ(1.7143, 8.8949, 7.6147, 6.9152, 8.9011, 8.2973, 5.6626).

3. ALGORITHM TO CONSTRUCT A
SYMMETRIC NONNEGATIVE MATRIX

In this section, we consider a prescribed real spectrum {A;}7L,.

LEMMA 9. If
A; <0, for j =2,3,...,n, (12)

then there exists a symmetric circulant nonnegative (2n) x (2n) matrix C with zeroes on its
diagonal such that

n
a(C) =< =23 A A2, 3, A1 A, 0, A0 An -, Agy Ao
j=2
Proor. Clearly,
()\2’ >\37 ey /\n—l» >\717 07 /\na A71—17 seey >\37 )\2) S S(Zn—l).
Let
n
j=2
Then, by Lemma 4, there exists a real circulant (2n) x (2n) matrix C,
C = circ (€0,C1,625 -« Cn— 1+ Cny Crgls -+ - C2n—1)

such that

O(C) - {,U, /\23 A37 DR )\n—l, A?L)OvAnv An—l> ey /\37)‘2} .
Since tr (C) = p + 2 2722 Aj =0, it follows that ¢g = 0. The real vector
c=[0.c1.c2,. .. Con-2,Con1]

is given by the equation
Fc = q, (13)
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where
q= [N‘? /\23 >\3’ ey >‘7l—17 >‘n703 /\7n >\n—17 ey /\37 /\Q]T (14)

and _
F = (fkj), frj = wk=1U=1 1<k j<2n,

omi i o (15)
w=exp|— ) =exp|{— |, 1° = -1
2n n

From equation (13), we have Fc = q. After complex conjugation and using the fact that c is
a real vector, we obtain Fc = q. Now, we observe that F= FP, where P is the permutation
matrix P = [e1,€2,,€2,-1, .. .,€3,€3]. Here e; denotes the kY column of In,,. Then, FPc = q.
Therefore, FPc¢ = Fe. Thus, Pc = ¢. This implies

Con—1 = C1, Con—2 =C2, ..., Cpy1 = Cp—1.

Hence,

C = circ (0,¢1,02,€3,...,Cn=2,Cpn1,CnsCn1,Cn—2, - -, C3,C2,C1)

is a real symmetric circulant matrix. Finally, we prove that C is a nonnegative matrix. From
Remark 3, for k = 1,2,...,n, we have

1 o k(j — D)m
== 05 —2—— — 1)\,
o Z( _ ]

j=2

Since A; < 0 for j = 2,3,...,n, we conclude that ¢, > 0 for k = 1,2,...,n. Hence, C is a
nonnegative matrix. i

The matrix C in Lemma 9 is symmetric with respect to the main diagonal and also it is
symmetric to the secondary diagonal. Therefore, it is a symmetric persymmetric matrix. This
class of matrices have special properties [14]. In particular, the matrix C can be partitioned as
follows:

c_[U VI
-lv u):
where
r 0 1 C2 &) : Cpn—3 Cp—2 Cn—1]]
1 0 € ¢ Cn—2
Co c1 0 ¢y . . . Crn_3
U= C3 Co C1 ‘
C3
Cn—3 . . . . . Ci Co
Cp—2 . . . . [&] 0 C1
Len-1 Cp—2 Cn-3 . C3 O g} 0
[ 2 c3 C4 . Cn-2 Cp-i (&)
C2 3 Cq Cs . Cp—l Cn Cn—1
c3 Cq (& . . Cn Cp—-1 Cn-2
V= Ca Cy
Cq
Cpn—-2 Cp-1 Cn . . . Cq 3
Cn—1 Cp Cn—1 . . Cyq 3 Co
L Cp Cp—_1 Cp_2 . Cq C3 Co cy 4
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and

O =

L1 0 . . . . . 0
Matrices U and V are both symmetric matrices, each of them of order n x n. We see that U is
a Toeplitz matrix. The entries of U = (u;;) and V = (v;;) are given by

wy; =0, foralld and Uij = ), fOr i # j, (16)
Vij = Citj—1, ifi+j<n+1, and
TE (17)
Vij = Con—i—j+1, ifi+j7>n+1.

One can easily check that
1 (1 1
e= 75 4]
is an orthogonal matrix and that

Therefore,
o(C)=c(U+V)Uc(U-V).

Even more, it is easy to prove that

U(U+V) = {H7A27>\37 T »)‘n—lv)‘n}7
U(U_V) = {07)‘27)‘37'”7/\71——17/\71}7

and that the n-dimensional vector
1, =[1,1,...,1,1]7

is an eigenvector for the eigenvalue p.
Let
B=U+V.

Since U is a symmetric nonnegative matrix and V is a symmetric positive matrix, it follows
that B is a symmetric positive matrix. The entries of B = (b;;) can be easily obtained from (16)
and (17),

Coi 1, ifj=4dand 2i <n+1,
b — Con—2i+1, lfj =dand 2t >n+1, (]_8)
“ Cljmi] + Citjis ifjAiandi+j<n+1,

Clj—i| + Con—i—j+1, i j#iandi+j>n+ 1L

We summarize the above results into the following theorem.
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THEOREM 10. If

A; <0, for j =2,3,...,1n and ;L:—Qz/\j,

then a symmetric positive matrix B such that
O(B) = {M7 )\27 /\33 .. 1/\71}
can be constructed by a procedure based on the fast Fourler transform.

COROLLARY 11. Let {A1, A2, A3,...,An} be a real prescribed spectrum. If
Ay <0, forj=23,...n  and A >-2) )\, (19)
j=2

then a symmetric positive A, having the prescribed spectrum, can be constructed by a procedure
based on the fast Fourier transform.

Proor. From Theorem 10, a symmetric positive matrix B such that
a(B) = {u, A2, Az, A}
can be constructed by a procedure based on the fast Fourier transform, where y = —2 ﬁ;f:.z Ak

Let N
A=B+ L Fy 97

Since A1 > u, A is a symmetric positive matrix. Moreover,

A— i A=
Al =BL, + =L 1,171, = 1, + =5 (171,) 1, = AL,
Let v; be an eigenvector of B corresponding to the eigenvalue A;, k = 2,3,...,n. Since B is

a real symmetric matrix, the eigenvectors vy can be chosen orthogonal with the eigenvector 1,,.
Then,
A—p .
Avp = Bvg + — lnl,TLv;.. = AV, for k=2,3,...,n.

Therefore, o(A) = {A1, A2, A3, ..., A\ }. This finishes the proof. ]
ALGORITHM 1. The algorithm to construct the matrix A in Corollary 11 follows.
1. Compute

=2

2. Compute
c=—Fq,
o q
where F is the matrix given in (15) and q is the vector in (14), via the fast Fourier
transform.

3. Construct the matrix B =U + 'V = (b;;) given by (18).
4. Counstruct the matrix A = (aq;), a;; = by; + « where

n
A +2 Zz A,
= 17
n

Next, we improve the condition given in (19). Let

min {c1,¢3,05...,¢,-1}, if nis even, B
. T (20)
min, {¢y,e3,¢5....¢n ) if 1 is odd.
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COROLLARY 12. Let {A1, A2, As,..., Ay} be a prescribed real spectrum. Let b be given by (20).
If

A\ <0, forj=23,....,n and Alz—2ZAj—bn, (21)
j=2

then a symmetric nonnegative matrix A, having the prescribed spectrum, can be constructed by
Algorithm 1.

Proor. Let = -2 Z?:z A;. Clearly, the smallest entry of the matrix B of Theorem 10 occurs
on its diagonal and it is the number b defined in (20). Let A\g = 2 — bn. Then, since Ay > \g, we

have
)\0 — M

bij + >b+ = (),

Al — i
n n

Therefore, the matrix A = B + ((A; — p)/n) 1,1,} is nonnegative and it has the prescribed

spectrum. [ ]
Since -2 Z?:z Aj—bn < =2 Z;;Q A;, the condition in (21) strictly improves the condition

in (19).

EXAMPLE 6. Let Ay = —1, Ag = —=1.5, Ay = =3, As = =3.8. Then, pp = —2 37, = 18.6. For

these eigenvalues the matrix B of Theorem 10 is

2.4058 4.6972 3.7357 3.8028 3.9585
4.6972 14442 4.7643 3.8915 3.8028
3.7357 4.7643 1.6000 4.7643 3.7357 |,
3.8028 3.8915 4.7643 1.4442 4.6972
3.9585 3.8028 3.7357 4.6972 2.4058

rounded the entries to four decimal places, and its smallest entry is b = 1.4442. From Corollary 11,
for Ay > 18.6 there exists a symmetric positive matrix with spectrum {); }?zl. For Ay = 19, the

matrix is
2.4858 4.7772 3.8157 3.8828 4.0385

4.7772 1.5242 4.8443 3.9715 3.8828
3.8157 4.8443 1.6800 4.8443 3.8157
3.8828 3.9715 4.8443 1.5242 4.7772
4.0385 3.8828 3.8157 4.7772 2.4858

Now, from Corollary 12, for A; > u — 5b = 11.3788 there exists a symmetric nonnegative matrix
which realizes the spectrum. For A\; = 11.3788, the matrix with spectrum {11.3788, —1, 1.5,
—3,-3.8} is

0.9615 3.2530 2.2915 2.3585 2.5148

3.2530 0 3.3201 2.4472 2.3585

2.2915 3.3201 0.1558 3.3201 2.2915

2.3585 2.4472 3.3201 0 3.2530

2.5143 2.3585 2.2915 3.2530 0.9615

4. COMPUTATIONAL RESULTS

All the computations were performed on a personal computer equipped with Intel Pentium
chips. Because of memory limitations we took n < 450 in all the experiments. We used MATLAB
for Windows, Version 4.2c.1.

Table 1 shows the average CPU time in seconds required to construct the symmetric nonnega-
tive nxn matrix A of Corollary 12, with randomly generated prescribed eigenvalues Ax, Az, ..., A\,
from the range [—a,0), a = 107%,107%,1074,1072,1,10%,10%, 105, 10%. These eigenvalues were
generated using the function rand of MATLAB. The other MATLAB functions that we used
were
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ifft to compute ¢ = (1/2n) Fq,
toeplitz to construct the matrix U and the matrix VJ,
fliplr to obtain the matrix V,
cputime to see the CPU time in seconds required in each construction of the matrix A.

Table 1. CPU time in seconds.

4 64 100 128 200 256 300 350 400 450
n

10-8 0.06 0.11 0.20 0.48 0.82 1.16 1.53 1.97 2.63
10-% 0.06 (.12 0.21 0.49 0.88 1.16 1.55 2.02 2.61
10—+ 0.06 0.13 0.21 0.51 0.85 1.18 1.56 2.04 2.65
10-2 0.05 0.13 0.20 0.50 0.87 .18 1.46 2.01 2.67

1 0.06 0.13 0.20 0.49 (.86 1.20 1.52 2.02 2.68
102 0.06 0.12 0.21 0.51 0.86 1.18 1.55 2.02 2.69
1ot 0.06 0.12 0.19 0.49 0.86 1.18 1.49 2.09 2.62
108 0.06 0.15 0.22 0.49 0.86 1.19 1.48 2.01 2.63
108 0.06 0.14 0.22 0.50 0.88 1.20 1.51 2.01 2.69

For each n and for each a, we ran our MATLAB program ten times for a same prescribed
spectrum and then we calculated the corresponding average of the CPU times. These averages
are shown in Table 1.

These experimental results confirm that the algorithm that we propose to construct a symmetric
nonnegative matrix A with a prescribed spectrum is a very fast procedure. In addition, as we
mentioned in Remark 2, the procedure is very stable.

11.
12.
13.
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