
Discrete Applied Mathematics 10 (1985) 27-45 27

North-Holland

SOLVING N P - H A R D P R O B L E M S IN ' A L M O S T TREES ' :

V E R T E X COVER

Don COPPERSMITH
Mathematical Sciences Department, 1BM Thomas J. Watson Research Center, Yorktown
Heights, N Y 10598, USA

Uzi VISHKIN*
Department o f Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

Received 4 May 1983

Revised 22 February 1984

We present an algorithm which finds a minimum vertex cover in a graph G(V, E) in time

O(IV[+ (a/k)2k/3), where for connected graphs G the parameter a is defined as the minimum

number of edges that must be added to a tree to produce G, and k is the maximum a over all

biconnected components of the graph. The algorithm combines two main approaches for coping

with NP-completeness, and thereby achieves better running time than algorithms using only one

of these approaches.

1. Introduction

Garey and Johnson [1], in the introduction to the chapter 'Coping with NP-
Complete Problems', note that 'it is sometimes possible to reduce substantially the
worst case time complexity of exhaustive search merely by making a more clever
choice of the objects over which the exhaustive search is performed.' As examples
for this approach, they give [5] and other works. On the ottier hand, Gurevich,
Stockmeyer, and Vishkin [2] suggest algorithms for NP-hard graph problems for
sparse graphs, in which the complexity is exponential in the maximum number of
additional edges to a tree in a biconnected component of the graph, rather than in
the size of the problem instance. This makes sense especially for problems that are
polynomial for trees but NP-hard for fairly sparse graphs. As was noted in that
paper, the idea of analyzing worst case running time of algorithms as a function of
parameters other than the size of the input has a precedent in Chapter 4 of [1] in
their "pseudo-polynomial time algorithms". The present paper exemplifies the in-
tersection of these two approaches.

* This research was performed while the second author was a visiting scientist at IBM Thomas J.

Watson Research Center.

0166-218X/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

28 D. Coppersmith, U. Vishkin

The ' Independent Set Problem' is to find a maximum set of vertices such that no
two are connected by an edge. The 'Vertex Cover Problem' is to find a minimum
set of vertices such that at least one endpoint of every edge belongs to the set. Ob-
viously, the complement of a solution for the first problem is a solution for the se-
cond, and vice versa. The 'Clique Problem' is to find a maximum set of vertices,
each pair of which is connected by an edge. A solution of the independent set pro-
blem in a graph G is a solution of the clique problem in the complement of G. The
three problems are known to be NP-complete.

Let G(V, E) be an undirected graph, where V is the set of vertices, and E is the
set of edges. Let n = I VI and m = IE[. For G connected, define a(G) = m - n + 1.

More generally, if C is the number of connected components in G, set
a(G) = m - n + C. We can view a(G) as the number of additional edges to a spanning
forest of G. Define k (G) to be the maximum of a(Gj), where Gj range over the
biconnected components of G.

We present an algorithm for computing a minimum vertex cover for G, which
runs in time O(n + (a/k)Ok), where 0 = 1.2365 < 2 ~.

Tar jan and Trojanovsky [5] give an O(2 n/3) algorithm for the independent set
problem, and therefore the vertex cover problem. It is interesting to note that, for
a connected regular graph of degree 3, a class for which these problems remain NP-
complete, we have k < n / 2 + 1, whence our result gives time O(n + 2 n/6) for vertex
cover and independent set, therefore improving upon [5] for this class of graphs.

Our result is also an obvious improvement upon the O(m2 ~/2) algorithm given in
[2]. We feel that our present analysis supports the use of the measure of " m a x i m u m
additional edges to a tree in a biconnected componen t" in the design and analysis
of algorithms; this paper therefore strengthens [2] in supporting it as a natural and
relevant measure.

Due to a simple technique which is presented in [2], we can derive a parallel im-
plementation for our algorithm. Its running time is O(n + aOk/kp) for p < O~/k 2

processors. This implies an optimal speed-up over the sequential version for a fairly
wide range of the parameter p.

Sections 3 and 4 give the algorithm and the main procedure it employs (Procedure
Graph) as well as a verbal overview. The second procedure is given and described
in detail in Section 5. In Section 6 we elaborate on the key instruction of Procedure
Graph, preparing the ground for the complexity analysis of Section 7. Section 8
deals with a parallel implementation of the algorithm.

2. Preliminaries

Two edges satisfy the biconnect iv i ty relation if they are identical, or if they are
contained in a simple cycle (i.e. a cycle with no repeated vertices). It can be shown
that the biconnectivity relation is an equivalence relation.

An equivalence class of edges in G, under the biconnectivity relation, together

Solving NP-hard problems in 'almost trees" 29

with their vertices, is called a biconnected component. A graph G is biconnected if
it has a single biconnected component and no isolated vertices. The intersection of
two biconnected components, if nonempty, is a single vertex, called an articulation
point.

A few remarks about k and a:
I f G is connected, a(G) is nonnegative, and a(G)= 0 iff G is a tree.
I f a connected graph G has several biconnected components Gj, then

a(G) = ~ j k (G j) .

Our algorithm will be exponential in k(G) (rather than in a(G)), and for this
reason we choose k as the measure of complexity.

In presenting our algorithm, we use a programming construct called 'Select' , in
addition to the more commonly used constructs. Let Pi be predicates a n d / i be in-
structions. We will write

Select

When P1
Then 11
When P2
Then 12

When Pt
Then I t
Otherwise It+ 1

By this we will mean:

I f PI
Then I 1
Else I f P2

Then 12
Else I f P3

Else I f Pt
Then It

Else It+ 1

3. The algorithm

A high-level description of the algorithm is followed by the algorithm itself.
We employ a recursive procedure, Graph(G), which takes as input a graph G, and

adds to the variable D(G) the cardinality of a minimum vertex cover for G.
During the algorithm we follow a convention which may seem confusing at first,

30 D. Coppersmith, U. Vishkin

but will turn out to have some advantges. We refer to a graph by a name, say T.
Later the graph is changed: some vertices are deleted, edges change place, etc. In
spite o f that, we still call the reduced graph by the name T. Meanwhile, in D(T) we

accumulate the number o f vertices in a min imum vertex cover (MVC) for the graph
which was first associated with the name T. Therefore, at the end o f the algorithm,

D(G) will equal the cardinali ty o f an MVC o f G.
The vertex cover itself is returned by Graph(G) in the vector L(G, o) for all o e G.

Its possible values are:

~ 0, o does not belong to the vertex cover,
1, o belongs to the vertex cover,

L(G, o) = " w " , o belongs to the vertex cover iff w does,

t "] w " , o belongs to the vertex cover iff w does not.

Let us define an auxiliary directed graph F w i t h the same vertices as G, and (o, w)
is an edge o f F iff L(G, o) = " w " or "q w " . The outdegree o f each vertex is either
0 or 1. I f outdeg(v) = 1, there is a unique directed path in F f rom o to a vertex u
such that L(G, u) =ei ther 0 or 1. With the help o f a stack, we assign ' f inal ' values

to L(G, o) for all o ~ G.

Main Algorithm
For all vertices x in G, L(G, x) ~ " U N D E F I N E D " ;

D(G) ",-- 0;
Graph(G, 0);
(. Post-process L *)
Stack is empty initially
For every vertex x such that L(G,x)= " w " or L(G,x)= " - l w "

Do
u,~---w

Stack ~ x
While L(G, u) = " z " or " - l z "
Do

Stack ~ u
U * - Z

Od
While Stack is not empty

Do
u '-- Stack

I f L(G, u) = " w "
Then L(G, u) ~- L(G, w)
Else L(G, u)~ 1 -L(G, w)

Od
Od
End;

Solving NP-hard problems in 'almost trees" 31

4. Procedure Graph

An overview of procedure graph is followed by a statement of this procedure.
After computing the biconnected components of G, the algorithm chooses a

biconnected component with maximum value k to be the 'distinguished vertex' in
each tree of an auxiliary forest H (which describes the build-up of G f rom its bicon-
nected components; see the definition of H in the program itself). The reason for
this choice will become clear in the complexity analysis. The algorithm computes the
vertex cover of one biconnected component at a time, taking into account the fact
that a few vertices of the biconnected component may have been chosen earlier to
belong to the vertex cover. At each point, it selects a leaf in H as the component
to treat next, leaving the 'distinguished' component for the end. The procedure is
designed to minimize the size of the vertex cover as a pr imary objective, and secon-
darily to include the articulation vertex in this cover.

A non-distinguished component is first 'disconnected' f rom the rest of the graph
at its articulation vertex, x. This is done by forming two copies of the component .
In the first copy, x is assumed to belong to the MVC, and in the second, it is assum-
ed not to belong to it. (These assumptions on x are implemented via the labelling
vector L; if x is already known to be a member of MVC we avoid the branching.)
Both copies are 'cleaned' f rom previously labelled vertices or vertices of degre 0, 1,
or 2, by the procedure Clean.

During Clean, besides deleting vertices we update D(G). When we delete a vertex
which is labelled 1 we add one to D(G), for obvious reasons. When we delete a
vertex labelled " w " we also add one to D(G). This is because in every instruction
in which a vertex receives the label " w " , exactly one corresponding vertex receives
the label "q w" , so that between that pair of vertices, exactly one will be included
in the MVC.

Every vertex of a 'cleaned' component is of degree at least 3. Later, when we
elaborate further on the procedure Clean, we will show that a 'cleaned' biconnected
component has no more than 2k vertices or 3k edges, where k = k(original bicon-
nected component) .

Now Graph is called recursively f rom both copies. We choose between the MVC's
that are suggested by the two copies according to the criterion stated above: primari-
ly minimizing cardinality, secondarily including x.

Finally we reach a distinguished biconnected component . After cleaning it, we in-
voke a procedure described in Section 6; below we give only an overview of this pro-
cedure. I f any vertex of degree > 3 exists, we branch over this vertex, clean each
copy, and call Graph recursively for each copy. I f not, we search for one of a few
patterns, eliminate that pattern after doing some required operations, and then call
Clean and Graph recursively on one or more copies (according to the pattern).
Otherwise, there will be a vertex u of degree 3 which does not belong to a triangle
(as will be shown). Again we branch over this vertex, clean each copy, and call
Graph recursively for each copy.

32 D. Coppersmith, U. Vishkin

A common practice upon recursive calls to Graph(G/) for a distinguished or non-
distinguished component, is the following. Before a call, record in V/the vertices
whose labels may change (i.e. their membership in MVC may be decided) during the
operation of Graph(G/). After the call, update the labelling of the vertices of the
original graph G, V/, and update D(G). For the latter operation we have to be
careful about counting articulation vertices. The articulation vertex of G i is
counted in D(Gi) if it is in the MVC, but it is not counted in D(G), since it will be
counted again later (in the biconnected component corresponding to the 'father ' of
Gi in the forest H) .

As an aid in the complexity evaluation, we define here three quantities. Let
H(n, s) be the worst-case running time of Graph(G), where G is connected, a(G) = s,
and n is the number of vertices. Set H(s)= H(2s, s)= max H(n, s) for n_< 2s. Let
H*(s)=max(~,H(si)) , where the maximum is over positive integers si such that
~, i si = s. Set F(s) = worst-case running time for Graph(B) where B is biconnected,
k(B) =s, and deg(o)_> 3 for all vertices v in B.

Procedure Graph(G)
1. If G is empty

Then Return;
2.1. Find the biconnected components of G [4]. Create an auxiliary graph (forest)

H. Vertices of H correspond to biconnected components of G and articula-
tion points of G. An edge in H joins a 'biconnected component ' and an 'ar-
ticulation point ' if the corresponding articulation point is contained in the
corresponding biconnected component in G.

2.2. From each tree H/ in the forest H, choose as a distinguished vertex a bi-
connected component Groot,i with largest possible value of k.

3. While [there are non-distinguished biconnected components which have not been
handled]
Do
3.1. Choose such a biconnected component Gi which is a leaf in H, and let x

be its unique articulation point, corresponding to Gi's unique neighbor
in H.

3.2. V/ .-{the vertices in Gi}
3.3. If L (G , x) = 1

Then
3.3.1.

Create a copy of G i, to be referred to as Gi;
D(Gi) ~ O; L(Gi, v) ~ L(G, v) for all v e V/
Clean (Gi); Graph(G/)
(* Update G *)
D(G) ~ D(G) + D(G~) - I

L(G, v) ~ L(Gi, v) for all v ~ V/

Solving NP-hard problems in 'almost trees' 33

3.4.

3.5.

Else

3.3.2. Create two copies of Gi, to be referred to as F~, F2
For j = 1,2

D(Fj) ~ 0;L(Fj, o)'--L(Gi, o) for all o~ V/
L(F l, x) "-- 1
For all vertices y e F 2 such that (x, y) is an edge in F 2

L (F 2 , y) ~ I
For j = 1, 2

Clean(Fj); Graph(Fj)
(* Choosing *)
I f D(F~)<-D(F2)
Then D(G) ~ D(G) + D(F 1) - 1

L(G,o)*--L(FI, o) for all o~ V/
Else D(G) ~ D(G) + D(F2)

L(G, o) +- L(F2, o) for all o ~ II/
Delete G i f rom H.
I f the vertex x is now a leaf of H

Then delete x f rom H.

4. For each distinguished biconnected component G i
Do

4.1.1. Create a copy of Gi, to be referred to as Gi
4.1.2. V/~ {the vertices of Gi}
4.1.3. D(Gi)~O; L(Gi, o),---L(G, o) for all o e V i
4.1.4. Clean (Gi)
4.2. I f G i was changed in Instruction 4.1.4,

Then
4.2.1. Create a copy of the current Gi, to be referred to as F

Ui*-- {vertices of Gi}
D(F) ~ 0
L(F,o)*--L(Gj, o) for all o e U /
Graph(F)

D(Gi) ~ D(Gi) + D(F)
L(Gi, o)*--L(F, o) for all o e Ui

Else
4.2.2. Select

4.2.2.1. When there is a vertex x in G i with deg(x)>3 ,
Then create F~, F2, two copies of G i

U / ~ {vertices of Gi}
For j = 1,2

D(F/) ~ 0

L(Fj, v)~L(Gi , v) for all v e U i
L(F l, x) ~-- 1

34 D. Coppersmith, U. Vishkin

For all vertices y e F2 such that (x, y) is an edge in
F:,

L(F2,Y),--1
For j = 1,2

Clean(Fj); Graph(Fj)
If D(F1)<_D(F2)
Then D(Gi) ~ D(Gi) + D(F1)

L(Gi, o)~L(Fbo) for all o~U/
Else O(Gi) "-- O(Gi) + D(F2)

L(Gi, o)*-L(F2, o) for all o e U /
4.2.2.2. When there is a 'diamond' (Fig. 1)

Then L(Gi, x)~- 1;
Clean (Gi); Graph(G/)

4.2.2.3. When there is a 'house' (Fig. 2)
Then L(Gi, u) ~ 1

Clean(G/); Graph(G/)
4.2.2.4. When there is a K2, 3 (Fig. 3)

Then L(Gi, u) ~-- " ' lx" ; L(Gi, w) ~-- " ' l x " ;
L(Gi, Y)~-"x";L(Gi, z) . - -"x";
Combine (Gi, x,y); Combine(Gi, x, z)
Clean(G/); Graph(Gi)

4.2.2.5. When there is a 'double triangle' (Fig. 4)

y

w x

Fig. 1. A 'd iamond ' .

W

Z
/

Fig. 2. A 'house ' .

tl W

Fig. 3. K2,3.

\

/

W t W

X
x

Fig. 4. A 'double triangle'.

/

\

Solving NP-hard problems in "almost trees' 35

Then create F 1, F 2, two copies of G i
Ui ~ {vertices of Gi}
For j = 1,2

D(Fj) ~ 0
L(Fj, o)~L(Gi , o) for all o~U/

L (F l, o') ~ 1; L(FI, o) , - 0
L(F~, w) ~ 1; L(FI, X) ~ 1;
L (F 2, o)*-- 1; L(Fz, o ') ~ O
L(F2, w')*- I; L(F2, x')~--1;
For j = 1,2

Clean(Fj); Graph(Fj)

I f D(F1)<_D(F2)
Then D(Gi) ~ D(Gi) + D(F1)

L(Gi, o)~-L(F1, v)for all o e U 1

Else D(Gi) "-- D(Gi) + D(F2)
L(Gi, o)~-L(F2, o) for all v e U i

4.2.2.6. Otherwise choose a vertex x not involved in a triangle
(* Such an x exists; see Lemma 6.1 .)

Create F 1, F 2, two copies of G i

Ui ~ {vertices of Gi}
For j = 1,2

D(Fj),- 0
L(Fj, o) ~ L (G i , o) for all o e U i

L (F 1, x) ~- 1
For all vertices y c Fz such that (x, y) is an edge in F 2,

L(Fz, y) ~ 1
For j = 1,2

Clean(Fj); Graph(Fj)

I f D(FO>_D(F2)
Then D(Gi) '-- D(Gi) + D(FO

L(Gi, v) '--L(FI, v) for all v~ Ui
Else D(Gi) ~ D(Gi) + D(F2)

L(Gi, o) ~ L(F2, o) for all oe U i
4.3. D (G) ~ D (G) + D (G i) ; For all o e V/, L(G, o)'--L(Gi, o)

Od
5. Return
End Graph

5. Procedure Clean

A detailed description of Procedure Clean is followed by a statement of this
procedure.

36 D. Coppersmith, U. Vishkin

As was mentioned above, Procedure Clean(G) deletes all vertices in G that are
known to belong, or known not to belong, to the vertex cover, as well as those
labelled " w " or "q w" . It then shrinks the rest of the graph into a smaller graph,
'equivalent ' in terms of finding a vertex cover (as will be explained later), in which
all vertices are of degree at least 3.

In this involved algorithm, we do not wish to discuss in too much detail the data-
structures employed and the exact implementation.

During the procedure we delete edges or vertices, or combine vertices. We use
three primitives for this purpose:

(1) Delet(G, e), or simply Delete(e), deletes the edge e f rom the Graph G.
(2) Delete(G, v), or Delete(v), deletes the vertex v and all its incident edges f rom

G.
(3) Combine(G, o, w), or Combine(v, w), is used to combine two vertices, o and

w, into one, o: for each neighbor x of w create a new edge (o,x). We refer to the
original edge (x, w) as a merged edge.
Whenever we apply Delete(e) or Delete(o), we move f rom our original graph G to
a smaller graph G ' , so we have to make sure that the MVC problem on the original
graph is 'equivalent ' (this term is clarified later) to the same problem on the reduced
graph in conjunction with the labelling L on vertices that have been deleted. Note
that, although the algorithm calls, by the name G, both the original graph and the
reduced one, in the present description we prefer to call the reduced graph G ' , for
reasons of clarity.

The first two steps in the Procedure Clean were explained in Section 4.
The third step searches, in order, for self loops, parallel edges, vertices of degree

0, vertices of degree 1, adjacent pairs of vertices of degree 2, and other vertices of
degree 2, and either eliminates them or prepares them for elimination by Steps 1 and

2.
Let us explain Steps 3.5 and 3.6. (See also Fig. 5. Steps 3.1 through 3.4 are simpler

and their explanations follow the same lines, and are therefore omitted.) Here
deg(o) = 2, and o is adjacent to x and w. If x is included in an MVC, we can demand
that w be included as well, and that o be excluded. Reason: Take an MVC that in-
cludes x. Because of the edge (o, w), it includes either o or w, or both. We can obtain
another MVC by including w and excluding o. Similarly, if w is included, we may
demand that x is included and o excluded. I f neither w nor x is included, obviously
o is included. Thus x and w are both included or excluded together, while o has the
opposite behavior. We reflect this situation by labelling x with " w " , and o with
"q w" , and 'Combining ' w and x. The 'Combine ' operation attaches to vertex w
in the reduced graph G ' , all edges incident on either x or w in the original graph
G. Inclusion of w in an MVC of G ' covers all edges incident on w in G ' , giving the
effect of covering all edges incident on either w or x in G, thus corresponding to
inclusion of both w and x in the MVC of G. Similarly, exclusion of w f rom the MVC
of G ' corresponds to exclusion of w and x (and inclusion of o) in the MVC of G.

In order to avoid searching the graph repeatedly, we may keep the vertices and

Solving NP-hard problems in "almost trees"

e l

L(w) = L (v) = L (x) = 'Undef ined I

Before the instruction

X~
o

37

W I

ea ez

0 0 ~0 XI

o (5
e I

L(v) = " l w " , L (x) = " w "

Following the instruction

Fig. 5. The effect of instruction 3.6 (Procedure Clean).

edges to be handled by Steps 3.1 through 3.6 in queues, one queue for each step.
When Procedure Clean terminates, we are left with a graph Gr, all of whose ver-

tices are of degree at least 3, with no self-loops or parallel edges. Further,
a(Gr)<_k(G). (Note that when we call Clean(G), G is biconnected, implying
a(G) = k (G) .) This is seen inductively. When processing a vertex of degree 0, we
delete one vertex and remove one connected component, so that a does not change.
When processing a vertex of degree 1, we delete two vertices (o and w), delete deg(w)
edges, and increase the number of connected components by at most deg(w)- 2, so

that a either decreases in value or stays constant. When processing a vertex of degree
2, we end up deleting two vertices and two edges (as well as moving several other
edges), and not affecting the connectivity, so that a does not change in value.
Similarly, we check that elimination of multiple edges or loops cannot increase a.

38 D. Coppersmith, U. Vishkin

Clean(G) cannot add vertices or edges to other biconnected components, and
therefore cannot change their values of k.

Since all vertices of Gr are of degree at least 3, we have IErl_>31Vrl, where Er,
V r are the edges and vertices of G r, respectively. Let Cr be the number of connected
components of G r. Then k(G)=a(G)>_a(Gr)=lErl- lVrl+Cr>_llVr] . Thus

I Vrl <_2k(G).

Procedure Clean(G)
1. For every v such that L(G, v) = 0 or L(G, v) = " q w "

Delete(v)
2. For every v such that L(G, v) = 1 or L(G, v) = " w "

Delete(v); D(G) *-- D(G) + 1
3. Select

3.1. When there exists an edge e such that e = (v, v) (* self-loop *)
Then L(G, v) ~ 1

3.2. When there exist parallel edges el, e2 between u and v
Then Delete(el)

3.3. When there exists a vertex v such that deg(v)=0
Then L(G, v) ~ 0

3.4. When there exists a vertex v such that deg(v)= 1, ((v, w) an edge)
Then L(G, v) ~-0; L(G, w) ~ 1

3.5. When there exist vertices v, x such that d e g (v) = d e g (x) = 2 , (v ,x) is an
edge, and (v, w) is another edge

Then L(G, v) ~- "q w" ; L(G, x) ~- " w " ; Combine(w, x)
3.6. When there exists a vertex v such that deg(v)= 2 ((v, x), (v, w) are edges,

deg(x) < deg(w))
Then L(G, v) ~- "q w" ; L(G, x) ~- " w " ; Combine(w, x)

3.7. Otherwise
Return

4. Go to 1.

6. Detailed description of Step 4.2.2 of Procedure Graph

We describe here the way Procedure Graph(G) deals with the distinguished bicon-
nected components. Throughout the discussion, we will derive conclusions regar-
ding the running time of Graph. Recall that, at this point, all vertices are of degree
at least 3, self-loops and parallel edges have been eliminated, and no vertices in G
have been labelled.

Step 4.2.2.1

Step 4.2.2.1 treates a vertex x of degree at least 4. We branch on the vertex x.

Solving NP-hard problems in "almost trees" 39

Consider two possibilities: either x will be labelled 1 or 0. I f 1, then we need to find
a minimum cover Vl of F1, the subgraph of G induced by deleting x and all its inci-
dent edges. I f 0, then all of x ' s neighbors in G will be labelled 1, and we need to
find a minimum cover V 2 of F2, the subgraph of G induced by deleting x, all its
neighbors, and all incident edges.

In the first case (x labelled 1), the graph F1 is still connected, since G was bicon-
nected. (If w and y are two neighbors of x in G, edges (x, w) and (x, y) are contained
in a simple cycle in G; this cycle contains a path f rom w to y not involving x, and
this path is a path in F1. Also, each vertex in F1 is connected to a neighbor of x by
a path in Fl.) Now a(F 0 is gotten f rom a(G) by noting that we have deleted one
vertex and at least four edges, and have not changed the connectivity; thus
a(F1) < a(G) - 3.

For the second case (x labelled 0), we claim that a (F 2) < - a (G) - 4. This requires
more careful analysis. For each pair o f neighbors w i and wj of x, there is a path
f rom w; to wj not involving x. Create an auxiliary graph J, whose vertices are the
neighbors w i of x, and with an edge joining w i and wj if there is a simple path f rom
w i to wj in G involving neither x nor any other w~. By biconnectivity of G, J is con-
nected. Find a spanning tree T of J. Let w 1 be a leaf of this spanning tree. The uni-
que edge in T containing w 1 corresponds to a simple path f rom w I to, say, w E, in-
volving neither x nor any other Wk. The first edge of this path is, say, (wl,y),
where y 4: x. Since deg(w 1) >_ 3, there is an edge (w l, z) involving w I , where z :~y and
z--/:x.

Consider the graph G t obtained f rom G by deleting x, all its incident edges, and
the edge (w 1, z). We claim that G t is connected. To show this, it suffices to show
that each pair (wi, wj) is connected by a path in Gt, as is the pair (wi, z) for some
i. Clearly the paths represented by the edges in T have not been disturbed by the
deletion of x and the several edges, so that all the w/are still connected. Biconnec-
tivity of G implies that (Wl, z) and (Wl, x) are contained in a simple cycle. Part of
that cycle is a path (z, w l , x , wi) for iq : l . The rest of the cycle is a path f rom w i to
z; it contains none of the deleted edges (x, wj) or (Wl, z), so that it is a path in Gt.

Since G t is still connected, a(Gt) is gotten f rom a(G) by noting that one vertex
(x) and (deg(x) + 1) edges have been deleted. Thus a(Gt) = a(G) - deg(x) < a(G) - 4.

Label each wi of G t by 1. In turn we delete each w i and each incident edge. This
cannot increase the a value, as we discussed in the description of the Procedure
Clean. So a(F2)<_a(Gt)<_a(G)-4 .

So, faced with a biconnected graph G and the value k (G) , where G had a vertex
of degree at least 4, we have t ransformed the problem into consideration for two
smaller graphs F1 and F 2, with a(F1) and a(F2) bounded by k (G) - 3 and k (G) - 4,
respectively. Let Tl(s) be the worst-case total running time of Graph(G) on a
biconnected graph G, where k (G) = s , deg(x)_>3 for all x c G , and G includes a
vertex of degree at least 4. We have:

TI(S) < _ H (s - 3) + H * (s - 4) + cs,

40 D. Coppersmith, U. Vishkin

where the cs (c a constant) reflects, among other things, the time spent searching
for a vertex of degree_> 4, and making two copies of the graph. (Recall the defini-
tions of H and H * from the end of Section 4.)

Step 4.2.2.2

There is a diamond, with vertices w, x, y , z; edges (w, x) , (w, y), (w, z), (x, y), and

(x, z). (See Fig. 1 .) Recall all vertices are of degree 3. Then the only edges involving
w or x are those listed. We wish to reduce G to a graph without this diamond. The
edge (w,x) forces either x or w to belong to the MVC. We may demand that x
belong to the MVC, because an MVC containing w but not x may be easily
t ransformed to an MVC containing x and not w. So, set L(G, x) = 1.

Later, when we call Clean, we will delete x and its incident edges, without affec-
ting connectivity. So k (G) will decrease by 2. In this case the amount of work re-
quired is:

T2(S) < H (s - 2) + cs,

the term es representing the time spent searching for the diamond, plus the time
spent previously searching (unsuccessfully) for a vertex of degree_> 4.

Step 4.2 .2 .3

There is a house (vertices u, w , x , y , z ; edges (u, w), (u,x) , (w,x) , (x,y), (y ,z) ,
(w, z); see Fig. 2). Again all nearby vertices are of degree 3, so that w and x have
no other edges, while u, y, and z each has one edge not listed.

We can demand that u belongs to our MVC. The reason: at least two vertices of
the triangle (u, w, x) must belong to any MVC. Assume that w and x belong to a
certain MVC, while u does not. We have to show that we can t ransform this MVC
into one which contains u. Because of edge (y, z), at least one vertex among (y, z)
is contained in the MVC. I f y is included, then exclude x and include u. Otherwise,
z is included, so we exclude w and include u. One can check that in either case we
still have an MVC.

So, set L(G, u) = 1. Later, when we call Clean, we will delete u and its incident
edges, without affecting connectivity. (G remains connected because it was original-
ly biconnected.) So k (G) will decrease by 2. In this case the amount of work required
is:

T 3 (s) >__ cs + H (s - 2).

Step 4 .2 .2 .4

There is a g2, 3 (vertices u, w , x , y , z ; edges (u ,x) , (u , y) , (u,z) , (w,x) , (w , y) ,

(w, z); see Fig. 3). All vertices have degree 3, so that u and w have no edges other
than those listed, while x, y, and z each has another edge.

Solving NP-hard problems in 'almost trees' 41

We can demand that either our MVC contains x, y, and z and excludes u and w,

or it contains u and w and excludes x, y, and z.
Reason: if one of x, y, or z (say x) is included in an MVC, then at least two of

the other four vertices have to be included. Exchange these vertices for y and z. We
can easily check that we still have an MVC in this case. Otherwise (x, y, and z were
all excluded), u and w were included, and our original MVC satisfied our demand.

In the algorithm, we 'merge ' (Combine) the three vertices x, y, and z, into a single
vertex x, and eliminate u and w. The labelling L (G , u) = L (G , w) = " q x " ,
L (G , y) =L(G, z) : - " x " , reflects our demand, above.

Here w~ eliminate 4 vertices and 6 edges, without affecting connectivity, so that
the amount of work is:

T4(s) <_<_H(s- 2) + cs.

Step 4.2.2.5

There is a 'double triangle' (vertices o, w, x, o', w', x ' ; edges (o, w), (o, x), (w, x),
(o', w'), (o', x ') , (w', x') , (o, o'); see Fig. 4). All vertices have degree 3.

Here we break into two cases. (A) I f o belongs to our MVC, we can demand that
w' and x ' also belong to the MVC, and o' be excluded. Reason: Take an MVC that
includes o. Since at least two of the vertices x', o', w' must be included, obtain f rom
this MVC an MVC in which w' and x ' are included while o' is excluded.

(B) I f o does not belong to the MVC, then o ' , w, and x must belong.
In each subgraph, after Clean has deleted labelled vertices and their adjacent

edges, we find that 4 vertices and 8 edges have been deleted. Biconnectivity of G
implies that the remaining graph is still connected (with a little work but no new
ideas). Thus in this case the running time is

Ts(s) _< 2 H (s - 4) + cs.

Step 4.2.2.6

Lemma 6.1. Upon arriving at this step, there is a vertex x not involved in a triangle
(i.e., x has neighbors Yl, Y2, Y3, but none o f the edges (Yi, Yj) exists).

Proof . Suppose (x, Yl, Y2) is a triangle. Then either Y3 is connected to Yl or Y2 (and
we have a 'd iamond ') , or Y3 is involved in another triangle (giving us a 'double
triangle'), or ya is not involved in any triangle, in which case we select it instead of
x. []

All vertices are of degree 3. Thus each Yi has neighbors zil, zi2, and x. Some of
the z 0 may coincide, but they are unequal to Yk-

Call Go the graph obtained f rom G by deleting x, and Yi, and their incident
edges.

42 D. Coppersmith, U. Vishkin

Theorem. Either G D is a tree, or none o f its connected components is a tree.

Proof . Let a component of Go be a tree S with t vertices. The sum of the degrees
of these vertices in Go is 2 (t - 1), while the sum of their degrees in G is 3t. Thus
among these t vertices are various zij incident on exactly 3 t - 2 (t - 1) = t + 2 of the
edges (Yk, Zij). Clearly t_< 4, since only six such edges exist.

I f t = 4, then Go is itself a tree.
I f t < 4 , then its vertices are all zij, since the other vertices are of degree 3 in Go.
I f t = 1, some zij is an isolated vertex in Go. Then it must be adjacent to Yl, Y2,

and Y3 in G, forming (with x) a K2, 3, a contradiction.
I f t = 2, then S is a single edge joining two zij. Each zij is adjacent to two Yk.

Thus, there is a Yk (say Yl) adjacent to both of them, and another (say Y2) adjacent

to at least one of them (say z12). Then (Zl l ,Y l , Zl2, X, Y2) form a house, a
contradiction.

I f t = 3, then the zij attract five of the six edges (Yk, Zij). The remaining zij is then
an articulation point of G, a contradiction. []

By biconnectivity of G, and nonexistence of K2, 3 (see the proof of the previous
Theorem), we can show that each connected component of Go has at least two dif-
ferent zij's. So G D has at most three connected components. Let us assume first
that Go has three connected components, and denote their a values by al , a2, and
a 3. By deleting x and its edges f rom G we get a connected graph with a value of a:
a(G) - 2. By deleting x, the Yi, and their incident edges (4 vertices and 9 edges), we
decrease k by 5, but as we disconnect the graph into three pieces, the resulting equa-
tion on the a i is

a I + a E + a a = a (G) - 5 + 2 .

By the Theorem, each ai >_ 1, so ai<_a(G)- 5. The same holds if G D has two or one
connected component(s).

The timing in this case is then:

where

T6(s) < H (s - 2) + H ' (s) + cs,

n ' (s) =

M a x { H (s - 5), Max 1 (n (k l) ÷ H(k2)), Max2(H(kl) + H(k2) + H(k3))}

where Max I is taken over the set {kl, k 2] k l + k 2 = (s - 5) + l , ki>_l}, and Max 2 is
taken over the set {k l, k2, k3 I km ÷ k 2 ÷ k 3 : (s - 5) ÷ 2, ki>~ 1}.

7. Complexity analysis

Recall the definitions of H(n, s), H(s), and F(s), f rom the end of Section 4, and
Ti(s) as defined above.

Solving NP-hard problems in "almost trees" 43

In view of Procedure Graph, we find that

H(n , s) < max { c I (nl + s 2) + H(s l) + 2 ~, (c 1 (ni + s 2) + H(si))}
i>1

= c(n + s) + max{cls 2 + H(Sl) + 2 ~ (cls 2 + H(si))}
i>1

where the maximum is taken over tuples of positive integers s i, such that ~i si =s,

and s 1 = max(s/). For a biconnected component G i, s i = k(Gi), and n i is the number

of vertices in G i. We have n + s > n > ½ ~ n i.
Here c 1 and c are constants, reflecting the linear time for finding biconnected

components , processing self-loops, multiple edges, vertices of degree 0 or 1, and
pairs of adjacent vertices of degree 2 (Steps 3.1 through 3.5, Procedure Clean). The
s 2 term comes f rom the Combine operation in Step 3.6 of Procedure Clean; this
step is exercised at most 2s times and requires at most s steps at each invocation.
(When we reach Step 3.6, the graph has at most 2s vertices, and each call to Pro-
cedure Combine eiminates a vertex.) The remaining terms (n(s i)) reflect the dif-
ficulty of processing the biconnected components G i.

We bound H(s) as follows:

H(s) <- max{cls + F(s), max{ cls 2 + H(s l) + 2 E (cl s2 + H(si))} }"
i>1

The cs+F(s) term comes f rom the possibility that G is biconnected; if G is not
biconnected, the preceding analysis goes through, with sl the k-value of the largest

biconnected component , Y. s i = s.
For the case of G biconnected, we find

F(s) <_ max(T 1 (s) T6(s)).

We find that T6(s) implies the recurrence relation with the worst behavior,

namely

F(s) <_ H(s - 2) + H(s - 5) + cs.

To solve this recurrence relation, we let 0 be the solution of 1 = 0 - 2 + 0 -5, i.e.,
0 = 1.2365. Then we find that the following is a solution to our recurrence relation:

F(s) = c 10 s + c2 $3 ,

H(s) = s___ (C 10S 1 + C2S~) ,
SI

H(n,s):O(rl+S (OSl+s~))° SI
Since for large Sl,S~-~O Sl, w e omit s 3. In terms of our original parameters, the
complexity of our algorithm is

H (n ' a(G)) = O (n + a(G) Ok(C))"

44 D. Coppersmith, U. Vishkin

As 0 < 21/3, we get that the complexity of our algorithm is O(n + (a/k)2k/3). This
result is valid for unconnected graphs, as well.

8. A parallel implementation

The f ramework of the parallel implementation is the same as in [2] and follows
the ideas of the following theorem and its proof .

Theorem (Brent). Any synchronized parallel algorithm that runs in parallel time d
and consists o f x elementary operations can be implemented by p processors within
time Fx7 + d.

Proof. Let xi denote the number of operations performed by the algorithm at step
i, (~7=1 x i =x) . We now use the p processors to simulate the algorithm. Since all
the operations at step i can be executed simultaneously, they can be computed by
p processors in Fxi/p7 units of time. Thus, the whole algorithm can be im-
plemented by p processors in time

d d

Fxi/Pq <- ~ (xi/P+ 1)< Fx/pq +d. []
i - I i = 1

Remark. The proof of Brent 's theorem poses an implementation problem: how to
assign the processors to their jobs.

Let us go back to our algorithm. Assume that we had all the processors we might
have needed in every time unit o f the algorithm, and that we could assign these pro-
cessors to their jobs in constant time.

We start by calling the biconnectivity algorithm as in the sequential case. The
operation of Procedure Clean at the first time we arrive at a biconnected component
is also the same. The parallel implementation begins to differ f rom the sequential
implementation only after the biconnected component is reduced to a graph
with < 2s vertices, each of them of degree _> 3, where s is the k of the biconnected
component . We branch over vertices, and continue processing each copy in parallel.

The k of each copy is smaller by at least a constant f rom the k of the biconnected
component before the branching. Therefore there are _<s branching in a row.
Forgetting, for a while, the Combine operation of Procedure Clean, the number of
operations between two branchings is _< cs, and for the parallel implementation
f rom the moment it ' really' started < cs a.

Let us go back to the Combine operations. From the moment we started to branch
over the biconnected component , the number of operations in a row is < 2s, the
number of vertices; each takes _< cs t ime units. So, we can bound by O(s 2) the time
in which the algorithm deals with a biconnected component with < 2s vertices each

Solving NP-hard problems in "almost trees" 45

o f degree < 3 where s is its k. This implies tha t the d o f the t he o re m is

O(n + a + (a/k)(k2)) .
The p r o b l e m o f ass igning processors to their j o b s is solved by the fo l lowing in-

s t ruc t ion a d d e d where b ranch ings o f G r a p h over vertices is done . I f p (> 1) p ro-

cessors are to be ass igned be tween two choices, one tak ing sequent ia l t ime _< T~ and

the o ther _< T 2, then TIp/(T1 + T2) processors are assigned to the first choice and

the rest to the other . (P r e c o m p u t a t i o n o f I t (k) for k<_s is suff icient to know T 1

and T2.) I f there is one processor , it takes care o f bo th choices, as in the sequent ia l

case. The para l le l t ime we get is, the re fore

n + (a/k)O k
O(n + (a/k)Ok/p) for p _ n + a + (a / k) (k 2) processors .

I t is no t t oo dif f icul t to see f rom the out l ine o f Bren t ' s t heo rem tha t it is the same

as to say that the t ime is

0 n + (a /k) P for p_< ~5 processors .

Remark. A fur ther pa ra l l e l i za t ion o f our a lgo r i thm is poss ible . M a n y a lgor i thms on

r o o t e d trees tha t work f rom the leaves to the roo t can be para l le l ized using the 'cen-

t ro id d e c o m p o s i t i o n ' t echnique (see, for instance, [3]) in o rde r to get O(log2n)

para l l e l t ime ins tead o f O(n) sequent ia l t ime, where n is the number o f vertices.

This , in con junc t i on with the recent para l le l b iconnec t iv i ty a lgo r i thm of [6] can be

used in o rde r to get para l le l t ime O(k log2n) using suff ic ient ly m a n y processors .

Since this involves u t i l iza t ion o f known me tho ds and seems ted ious , we do not

e l abo ra t e on this bu t ra ther leave it as an exercise for the in teres ted reader .

References

[1] M.R. Garey and D.S. Johnson, Computers and Intractability - A Guide to the Theory of NP-
Completeness (W.H. Freeman, San Francisco, 1979).

[2] Y. Gurevich, L. Stockmeyer and U. Vishkin, Solving NP-hard problems on graphs that are almost
trees and an application to facility location problems, J. ACM 31 (1984) 459-473.

[3] N. Megiddo, Applying parallel computation in the design of serial algorithms, J. ACM 30 (1983)
852-865.

[4] R.E. Tarjan, Depth first search and linear graph algorithms, SIAM J. Comput. 1 (1972) 146-160.
[5] R.E. Tarjan and A.E. Trojanowski, Finding a maximum independent set, SIAM J. Comput. 6 (1977)

537-546.
[6] R.E. Tarjan and U. Vishkin, An efficient parallel biconnectivity algorithm, TR-69, Dept. of Comp.

Sci., Courant Inst., New York Univ., 251 Mercer St., NY 10012, to appear in SIAM J. Comput.
[7] U. Vishkin, Synchronous parallel computation - a survey, TR-71, Dept. of Comp. Sci., Courant

Inst., New York Univ., 251 Mercer St., NY 10012.

