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We present an algorithm which finds a minimum vertex cover in a graph G(V, E) in time 

O(IV[ + (a/k)2k/3), where for connected graphs G the parameter a is defined as the minimum 

number of edges that must be added to a tree to produce G, and k is the maximum a over all 

biconnected components of the graph. The algorithm combines two main approaches for coping 

with NP-completeness, and thereby achieves better running time than algorithms using only one 

of these approaches. 

1. Introduction 

Garey and Johnson [1], in the introduction to the chapter 'Coping with NP- 
Complete Problems', note that 'it is sometimes possible to reduce substantially the 
worst case time complexity of exhaustive search merely by making a more clever 
choice of the objects over which the exhaustive search is performed.' As examples 
for this approach, they give [5] and other works. On the ottier hand, Gurevich, 
Stockmeyer, and Vishkin [2] suggest algorithms for NP-hard graph problems for 
sparse graphs, in which the complexity is exponential in the maximum number of 
additional edges to a tree in a biconnected component of the graph, rather than in 
the size of the problem instance. This makes sense especially for problems that are 
polynomial for trees but NP-hard for fairly sparse graphs. As was noted in that 
paper, the idea of analyzing worst case running time of algorithms as a function of 
parameters other than the size of the input has a precedent in Chapter 4 of [1] in 
their "pseudo-polynomial time algorithms". The present paper exemplifies the in- 
tersection of these two approaches. 

* This research was performed while the second author was a visiting scientist at IBM Thomas J. 

Watson Research Center. 
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The ' Independent  Set Problem'  is to find a maximum set of  vertices such that no 
two are connected by an edge. The 'Vertex Cover Problem'  is to find a minimum 
set of  vertices such that at least one endpoint of  every edge belongs to the set. Ob- 
viously, the complement  of  a solution for the first problem is a solution for the se- 
cond, and vice versa. The 'Clique Problem'  is to find a maximum set of  vertices, 
each pair of  which is connected by an edge. A solution of  the independent set pro- 
blem in a graph G is a solution of  the clique problem in the complement  of  G. The 
three problems are known to be NP-complete.  

Let G(V, E) be an undirected graph, where V is the set of  vertices, and E is the 
set of  edges. Let n = I VI and m = IE[. For G connected, define a(G)  = m -  n + 1. 

More generally, if C is the number of  connected components  in G, set 
a(G)  = m - n + C. We can view a(G)  as the number of  additional edges to a spanning 
forest of  G. Define k ( G )  to be the maximum of  a(Gj),  where Gj range over the 
biconnected components of  G. 

We present an algorithm for computing a minimum vertex cover for G, which 
runs in time O(n + (a/k)Ok),  where 0 = 1.2365 < 2 ~. 

Tar jan  and Trojanovsky [5] give an O(2 n/3) algorithm for the independent set 
problem, and therefore the vertex cover problem. It is interesting to note that, for 
a connected regular graph of  degree 3, a class for which these problems remain NP- 
complete, we have k <  n / 2 +  1, whence our result gives time O(n + 2 n/6) for vertex 
cover and independent set, therefore improving upon [5] for this class of  graphs. 

Our result is also an obvious improvement  upon the O(m2 ~/2) algorithm given in 
[2]. We feel that our present analysis supports the use of  the measure of  " m a x i m u m  
additional edges to a tree in a biconnected componen t"  in the design and analysis 
of  algorithms; this paper therefore strengthens [2] in supporting it as a natural and 
relevant measure. 

Due to a simple technique which is presented in [2], we can derive a parallel im- 
plementation for our algorithm. Its running time is O(n + aOk/kp) for p <  O~/k 2 

processors. This implies an optimal speed-up over the sequential version for a fairly 
wide range of  the parameter  p.  

Sections 3 and 4 give the algorithm and the main procedure it employs (Procedure 
Graph)  as well as a verbal overview. The second procedure is given and described 
in detail in Section 5. In Section 6 we elaborate on the key instruction of  Procedure 
Graph,  preparing the ground for the complexity analysis of  Section 7. Section 8 
deals with a parallel implementation of the algorithm. 

2. Preliminaries 

Two edges satisfy the biconnect iv i ty  relation if they are identical, or if they are 
contained in a simple cycle (i.e. a cycle with no repeated vertices). It can be shown 
that  the biconnectivity relation is an equivalence relation. 

An equivalence class of  edges in G, under the biconnectivity relation, together 
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with their vertices, is called a biconnected component. A graph G is biconnected if 
it has a single biconnected component  and no isolated vertices. The intersection of  
two biconnected components,  if nonempty,  is a single vertex, called an articulation 
point. 

A few remarks about k and a: 
I f  G is connected, a(G) is nonnegative, and a(G)= 0 iff  G is a tree. 
I f  a connected graph G has several biconnected components Gj, then 

a(G) = ~ j k ( G j ) .  

Our algorithm will be exponential in k(G) (rather than in a(G)), and for this 
reason we choose k as the measure of  complexity. 

In presenting our algorithm, we use a programming construct called 'Select' ,  in 
addition to the more commonly  used constructs. Let Pi be predicates a n d / i  be in- 
structions. We will write 

Select 

When P1 
Then 11 
When P2 
Then 12 

When Pt 
Then I t 
Otherwise It+ 1 

By this we will mean: 

I f  PI 
Then I 1 
Else I f  P2 

Then 12 
Else I f  P3 

Else I f  Pt 
Then It 

Else It+ 1 

3. The algorithm 

A high-level description of  the algorithm is followed by the algorithm itself. 
We employ a recursive procedure, Graph(G),  which takes as input a graph G, and 

adds to the variable D(G) the cardinality of  a minimum vertex cover for G. 
During the algorithm we follow a convention which may seem confusing at first, 
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but  will turn out  to have some advantges.  We refer to a graph  by a name,  say T. 
Later  the graph is changed:  some vertices are deleted, edges change place, etc. In 
spite o f  that,  we still call the reduced graph  by the name T. Meanwhile,  in D(T) we 

accumulate  the number  o f  vertices in a min imum vertex cover (MVC) for  the graph 
which was first associated with the name  T. Therefore,  at the end o f  the algorithm, 

D(G) will equal the cardinali ty o f  an MVC o f  G. 
The vertex cover itself is returned by Graph(G)  in the vector L(G, o) for  all o e G. 

Its possible values are: 

~ 0, o does not  belong to the vertex cover,  
1, o belongs to the vertex cover, 

L(G, o ) =  " w " ,  o belongs to the vertex cover iff w does, 

t " ] w " ,  o belongs to the vertex cover iff  w does not.  

Let  us define an auxiliary directed graph F w i t h  the same vertices as G, and (o, w) 
is an edge o f  F iff  L(G, o) = " w "  or  "q  w " .  The outdegree o f  each vertex is either 
0 or 1. I f  outdeg(v) = 1, there is a unique directed path in F f rom o to a vertex u 
such that  L(G, u) =ei ther  0 or 1. With  the help o f  a stack, we assign ' f inal '  values 

to  L(G, o) for  all o ~ G. 

Main Algorithm 
For  all vertices x in G, L(G, x ) ~  " U N D E F I N E D " ;  

D(G) ",-- 0; 
Graph(G,  0); 
( .  Post-process L *) 
Stack is empty  initially 
For  every vertex x such that  L(G,x)= " w "  or L(G,x)= " - l w "  

Do 
u,~---w 

Stack ~ x 
While L(G, u) = " z "  or  " - l z "  
Do  

Stack ~ u 
U * - Z  

Od 
While Stack is not  empty 

Do  
u '-- Stack 

I f  L(G, u ) =  " w "  
Then  L(G, u) ~- L(G, w) 
Else L(G, u)~ 1 -L(G,  w) 

Od 
Od  
End;  
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4. Procedure Graph 

An overview of  procedure graph is followed by a statement of  this procedure. 
After  computing the biconnected components of  G, the algorithm chooses a 

biconnected component  with maximum value k to be the 'distinguished vertex' in 
each tree of  an auxiliary forest H (which describes the build-up of  G f rom its bicon- 
nected components;  see the definition of  H in the program itself). The reason for 
this choice will become clear in the complexity analysis. The algorithm computes the 
vertex cover of  one biconnected component  at a time, taking into account the fact 
that  a few vertices of  the biconnected component  may have been chosen earlier to 
belong to the vertex cover. At each point, it selects a leaf in H as the component  
to treat next, leaving the 'distinguished' component  for the end. The procedure is 
designed to minimize the size of  the vertex cover as a pr imary objective, and secon- 
darily to include the articulation vertex in this cover. 

A non-distinguished component  is first 'disconnected'  f rom the rest of  the graph 
at its articulation vertex, x. This is done by forming two copies of  the component .  
In the first copy, x is assumed to belong to the MVC, and in the second, it is assum- 
ed not to belong to it. (These assumptions on x are implemented via the labelling 
vector L;  if x is already known to be a member  of  MVC we avoid the branching.) 
Both copies are 'cleaned'  f rom previously labelled vertices or vertices of  degre 0, 1, 
or 2, by the procedure Clean. 

During Clean, besides deleting vertices we update D(G). When we delete a vertex 
which is labelled 1 we add one to D(G), for obvious reasons. When we delete a 
vertex labelled " w "  we also add one to D(G). This is because in every instruction 
in which a vertex receives the label " w " ,  exactly one corresponding vertex receives 
the label "q  w" ,  so that  between that pair of  vertices, exactly one will be included 
in the MVC. 

Every vertex of  a 'cleaned'  component  is of  degree at least 3. Later,  when we 
elaborate further on the procedure Clean, we will show that a 'cleaned'  biconnected 
component  has no more than 2k vertices or 3k edges, where k = k(original bicon- 
nected component) .  

Now Graph is called recursively f rom both copies. We choose between the MVC's  
that are suggested by the two copies according to the criterion stated above: primari-  
ly minimizing cardinality, secondarily including x. 

Finally we reach a distinguished biconnected component .  After cleaning it, we in- 
voke a procedure described in Section 6; below we give only an overview of  this pro- 
cedure. I f  any vertex of  degree > 3 exists, we branch over this vertex, clean each 
copy, and call Graph recursively for each copy. I f  not, we search for one of a few 
patterns, eliminate that pattern after doing some required operations, and then call 
Clean and Graph recursively on one or more copies (according to the pattern). 
Otherwise, there will be a vertex u of  degree 3 which does not belong to a triangle 
(as will be shown). Again we branch over this vertex, clean each copy, and call 
Graph  recursively for each copy. 
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A common practice upon recursive calls to Graph(G/) for a distinguished or non- 
distinguished component,  is the following. Before a call, record in V/the vertices 
whose labels may change (i.e. their membership in MVC may be decided) during the 
operation of  Graph(G/). After the call, update the labelling of the vertices of  the 
original graph G, V/, and update D(G).  For the latter operation we have to be 
careful about counting articulation vertices. The articulation vertex of  G i is 
counted in D(Gi) if it is in the MVC, but it is not counted in D(G),  since it will be 
counted again later (in the biconnected component corresponding to the 'father '  of  
Gi in the forest H) .  

As an aid in the complexity evaluation, we define here three quantities. Let 
H(n,  s) be the worst-case running time of Graph(G), where G is connected, a(G) = s, 
and n is the number of  vertices. Set H(s)= H(2s, s )=  max H(n, s) for n_< 2s. Let 
H*(s)=max(~,H(si)) ,  where the maximum is over positive integers si such that 
~, i si = s. Set F(s) = worst-case running time for Graph(B) where B is biconnected, 
k(B) =s, and deg(o)_> 3 for all vertices v in B. 

Procedure Graph(G) 
1. If G is empty 

Then Return; 
2.1. Find the biconnected components of  G [4]. Create an auxiliary graph (forest) 

H. Vertices of  H correspond to biconnected components of  G and articula- 
tion points of  G. An edge in H joins a 'biconnected component '  and an 'ar- 
ticulation point '  if the corresponding articulation point is contained in the 
corresponding biconnected component in G. 

2.2. From each tree H/ in the forest H,  choose as a distinguished vertex a bi- 
connected component Groot,i with largest possible value of  k. 

3. While [there are non-distinguished biconnected components which have not been 
handled] 
Do 
3.1. Choose such a biconnected component Gi which is a leaf in H,  and let x 

be its unique articulation point, corresponding to Gi's unique neighbor 
in H. 

3.2. V/ .-{the vertices in Gi} 
3.3. If L ( G , x ) =  1 

Then 
3.3.1. 

Create a copy of  G i, to be referred to as Gi; 
D(Gi) ~ O; L(Gi, v) ~ L(G, v) for all v e  V/ 
Clean (Gi); Graph(G/) 
(* Update G *) 
D(G) ~ D(G) + D(G~) - I 

L(G, v) ~ L(Gi, v) for all v ~ V/ 
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3.4. 

3.5. 

Else 

3.3.2. Create two copies of  Gi, to be referred to as F~, F2 
For j = 1,2 

D(Fj) ~ 0;L(Fj, o)'--L(Gi, o) for all o~  V/ 
L(F  l, x)  "-- 1 
For all vertices y e F 2 such that (x, y) is an edge in F 2 

L ( F 2 , y ) ~  I 
For j = 1, 2 

Clean(Fj); Graph(Fj) 
(* Choosing *) 
I f  D(F~)<-D(F2) 
Then D(G) ~ D(G) + D(F 1) - 1 

L(G,o)*--L(FI, o ) for all o~ V/ 
Else D(G) ~ D(G) + D(F2) 

L(G, o) +- L(F2, o) for all o ~ II/ 
Delete G i f rom H.  
I f  the vertex x is now a leaf of  H 

Then delete x f rom H.  

4. For each distinguished biconnected component  G i 
Do 

4.1.1. Create a copy of Gi, to be referred to as Gi 
4.1.2. V/~ {the vertices of  Gi} 
4.1.3. D(Gi)~O; L(Gi, o),---L(G, o) for all o e  V i 
4.1.4. Clean (Gi) 
4.2. I f  G i was changed in Instruction 4.1.4, 

Then 
4.2.1. Create a copy of  the current Gi, to be referred to as F 

Ui*-- {vertices of  Gi} 
D(F) ~ 0 
L(F,o)*--L(Gj, o) for all o e U /  
Graph(F)  

D(Gi) ~ D(Gi) + D(F) 
L(Gi, o)*--L(F, o) for all o e  Ui 

Else 
4.2.2. Select 

4.2.2.1. When there is a vertex x in G i with deg(x)>3 ,  
Then create F~, F2, two copies of  G i 

U / ~  {vertices of  Gi} 
For j = 1,2 

D(F/) ~ 0 

L(Fj, v )~L(Gi ,  v) for all v e  U i 
L(F  l, x)  ~-- 1 
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For all vertices y e F2 such that (x, y) is an edge in 
F:, 

L(F2,Y),--1 
For j = 1,2 

Clean(Fj); Graph(Fj) 
If  D(F1)<_D(F2) 
Then D(Gi) ~ D(Gi) + D(F1) 

L(Gi, o )~L(Fbo)  for all o~U/  
Else O(Gi) "-- O(Gi) + D(F2) 

L(Gi, o)*-L(F2, o) for all o e U /  
4.2.2.2. When there is a 'diamond' (Fig. 1) 

Then L(Gi, x)~- 1; 
Clean (Gi); Graph(G/) 

4.2.2.3. When there is a 'house' (Fig. 2) 
Then L(Gi, u) ~ 1 

Clean(G/); Graph(G/) 
4.2.2.4. When there is a K2, 3 (Fig. 3) 

Then L(Gi, u) ~-- " ' lx" ;  L(Gi, w) ~-- " ' l x " ;  
L(Gi, Y)~-"x";L(Gi, z) . - -"x";  
Combine (Gi, x,y); Combine(Gi, x, z) 
Clean(G/); Graph(Gi) 

4.2.2.5. When there is a 'double triangle' (Fig. 4) 

y 

w x 

Fig. 1. A 'd iamond ' .  

W 

Z 
/ 

Fig. 2. A 'house ' .  

tl W 

Fig. 3. K2,3. 

\ 

/ 

W t W 

X 
x 

Fig. 4. A 'double triangle'.  

/ 

\ 
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Then create F 1, F 2, two copies of  G i 
Ui ~ {vertices of  Gi} 
For j = 1,2 

D(Fj) ~ 0 
L(Fj, o )~L(Gi ,  o) for all o~U/  

L ( F  l, o') ~ 1; L(FI, o ) , - 0  
L(F~, w ) ~  1; L(FI, X ) ~  1; 
L ( F  2, o)*-- 1; L(Fz, o ' ) ~ O  
L(F2, w' )*-  I; L(F2, x')~--1; 
For j = 1,2 

Clean(Fj); Graph(Fj) 

I f  D(F1)<_D(F2) 
Then D(Gi) ~ D(Gi) + D(F1) 

L(Gi, o)~-L(F1, v)for  all o e  U 1 

Else D(Gi) "-- D(Gi) + D(F2) 
L(Gi, o)~-L(F2, o) for all v e  U i 

4.2.2.6. Otherwise choose a vertex x not involved in a triangle 
(* Such an x exists; see Lemma 6.1 .)  

Create F 1, F 2, two copies of  G i 

Ui ~ {vertices of  Gi} 
For j = 1,2 

D(Fj),- 0 
L(Fj, o ) ~ L ( G i ,  o) for all o e U  i 

L ( F  1, x)  ~- 1 
For all vertices y c Fz such that (x, y) is an edge in F 2, 

L(Fz, y ) ~  1 
For j = 1,2 

Clean(Fj); Graph(Fj) 

I f  D(FO>_D(F2) 
Then D(Gi) '-- D(Gi) + D(FO 

L(Gi, v) '--L(FI,  v) for all v~ Ui 
Else D(Gi) ~ D(Gi) + D(F2) 

L(Gi, o ) ~  L(F2, o) for all oe  U i 
4.3. D ( G ) ~ D ( G ) + D ( G i ) ;  For all o e  V/, L(G, o)'--L(Gi, o) 

Od 
5. Return 
End Graph 

5. Procedure Clean 

A detailed description of  Procedure Clean is followed by a statement of  this 
procedure. 
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As was mentioned above, Procedure Clean(G) deletes all vertices in G that are 
known to belong, or known not to belong, to the vertex cover, as well as those 
labelled " w "  or "q  w" .  It then shrinks the rest of  the graph into a smaller graph, 
'equivalent '  in terms of  finding a vertex cover (as will be explained later), in which 
all vertices are of  degree at least 3. 

In this involved algorithm, we do not wish to discuss in too much detail the data- 
structures employed and the exact implementation.  

During the procedure we delete edges or vertices, or combine vertices. We use 
three primitives for this purpose: 

(1) Delet(G, e), or simply Delete(e), deletes the edge e f rom the Graph G. 
(2) Delete(G, v), or Delete(v), deletes the vertex v and all its incident edges f rom 

G. 
(3) Combine(G, o, w), or Combine(v, w), is used to combine two vertices, o and 

w, into one, o: for each neighbor x of  w create a new edge (o,x). We refer to the 
original edge (x, w) as a merged edge. 
Whenever we apply Delete(e) or Delete(o), we move f rom our original graph G to 
a smaller graph G ' ,  so we have to make sure that  the MVC problem on the original 
graph is 'equivalent '  (this term is clarified later) to the same problem on the reduced 
graph in conjunction with the labelling L on vertices that have been deleted. Note 
that,  although the algorithm calls, by the name G, both the original graph and the 
reduced one, in the present description we prefer to call the reduced graph G ' ,  for 
reasons of  clarity. 

The first two steps in the Procedure Clean were explained in Section 4. 
The third step searches, in order, for self loops, parallel edges, vertices of  degree 

0, vertices of  degree 1, adjacent pairs of  vertices of  degree 2, and other vertices of  
degree 2, and either eliminates them or prepares them for elimination by Steps 1 and 

2. 
Let us explain Steps 3.5 and 3.6. (See also Fig. 5. Steps 3.1 through 3.4 are simpler 

and their explanations follow the same lines, and are therefore omitted.) Here 
deg(o) = 2, and o is adjacent to x and w. If  x is included in an MVC, we can demand 
that  w be included as well, and that o be excluded. Reason: Take an MVC that in- 
cludes x. Because of  the edge (o, w), it includes either o or w, or both. We can obtain 
another MVC by including w and excluding o. Similarly, if w is included, we may  
demand that x is included and o excluded. I f  neither w nor x is included, obviously 
o is included. Thus x and w are both included or excluded together, while o has the 
opposite behavior. We reflect this situation by labelling x with " w " ,  and o with 
"q  w" ,  and 'Combining '  w and x. The 'Combine '  operation attaches to vertex w 
in the reduced graph G ' ,  all edges incident on either x or w in the original graph 
G. Inclusion of  w in an MVC of  G '  covers all edges incident on w in G ' ,  giving the 
effect of  covering all edges incident on either w or x in G, thus corresponding to 
inclusion of  both w and x in the MVC of  G. Similarly, exclusion of  w f rom the MVC 
of  G '  corresponds to exclusion of  w and x (and inclusion of  o) in the MVC of G. 

In order to avoid searching the graph repeatedly, we may keep the vertices and 
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e l  

L(w) = L (v )  = L ( x )  = 'Undef ined I 

Before the instruction 

X~ 
o 

37 

W I 

ea ez 

0 0 ~0 XI  

o (5 
e I 

L(v)  = " l w " ,  L ( x )  = " w "  

Following the instruction 

Fig. 5. The effect of instruction 3.6 (Procedure Clean). 

edges to be handled by Steps 3.1 through 3.6 in queues, one queue for each step. 
When Procedure Clean terminates, we are left with a graph Gr, all of whose ver- 

tices are of  degree at least 3, with no self-loops or parallel edges. Further, 
a(Gr)<_k(G).  (Note that when we call Clean(G), G is biconnected, implying 
a(G)  = k ( G ) . )  This is seen inductively. When processing a vertex of  degree 0, we 
delete one vertex and remove one connected component, so that a does not change. 
When processing a vertex of  degree 1, we delete two vertices (o and w), delete deg(w) 
edges, and increase the number of  connected components by at most deg(w)-  2, so 

that a either decreases in value or stays constant. When processing a vertex of degree 
2, we end up deleting two vertices and two edges (as well as moving several other 
edges), and not affecting the connectivity, so that a does not change in value. 
Similarly, we check that elimination of multiple edges or loops cannot increase a. 
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Clean(G) cannot add vertices or edges to other biconnected components,  and 
therefore cannot change their values of  k. 

Since all vertices of  Gr are of  degree at least 3, we have IErl_>31Vrl, where Er, 
V r are the edges and vertices of  G r, respectively. Let Cr be the number of  connected 
components  of  G r. Then k(G)=a(G)>_a(Gr)=lErl- lVrl+Cr>_llVr] .  Thus 

I Vrl <_2k(G). 

Procedure Clean(G) 
1. For every v such that L(G, v ) = 0  or L(G, v ) = " q w "  

Delete(v) 
2. For every v such that L(G, v) = 1 or L(G, v) = " w "  

Delete(v); D(G) *-- D(G)  + 1 
3. Select 

3.1. When there exists an edge e such that e =  (v, v) (* self-loop *) 
Then L(G, v ) ~  1 

3.2. When there exist parallel edges el, e2 between u and v 
Then Delete(el) 

3.3. When there exists a vertex v such that deg(v)=0  
Then L(G, v) ~ 0 

3.4. When there exists a vertex v such that deg(v)= 1, ((v, w) an edge) 
Then L(G, v) ~-0; L(G, w) ~ 1 

3.5. When there exist vertices v, x such that d e g ( v ) = d e g ( x ) = 2 ,  (v ,x)  is an 
edge, and (v, w) is another edge 

Then L(G, v) ~- "q w" ;  L(G, x )  ~- " w " ;  Combine(w, x)  
3.6. When there exists a vertex v such that deg(v)= 2 ((v, x), (v, w) are edges, 

deg(x) < deg(w)) 
Then L(G, v) ~- "q w" ;  L(G, x )  ~- " w " ;  Combine(w, x)  

3.7. Otherwise 
Return 

4. Go to 1. 

6. Detailed description of Step 4.2.2 of Procedure Graph 

We describe here the way Procedure Graph(G) deals with the distinguished bicon- 
nected components.  Throughout  the discussion, we will derive conclusions regar- 
ding the running time of  Graph.  Recall that, at this point, all vertices are of  degree 
at least 3, self-loops and parallel edges have been eliminated, and no vertices in G 
have been labelled. 

Step 4.2.2.1 

Step 4.2.2.1 treates a vertex x of  degree at least 4. We branch on the vertex x. 
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Consider two possibilities: either x will be labelled 1 or 0. I f  1, then we need to find 
a minimum cover Vl of  F1, the subgraph of G induced by deleting x and all its inci- 
dent edges. I f  0, then all of  x ' s  neighbors in G will be labelled 1, and we need to 
find a minimum cover V 2 of F2, the subgraph of  G induced by deleting x, all its 
neighbors, and all incident edges. 

In the first case (x labelled 1), the graph F1 is still connected, since G was bicon- 
nected. (If  w and y are two neighbors of  x in G, edges (x, w) and (x, y)  are contained 
in a simple cycle in G; this cycle contains a path f rom w to y not involving x, and 
this path is a path in F1. Also, each vertex in F1 is connected to a neighbor of  x by 
a path in Fl.) Now a(F  0 is gotten f rom a(G) by noting that we have deleted one 
vertex and at least four edges, and have not changed the connectivity; thus 
a(F1) < a(G) - 3. 

For  the second case (x labelled 0), we claim that a ( F 2 ) < - a ( G ) -  4. This requires 
more careful analysis. For each pair o f  neighbors w i and wj of  x, there is a path 
f rom w; to wj not involving x. Create an auxiliary graph J, whose vertices are the 
neighbors w i of  x, and with an edge joining w i and wj if there is a simple path f rom 
w i to wj in G involving neither x nor any other w~. By biconnectivity of  G, J is con- 
nected. Find a spanning tree T of J. Let w 1 be a leaf of  this spanning tree. The uni- 
que edge in T containing w 1 corresponds to a simple path f rom w I to, say, w E, in- 
volving neither x nor any other Wk. The first edge of  this path is, say, (wl,y),  
where y 4: x. Since deg(w 1) >_ 3, there is an edge (w l, z) involving w I , where z :~y and 
z--/:x. 

Consider the graph G t obtained f rom G by deleting x, all its incident edges, and 
the edge (w 1, z).  We claim that G t is connected. To show this, it suffices to show 
that each pair (wi, wj) is connected by a path in Gt, as is the pair (wi, z )  for some 
i. Clearly the paths represented by the edges in T have not been disturbed by the 
deletion of x and the several edges, so that all the w/are still connected. Biconnec- 
tivity of  G implies that (Wl, z) and (Wl, x)  are contained in a simple cycle. Part  of  
that  cycle is a path  (z, w l , x ,  wi) for iq : l .  The rest of  the cycle is a path f rom w i to 
z; it contains none of  the deleted edges (x, wj) or (Wl, z),  so that it is a path in Gt. 

Since G t is still connected, a(Gt)  is gotten f rom a(G)  by noting that one vertex 
(x) and (deg(x) + 1) edges have been deleted. Thus a(Gt)  = a(G) - deg(x) < a(G) - 4. 

Label each wi of G t by 1. In turn we delete each w i and each incident edge. This 
cannot increase the a value, as we discussed in the description of  the Procedure 
Clean. So a(F2)<_a(Gt)<_a(G)-4 .  

So, faced with a biconnected graph G and the value k ( G ) ,  where G had a vertex 
of  degree at least 4, we have t ransformed the problem into consideration for two 
smaller graphs F1 and F 2, with a(F1) and a(F2) bounded by k ( G )  - 3 and k ( G )  - 4, 
respectively. Let Tl(s ) be the worst-case total running time of  Graph(G)  on a 
biconnected graph G, where k ( G ) = s ,  deg(x)_>3 for all x c G ,  and G includes a 
vertex of  degree at least 4. We have: 

TI(S) < _ H ( s -  3) + H * ( s -  4) + cs, 
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where the cs (c a constant) reflects, among other things, the time spent searching 
for  a vertex of degree_> 4, and making two copies of  the graph. (Recall the defini- 
tions of  H and H *  from the end of  Section 4.) 

Step  4.2.2.2 

There is a diamond, with vertices w, x, y ,  z; edges (w, x ) ,  (w, y), (w, z), (x, y), and 

(x, z). (See Fig. 1 .) Recall all vertices are of  degree 3. Then the only edges involving 
w or x are those listed. We wish to reduce G to a graph without this diamond. The 
edge (w,x)  forces either x or w to belong to the MVC. We may demand that x 
belong to the MVC, because an MVC containing w but not x may be easily 
t ransformed to an MVC containing x and not w. So, set L(G,  x )  = 1. 

Later, when we call Clean, we will delete x and its incident edges, without affec- 
ting connectivity. So k ( G )  will decrease by 2. In this case the amount  of  work re- 
quired is: 

T2(S ) < H ( s  - 2) + cs, 

the term es representing the time spent searching for the diamond,  plus the time 
spent previously searching (unsuccessfully) for a vertex of  degree_> 4. 

Step  4.2 .2 .3  

There is a house (vertices u, w , x , y , z ;  edges (u, w), (u,x) ,  (w,x) ,  (x,y),  (y ,z ) ,  
(w, z); see Fig. 2). Again all nearby vertices are of  degree 3, so that w and x have 
no other edges, while u, y, and z each has one edge not listed. 

We can demand that u belongs to our MVC. The reason: at least two vertices of  
the triangle (u, w, x)  must belong to any MVC. Assume that w and x belong to a 
certain MVC, while u does not. We have to show that we can t ransform this MVC 
into one which contains u. Because of  edge (y, z), at least one vertex among (y, z) 
is contained in the MVC. I f  y is included, then exclude x and include u. Otherwise, 
z is included, so we exclude w and include u. One can check that  in either case we 
still have an MVC. 

So, set L(G,  u) = 1. Later, when we call Clean, we will delete u and its incident 
edges, without affecting connectivity. (G remains connected because it was original- 
ly biconnected.) So k ( G )  will decrease by 2. In this case the amount  of  work required 
is: 

T 3 (s) >__ cs + H ( s  - 2). 

Step 4 .2 .2 .4  

There is a g2,  3 (vertices u, w , x , y , z ;  edges (u ,x) ,  (u , y ) ,  (u,z) ,  (w,x) ,  ( w , y ) ,  

(w, z); see Fig. 3). All vertices have degree 3, so that u and w have no edges other 
than those listed, while x, y, and z each has another edge. 
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We can demand that either our MVC contains x, y, and z and excludes u and w, 

or it contains u and w and excludes x, y, and z. 
Reason: if one of  x, y, or z (say x)  is included in an MVC, then at least two of  

the other four vertices have to be included. Exchange these vertices for y and z. We 
can easily check that we still have an MVC in this case. Otherwise (x, y, and z were 
all excluded), u and w were included, and our original MVC satisfied our demand. 

In the algorithm, we 'merge '  (Combine) the three vertices x, y, and z, into a single 
vertex x, and eliminate u and w. The labelling L ( G , u ) = L ( G , w ) = " q x " ,  
L ( G , y )  =L(G,  z ) : - " x " ,  reflects our demand, above. 

Here w~ eliminate 4 vertices and 6 edges, without affecting connectivity, so that 
the amount  of  work is: 

T4(s) <_<_H(s- 2) + cs. 

Step 4.2.2.5 

There is a 'double triangle'  (vertices o, w, x, o', w', x ' ;  edges (o, w), (o, x), (w, x),  
(o', w'), (o', x ') ,  (w', x') ,  (o, o'); see Fig. 4). All vertices have degree 3. 

Here we break into two cases. (A) I f  o belongs to our MVC, we can demand that 
w' and x '  also belong to the MVC, and o'  be excluded. Reason: Take an MVC that 
includes o. Since at least two of  the vertices x', o', w' must be included, obtain f rom 
this MVC an MVC in which w' and x '  are included while o'  is excluded. 

(B) I f  o does not belong to the MVC, then o ' ,  w, and x must belong. 
In each subgraph, after Clean has deleted labelled vertices and their adjacent 

edges, we find that 4 vertices and 8 edges have been deleted. Biconnectivity of  G 
implies that the remaining graph is still connected (with a little work but no new 
ideas). Thus in this case the running time is 

Ts(s) _< 2 H ( s -  4) + cs. 

Step 4.2.2.6 

Lemma 6.1. Upon arriving at this step, there is a vertex x not involved in a triangle 
(i.e., x has neighbors Yl, Y2, Y3, but none o f  the edges (Yi, Yj) exists). 

Proof .  Suppose (x, Yl, Y2) is a triangle. Then either Y3 is connected to Yl or Y2 (and 
we have a 'd iamond ' ) ,  or Y3 is involved in another triangle (giving us a 'double 
triangle'),  or ya is not involved in any triangle, in which case we select it instead of  
x. [] 

All vertices are of  degree 3. Thus each Yi has neighbors zil, zi2, and x. Some of  
the z 0 may coincide, but they are unequal to Yk- 

Call Go the graph obtained f rom G by deleting x, and Yi, and their incident 
edges. 
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Theorem. Either G D is a tree, or none o f  its connected components is a tree. 

Proof .  Let a component  of  Go be a tree S with t vertices. The sum of the degrees 
of  these vertices in Go is 2 ( t -  1), while the sum of  their degrees in G is 3t. Thus 
among these t vertices are various zij incident on exactly 3 t - 2 ( t - 1 ) =  t + 2 of  the 
edges (Yk, Zij). Clearly t_< 4, since only six such edges exist. 

I f  t = 4, then Go is itself a tree. 
I f  t < 4 ,  then its vertices are all zij, since the other vertices are of  degree 3 in Go. 
I f  t = 1, some zij is an isolated vertex in Go. Then it must be adjacent to Yl, Y2, 

and Y3 in G, forming (with x)  a K2, 3, a contradiction. 
I f  t =  2, then S is a single edge joining two zij. Each zij is adjacent to two Yk. 

Thus, there is a Yk (say Yl) adjacent to both of  them, and another (say Y2) adjacent 

to at least one of  them (say z12). Then (Zl l ,Y l ,  Zl2, X, Y2) form a house, a 
contradiction. 

I f  t =  3, then the zij attract five of  the six edges (Yk, Zij). The remaining zij is then 
an articulation point of  G, a contradiction. [] 

By biconnectivity of  G, and nonexistence of  K2, 3 (see the proof  of  the previous 
Theorem),  we can show that each connected component  of  Go has at least two dif- 
ferent zij's. So G D has at most three connected components.  Let us assume first 
that  Go has three connected components,  and denote their a values by al ,  a2, and 
a 3. By deleting x and its edges f rom G we get a connected graph with a value of  a: 
a(G) - 2. By deleting x, the Yi, and their incident edges (4 vertices and 9 edges), we 
decrease k by 5, but as we disconnect the graph into three pieces, the resulting equa- 
tion on the a i is 

a I + a E + a a = a ( G ) - 5 + 2 .  

By the Theorem, each ai >_ 1, so ai<_a(G)- 5. The same holds if G D has two or one 
connected component(s).  

The timing in this case is then: 

where 

T6(s) < H ( s -  2) + H '  (s) + cs, 

n '  (s) = 

M a x { H ( s -  5), Max 1 ( n ( k l )  ÷ H(k2)), Max2(H(kl)  + H(k2) + H(k3))} 

where Max I is taken over the set {kl, k 2 ] k l + k 2 = ( s - 5 ) + l ,  ki>_l}, and Max 2 is 
taken over the set {k l, k2, k3 I km ÷ k 2 ÷ k 3 : ( s -  5) ÷ 2, ki>~ 1}. 

7. Complexity analysis 

Recall the definitions of  H(n, s), H(s), and F(s), f rom the end of  Section 4, and 
Ti(s) as defined above. 
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In view of Procedure Graph,  we find that 

H(n ,  s) < max { c I (nl + s 2 ) + H(s l )  + 2 ~, (c 1 (ni + s 2) + H(si))} 
i>1  

= c(n + s) + max{cls  2 + H(Sl) + 2 ~ (cls 2 + H(si))} 
i>1 

where the maximum is taken over tuples of  positive integers s i, such that ~i si =s,  

and s 1 = max(s/). For a biconnected component  G i, s i = k(Gi),  and n i is the number  

of  vertices in G i. We have n + s > n > ½ ~  n i. 
Here c 1 and c are constants, reflecting the linear time for finding biconnected 

components ,  processing self-loops, multiple edges, vertices of  degree 0 or 1, and 
pairs of  adjacent vertices of  degree 2 (Steps 3.1 through 3.5, Procedure Clean). The 
s 2 term comes f rom the Combine operation in Step 3.6 of  Procedure Clean; this 
step is exercised at most 2s times and requires at most s steps at each invocation. 
(When we reach Step 3.6, the graph has at most 2s vertices, and each call to Pro- 
cedure Combine eiminates a vertex.) The remaining terms (n(s i ) )  reflect the dif- 
ficulty of  processing the biconnected components G i. 

We bound H(s)  as follows: 

H(s)  <- max{cls + F(s), max{ cls 2 + H(s l )  + 2 E (cl s2 + H(si))} }" 
i>1  

The cs+F(s )  term comes f rom the possibility that G is biconnected; if G is not 
biconnected, the preceding analysis goes through, with sl the k-value of the largest 

biconnected component ,  Y. s i = s. 
For the case of  G biconnected, we find 

F(s) <_ max(T 1 (s) . . . . .  T6(s)). 

We find that T6(s) implies the recurrence relation with the worst behavior, 

namely 

F(s) <_ H( s  - 2) + H(s  - 5) + cs. 

To solve this recurrence relation, we let 0 be the solution of 1 = 0 - 2 +  0 -5, i.e., 
0 =  1.2365. Then we find that the following is a solution to our recurrence relation: 

F(s) = c 10 s + c2 $3 , 

H(s) = s___ (C 10S 1 + C2S~) ,  
SI 

H(n,s):O(rl+S (OSl+s~))° SI 
Since for large Sl,S~-~O Sl, w e  omit s 3. In terms of  our original parameters,  the 
complexity of  our algorithm is 

H ( n '  a( G) ) = O ( n  + a( G) Ok(C))" 
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As 0 <  21/3, we get that the complexity of  our algorithm is O(n + (a/k)2k/3). This 
result is valid for unconnected graphs, as well. 

8. A parallel implementation 

The f ramework of  the parallel implementation is the same as in [2] and follows 
the ideas of  the following theorem and its proof .  

Theorem (Brent). Any  synchronized parallel algorithm that runs in parallel time d 
and consists o f  x elementary operations can be implemented by p processors within 
time Fx7 + d. 

Proof. Let xi denote the number  of  operations performed by the algorithm at step 
i, (~7=1 x i =x) .  We now use the p processors to simulate the algorithm. Since all 
the operations at step i can be executed simultaneously, they can be computed by 
p processors in Fxi/p7 units of  time. Thus, the whole algorithm can be im- 
plemented by p processors in time 

d d 

Fxi/Pq <- ~ (xi/P+ 1)< Fx/pq +d. [] 
i - I  i = 1  

Remark. The proof  of  Brent 's  theorem poses an implementation problem: how to 
assign the processors to their jobs.  

Let us go back to our algorithm. Assume that we had all the processors we might 
have needed in every time unit o f  the algorithm, and that we could assign these pro- 
cessors to their jobs in constant time. 

We start by calling the biconnectivity algorithm as in the sequential case. The 
operation of  Procedure Clean at the first time we arrive at a biconnected component  
is also the same. The parallel implementation begins to differ f rom the sequential 
implementation only after the biconnected component  is reduced to a graph 
with < 2s vertices, each of  them of  degree _> 3, where s is the k of  the biconnected 
component .  We branch over vertices, and continue processing each copy in parallel. 

The k of  each copy is smaller by at least a constant f rom the k of  the biconnected 
component  before the branching. Therefore there are _<s branching in a row. 
Forgetting, for a while, the Combine operation of  Procedure Clean, the number  of  
operations between two branchings is _< cs, and for the parallel implementation 
f rom the moment  it ' really'  started < cs a. 

Let us go back to the Combine operations. From the moment  we started to branch 
over the biconnected component ,  the number  of  operations in a row is < 2s, the 
number  of  vertices; each takes _< cs t ime units. So, we can bound by O(s 2) the time 
in which the algorithm deals with a biconnected component  with < 2s vertices each 
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o f  degree < 3  where  s is its k. This  implies  tha t  the  d o f  the  t he o re m is 

O(n + a + (a/k)(k2)) .  
The  p r o b l e m  o f  ass igning processors  to their  j o b s  is solved by  the  fo l lowing in- 

s t ruc t ion  a d d e d  where  b ranch ings  o f  G r a p h  over  vertices is done .  I f  p ( >  1) p ro-  

cessors  are to  be ass igned be tween  two choices,  one tak ing  sequent ia l  t ime _< T~ and 

the  o ther  _< T 2, then  TIp/(T1 + T2) processors  are assigned to the  first  choice and  

the  rest to  the other .  ( P r e c o m p u t a t i o n  o f  I t ( k )  for  k<_s is suff icient  to know T 1 

and  T2. ) I f  there  is one processor ,  it takes  care  o f  bo th  choices,  as in the sequent ia l  

case.  The  para l le l  t ime we get is, the re fore  

n + (a/k)O k 
O(n + (a/k)Ok/p)  for  p _  n + a + (a / k ) ( k  2) processors .  

I t  is no t  t oo  dif f icul t  to  see f rom the out l ine  o f  Bren t ' s  t heo rem tha t  it is the same 

as to say that  the  t ime is 

0 n + (a /k )  P for  p_< ~5 processors .  

Remark. A fur ther  pa ra l l e l i za t ion  o f  our  a lgo r i thm is poss ible .  M a n y  a lgor i thms  on  

r o o t e d  trees tha t  work  f rom the leaves to the roo t  can be para l le l ized  using the 'cen-  

t ro id  d e c o m p o s i t i o n '  t echnique  (see, for  instance,  [3]) in o rde r  to  get O(log2n) 

para l l e l  t ime ins tead  o f  O(n)  sequent ia l  t ime,  where  n is the number  o f  vertices.  

This ,  in con junc t i on  with the  recent  para l le l  b iconnec t iv i ty  a lgo r i thm of  [6] can be 

used in o rde r  to get para l le l  t ime O(k  log2n) using suff ic ient ly  m a n y  processors .  

Since this involves u t i l iza t ion  o f  known me tho ds  and  seems ted ious ,  we do  not  

e l abo ra t e  on  this bu t  ra ther  leave it as an exercise for  the in teres ted  reader .  
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