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Summary

The intracellular pathogen Legionella pneumophila

replicates in a vacuole that recruits material from the
host cell endoplasmic reticulum (ER). Biogenesis of

this unique vacuole depends on the bacterial Dot/Icm
type IV secretion system that translocates proteins

across host cell membranes. Here, we show that two
translocated substrates, SidM and LidA, target host

cell Rab1, a small GTPase regulating ER-to-Golgi traf-

fic. SidM is a guanosine nucleotide exchange factor for
Rab1 that recruits Rab1 to Legionella-containing vacu-

oles, a process that is enhanced by LidA. Expression
of sidM in mammalian cells interferes with the secre-

tory pathway and causes Golgi fragmentation. Consis-
tent with a collaborative relationship between the two

proteins, immobilized SidM and LidA synergize to
promote Rab1-dependent binding of early secretory

vesicles. These results indicate that proteins translo-
cated into the host cell by the intravacuolar pathogen

L. pneumophila are able to recapitulate events involved
in host secretory trafficking.

Introduction

Many bacterial pathogens grow in a membrane bound
vacuole within host cells (Meresse et al., 1999). These
microorganisms manipulate target cell secretory and
endocytic traffic to promote close association of their
replication compartment with specific host organelles.
This intimate relationship probably facilitates expansion
of the membranous vacuole surrounding the bacterium
and prevents association with antimicrobial compart-
ments. Legionella pneumophila, the causative agent of
Legionnaires’ pneumonia, is one such intravacuolar
pathogen (Fraser et al., 1977; McDade et al., 1977). Dis-
ease involves uptake of aerosolized bacteria by alveolar
macrophages; after uptake occurs, L. pneumophila
becomes sequestered in a membrane bound vacuole
that bypasses fusion with the lysosomal network
(Horwitz, 1983a). Instead, the Legionella-containing vac-
uole (LCV) recruits early secretory vesicles from the host
endoplasmic reticulum (ER) and transforms its vacuole
into a ribosome-studded compartment that morpholog-
ically resembles host cell rough ER (Horwitz, 1983b;
Swanson and Isberg, 1995; Tilney et al., 2001; Kagan
and Roy, 2002). Within this specialized vacuole, L. pneu-
mophila replicates to a high density, lyses the host cell,
and infects neighboring macrophages.
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Intracellular growth of L. pneumophila is strictly de-
pendent on a bacterial type IV secretion system (T4SS),
encoded by the dot/icm gene clusters (Vogel et al.,
1998; Segal et al., 1998). This T4SS mediates transloca-
tion of bacterial effector molecules into the host cell cy-
tosol (Conover et al., 2003; Nagai et al., 2002; Chen
et al., 2004; Luo and Isberg, 2004). Mutations in dot/icm
genes result in defective targeting of the LCV into an en-
docytic compartment (Berger and Isberg, 1993; Sadosky
et al., 1993; Berger et al., 1994; Andrews et al., 1998; Roy
et al., 1998; Wiater et al., 1998) and an inability to associ-
ate with the rough ER (Swanson and Isberg, 1995; Tilney
et al., 2001).

Little is known about the identity and function of the
translocated substrates of the L. pneumophila Dot/Icm
system. RalF recruits and activates ADP-ribosylation
factor 1 (Arf1), a small GTPase involved in retrograde
vesicle transport from the Golgi compartment to the
ER (Nagai et al., 2002). LidA is translocated by the
L. pneumophila Dot/Icm system immediately after up-
take by host cells and associates with the cytosolic
surface of the LCV (Conover et al., 2003). Several of
these effectors, including LidA, have been shown to dis-
rupt secretory traffic when produced in either yeast or
mammalian cells, indicating that they manipulate host
cell vesicle trafficking during intracellular growth, allow-
ing formation of the LCV (Shohdy et al., 2005; Derré and
Isberg, 2005; Campodonico et al., 2005). Deletion of
individual genes encoding translocated substrates,
however, results in little or no growth defect of L. pneu-
mophila in macrophages, suggesting that bacterial ef-
fectors have redundant activities. One explanation for
this redundancy is that there appear to be multiple ves-
icle trafficking pathways located between the ER and
the Golgi that promote formation of the LCV (Dorer
et al., 2006). L. pneumophila mutants that are unable
to hijack vesicles derived from one pathway may still
be able to utilize membrane material provided by other
pathways, as translocated effectors potentially interact
with a subset of these vesicle transport routes. Thus,
the identification of translocated effector mutants in
the absence of detectable growth phenotypes has
become a challenging task.

ER proteins, such as Sec22b and calnexin, as well
as Rab1, are recruited to LCVs shortly after uptake of
L. pneumophila into target cells (Derré and Isberg,
2004; Kagan et al., 2004). Rab1 is a small guanosine nu-
cleotide binding protein essential for ER-to-Golgi vesi-
cle trafficking (Tisdale et al., 1992; Plutner et al., 1991;
Wilson et al., 1994; Nuoffer et al., 1994; Allan et al.,
2000; Moyer et al., 2001). Upon activation, GTP-Rab1
specifically interacts with downstream effectors such
as the tethering protein p115 as well as other cis-Golgi
proteins, thereby programming ER-derived vesicles for
docking and fusion with the Golgi (Allan et al., 2000;
Moyer et al., 2001; Weide et al., 2001; Satoh et al.,
2003; Diao et al., 2003; Beard et al., 2005). As Rab1 co-
localizes with the LCV within 10 min of bacterial uptake,
manipulation of this host GTPase may be one of the first
activities promoted by L. pneumophila-translocated
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effectors after cell contact. These effector proteins may
be missing links in the process of vesicle recruitment to
the LCV.

In the present study, we demonstrate that two Dot/
Icm-translocated L. pneumophila proteins specifically
interact with host cell Rab1 and modulate its function.
Both proteins may mimic host factors involved in ER-de-
rived vesicle trafficking and may facilitate vesicle bind-
ing and integration of the LCV into the host cell secretory
pathway.

Results

SidM from L. pneumophila Directly Interacts

with Mammalian Rab1
Formation of the replicative vacuole involves rapid re-
cruitment of host cell proteins such as Sec22b and the
small GTPase Rab1 (Derré and Isberg, 2004; Kagan
et al., 2004). As Rab1 is a key regulator of early secretory
vesicle trafficking, we looked directly for L. pneumophila
proteins that could manipulate its activity. To identify
bacterial Rab1 ligands, glutathione S-transferase (GST)
fusion proteins of GDP-locked Rab1(S25N) or GTP-
locked Rab1(Q70L) bound to agarose beads were incu-
bated with L. pneumophila lysate (Figure 1A). A 73 kD
protein bound beads coated with inactive GST-
Rab1(S25N), but not beads coated with the constitu-
tively active mutant GST-Rab1(Q70L) or with GST
alone. The isolated bacterial protein was identified by
mass spectrometry analysis (Experimental Procedures)
as a 647 amino acid protein of unknown function that
we named SidM (substrate of Icm/Dot; lpg2464).
The L. pneumophila genome encodes two proteins
(lpg1101 and lpg2603) with weak homology to SidM
(13% and 11% identity, respectively). Remarkably, the
open reading frame encoding SidM is located immedi-
ately upstream of the open reading frame encoding
SidD, a recently identified substrate of the Dot/Icm
translocation system (Luo and Isberg, 2004).

We tested whether SidM directly binds Rab1. Purified
recombinant SidM was incubated with agarose beads
crosslinked to wild-type Rab1 loaded with either GDP,
GTPgS, or no nucleotide, and the amount of SidM bound
to Rab1-coated beads was analyzed (Figure 1B). SidM
preferentially bound nucleotide-free Rab1, whereas
binding of SidM to GTP-Rab1 was almost undetectable.
Rab1 shares significant sequence identity (up to 54%)
with other members of the Rab protein subfamily. How-
ever, bead-immobilized SidM did not bind any other Rab
GTPases from U937 cell lysate besides Rab1 (Figure 1C),
even after SidM-coated beads were used to deplete
Rab1 from the extract to reduce competition (first versus
second SidM pull-down). Thus, SidM specifically binds
Rab1 and preferentially associates with the inactive
conformation of this GTPase.

SidM Functions as a GDP/GTP Exchange
Factor for Rab1

High-affinity binding to the nucleotide-free form of
GTPases is a characteristic feature of guanosine nucle-
otide exchange factors (GEFs) (Lai et al., 1993). There-
fore, we tested SidM for its GEF activity by monitoring
the association of Rab1 with radiolabeled [3H]GDP
(Figure 2A). Without SidM, incubation of [3H]GDP-Rab1
with unlabeled GTP only resulted in a slow loss of radio-
label from Rab1. In contrast, in the presence of both
SidM and GTP, radioactivity was rapidly lost from
Rab1, indicating [3H]GDP release from Rab1. No
[3H]GDP dissociation was observed in the absence of
unlabeled GTP, showing that SidM-induced GDP re-
lease from Rab1 was dependent on the presence of
GTP. Efficient nucleotide exchange took place even
when Rab1 was present in a 100-fold molar excess rela-
tive to SidM, indicating that the GEF activity of SidM that
we observed was catalytic (Figures 2B and 2C). SidM
also triggered incorporation of [g35S]GTP into Rab1,
and rates were dependent on the concentration of
SidM (Figure 2D). SidM did not promote GDP/GTP ex-
change in Rab2 (data not shown), and this finding is in
agreement with the absence of a direct interaction be-
tween SidM and Rab2 or any other Rab GTPase besides
Rab1 (Figure 1C).

The catalytic activity of SidM requires that GTP-Rab1
be released from the GEF after activation in order to allow
binding and activation of another GDP-Rab1 molecule.
Consistent with a transient interaction between both
proteins, we found that GDP-Rab1, but not GTPgS-
Rab1, was efficiently coprecipitated with SidM (Fig-
ure 2E), indicating that activated Rab1 is released by
SidM once the nucleotide exchange reaction is com-
pleted. Taken together, these experiments demonstrate
that a single SidM molecule can efficiently activate mul-
tiple Rab1 proteins in vitro by stimulating exchange of
GDP against GTP.

Figure 1. SidM Specifically Binds the Inactive Form of Rab1

(A) Pull down of SidM with GST-Rab1-coated beads. Glutathione-

Sepharose beads coated with GST-Rab1(Q70L), GST-Rab1(S25N),

or GST alone were incubated with lysate of L. pneumophila. Bacte-

rial proteins retained by the beads were separated by SDS-PAGE

and were visualized by silver staining.

(B) Rab1 binding to SidM is specific and guanosine nucleotide

dependent. Affigel beads coated with Rab1 loaded with GTPgS (a

nonhydrolyzable GTP analog), GDP, or no nucleotide (nt-free) were

incubated with purified SidM, and SidM binding was analyzed in

Coomassie-stained gels.

(C) SidM specifically binds Rab1. SidM- or BSA-coated agarose

beads were incubated with U937 cell lysate, and proteins retained

by the beads were analyzed by Western blot with antibodies specific

for the indicated Rab GTPases.
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Figure 2. SidM Is a Nucleotide Exchange

Factor for Rab1

If not otherwise indicated, equimolar protein

concentrations were used. Samples were

removed at the indicated time points, and

the amount of radiolabeled Rab1 was deter-

mined in a nitrocellulose filter assay (Experi-

mental Procedures). Each graph shows a

representative experiment of at least two

repetitions.

(A) SidM stimulates release of [3H]GDP from

Rab1 only in the presence of GTP. [3H]GDP-

loaded Rab1 (50 pmol) was incubated in the

presence of either SidM, unlabeled GTP (5

mM), or both.

(B) Concentration dependence of SidM-me-

diated nucleotide release from Rab1.

[3H]GDP-loaded Rab1 was incubated with

SidM in the indicated molar ratios and unla-

beled GTP (5 mM).

(C) SidM stimulates Rab1 GDP/GTP ex-

change in a dose-dependent manner.

[3H]GDP-Rab1 (5 pmol) was incubated with

the indicated amounts of SidM. Exchange

reactions were started by the addition of un-

labeled GTP. Shown is the percentage of

GDP-Rab1 after a 2 min incubation with the

indicated amount of SidM.

(D) SidM mediates incorporation of [g35S]GTP

into Rab1. GDP-loaded Rab1 (50 pmol) was

incubated with SidM in the indicated molar

ratios. GDP/GTP exchange was started by

the addition of [g35S]GTP.

(E) Coimmunoprecipitation of Rab1. GDP-

Rab1 was incubated for 30 min at 25ºC in

the presence or absence of GTPgS or SidM

(as indicated). The reaction was transferred

to 4ºC, and SidM was precipitated by agarose

beads coated with antibody directed against

SidM. Rab1 in the supernatant or bound to

bead-immobilized SidM was detected by

Western blot analysis with polyclonal anti-

Rab1 antibody.
SidM Is Translocated by the L. pneumophila

Dot/Icm Secretion System and Localizes to the
Vacuolar Surface

As SidM directly interacts with Rab1 (Figure 1B), we
tested whether SidM is injected into the host cell cyto-
plasm during L. pneumophila infection. Bone marrow-
derived macrophages (BMMs) from A/J mice were incu-
bated for 1 hr with wild-type L. pneumophila (Lp02;
intact Dot/Icm system) or with Lp03 (dotA2; defective
T4SS) and were probed for SidM by fluorescence mi-
croscopy with an antibody raised against full-length
SidM (Figure 3A). SidM was clearly associated with
LCVs containing wild-type bacteria, but not with vacu-
oles harboring L. pneumophila dotA2, demonstrating
that SidM secretion is Dot/Icm dependent. To discrimi-
nate between SidM secretion and translocation, we
probed for SidM association with LCVs isolated from
mechanically lysed U937 cells in the absence of mem-
brane-permeabilizing detergents (Figures 3B and 3C).
SidM was detected on the external surface of LCVs con-
taining wild-type L. pneumophila, but not on vacuoles
containing L. pneumophila dotA2 or DsidM. Comple-
mentation of L. pneumophila DsidM with a plasmid
encoding SidM restored vacuole association of this pro-
tein (Figures 3B and 3C). Therefore, SidM is an effector
protein from L. pneumophila that associates with the
cytoplasmic surface of the LCV after translocation by
the Dot/Icm system.

SidM Interferes with the Host Secretory Pathway
As several L. pneumophila proteins were found to inter-
fere with host cell processes after ectopic expression in
eukaryotic cells (Campodonico et al., 2005; Shohdy
et al., 2005), we examined the effects of SidM on the
host cell secretory pathway. Green fluorescence protein
(GFP)-tagged SidM was produced in COS1 cells, and
Golgi integrity in transfected cells was analyzed by fluo-
rescence microscopy with an antibody against GM130,
a Golgi-resident protein (Figures 3D and 3E). GFP alone
had no detectable effect on Golgi morphology, whereas
GFP-SidM caused Golgi fragmentation in COS1 cells
(97% 6 2%) even at low production levels, with GFP-
SidM accumulating in a perinuclear locale. In contrast,
the morphology of the ER appeared to remain unaf-
fected by GFP-SidM (data not shown). Thus, SidM effi-
ciently interfered with the host cell secretory pathway
when ectopically expressed.

Rab1 Interacts with LidA from L. pneumophila

Mammalian cells overproducing LidA, another L. pneu-
mophila Dot/Icm substrate of unknown function, show
disruption of the Golgi apparatus in a fashion similar to
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Figure 3. SidM Is a Translocated Substrate of the L. pneumophila Dot/Icm System that Causes Golgi Fragmentation When Overproduced

(A) Dot/Icm-dependent secretion of SidM by intracellular L. pneumophila. BMMs were infected for 1 hr with Lp02 (wild-type L. pneumophila) or

Lp03 (Lp02 dotA2 with a defective T4SS), followed by fixation and membrane permeabilization. Left panels: intracellular L. pneumophila (Exper-

imental Procedures). Middle panels: SidM staining with affinity-purified antibody. Right panels: merged images showing bacteria (red) and SidM

(green). Arrows indicate the location of the LCVs that are magnified in the inset of each panel.

(B) SidM staining on isolated LCVs. U937 cells were infected for 30 min with Lp02, Lp03, Lp02DsidM, or Lp02DsidM (psidM). Isolated vacuoles

were probed with anti-SidM antibody prior to permeabilization (left column) and anti-Legionella antibody after permeabilization (middle). Right

column: merged images showing Legionella (red) and SidM (green).

(C) Quantification of intact LCVs staining positive for translocated SidM 30 min postinfection. The graph represents the average 6 SD of two

independent experiments.

(D) SidM causes Golgi fragmentation. COS1 cells producing low levels of GFP-SidM were stained with antibody specific for GM130, a Golgi-

resident protein, to determine Golgi integrity. N, cell nucleus.

(E) Percentage of cells from (D) with fragmented Golgi after low-level production of either GFP or GFP-SidM. Results are the mean 6 SD of two

independent experiments.
that observed in SidM-producing cells (Figures 3D and
3E) (Conover et al., 2003; Derré and Isberg, 2005). Given
that SidM and LidA display similar phenotypes when
synthesized in COS1 cells, we determined whether
LidA also bound a host protein involved in ER-to-Golgi
transit. Purified LidA was immobilized on agarose beads
and incubated with postnuclear supernatant (PNS) of
macrophage-like U937 cells (Figure 4A). An w22 kD pro-
tein was retained by LidA-coated beads, but not by
uncoated control beads. This protein was identified by
mass spectrometry analysis as Rab1, which was previ-
ously shown to bind SidM (Figure 1). To confirm a direct
interaction between LidA and Rab1 and to determine
whether LidA preferentially bound the active or inactive
form of Rab1, an enzyme-linked immunosorbent assay
(ELISA) was performed (Figure 4B). Immobilized LidA
directly interacted with both GTP-locked Rab1(Q70L)
and GDP-locked Rab1(S25N), with a higher affinity for
the active GTP bound form of Rab1.

When analyzing the effect of LidA on Rab1 activity
in vitro, we found no evidence for LidA being either a
GEF or a GTPase-activating protein (GAP) for Rab1
(data not shown). However, LidA also bound to Rab6
and Rab8 from U937 cell lysate, but it did not associate
with Rab2, Rab4, Rab5, Rab7, or Rab11, even after
depletion of Rab1, Rab6, and Rab8 from the extract
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Figure 4. Identification of LidA as a Rab1

Ligand

(A) Pull down of Rab1 by LidA. LidA-coated

beads or uncoated control beads were incu-

bated with postnuclear supernatant (PNS)

from U937 cells. Proteins retained by the

beads were separated by SDS-PAGE and

visualized by silver staining. Rab1 (asterisk)

was identified by HPLC/mass analysis; Lf,

LidA degradation fragment.

(B) LidA interacts preferentially with GTP-

Rab1. ELISA plates were coated with LidA

or BSA and probed with Rab1(S25N) or

Rab1(Q70L). The data points represent the

average 6 SD of two independent experi-

ments performed in duplicate.

(C) Western blot analysis of Rab proteins

bound by LidA. PNS from U937 cells was

incubated twice with LidA-coated beads (first and second incubations; to allow depletion of all LidA-interacting Rab proteins) or BSA-

coated control beads, and proteins retained by the beads were analyzed by Western blot with antibodies specific for the indicated Rab

GTPases.
(Figure 4C, first versus second LidA pull-downs). Thus,
LidA may allow L. pneumophila to simultaneously target
a subset of Rab GTPases involved in different membrane
trafficking routes.

SidM Is Required for Rab1 Recruitment
to the L. pneumophila-Containing Vacuole

Formation of LCVs involves rapid recruitment of host
cell proteins of the early secretory pathway, a process
dependent on a functional Dot/Icm system (Derré and
Isberg, 2004; Kagan et al., 2004). As both LidA and
SidM associate with the vacuolar surface after translo-
cation and directly interact with Rab1 in vitro, we tested
whether these two proteins are involved in Rab1 recruit-
ment in vivo (Figures 5A and 5B). Rab1 colocalized
with 50% of LCVs containing wild-type L. pneumophila
30 min after uptake by BMMs, and it colocalized with
58% of the LCVs at 2 hr postinfection (hpi). High-level
Rab1 recruitment was dependent on SidM, since
L. pneumophila mutants lacking sidM displayed a severe
defect in Rab1 recruitment (<3%). This defect was fully
complemented by plasmid-encoded SidM. The absence
of LidA caused a kinetic defect in Rab1 recruitment, with
fewer Rab1-positive vacuoles 30 min after uptake, but
not 2 hpi, compared to wild-type bacteria. Thus, Rab1
recruitment to the LCV is mediated by SidM and is sup-
ported by LidA.

Growth Requirements for SidM and LidA during

Infection
Recent work demonstrated that several host cell mem-
brane trafficking pathways contribute to the formation
of the LCV (Dorer et al., 2006). As both SidM and LidA
seem to target the Rab1-regulated early secretory traf-
fic, we analyzed the role of both effector proteins during
intracellular replication of L. pneumophila (Figure 5C).
Bacteria harboring a deletion in sidM showed no reduc-
tion in the establishment of large, replicative vacuoles,
consistent with the model that shows that loss of a single
vesicle trafficking pathway is not sufficient to interfere
with intracellular L. pneumophila growth. In contrast,
a strain lacking LidA, which targets three Rab GTPases
(Figure 4C), showed the previously reported targeting
defect in BMMs (Conover et al., 2003), with about twice
as many bacteria failing to replicate intracellularly com-
pared to a wild-type strain (Figure 5C). This defect could
be reversed by complementation of Lp02DlidA with plas-
mid-encoded LidA. L. pneumophila deficient for both
SidM and LidA showed an efficiency in replicative vacu-
ole formation 13 hpi, comparable to that of a DlidA strain
(data not shown). This result shows that deletion of sidM
did not further increase the growth defect caused by the
lack of LidA. Similar results were obtained in a 3-day
growth curve in BMMs (data not shown), with mild
growth defects of L. pneumophila strains lacking either
LidA or LidA and SidM and with a replication efficiency
of Lp02DsidM equal to that of wild-type L. pneumophila.

SidM and LidA Collaborate for Recruitment of Early
Secretory Vesicles

Rab1 regulates targeting and fusion of ER-derived vesi-
cles with the Golgi complex (Tisdale et al., 1992; Plutner
et al., 1991; Wilson et al., 1994; Nuoffer et al., 1994; Allan
et al., 2000). Since Rab1 recruitment to LCVs is depen-
dent on SidM and is supported by the presence of LidA
(Figure 5B), we asked whether particles coated with
SidM or LidA can bind ER-derived vesicles. Latex beads
coated with SidM, LidA, or both proteins were incubated
with PNS from U937 cells, and the association of host cell
vesicles with beads was analyzed by transmission elec-
tron microscopy (Figures 6A–6C). LidA-coated beads
showed vesicle recruitment efficiencies only slightly
higher than those of BSA-coated control beads (10.2 6
2 versus 6.3 6 0.4 vesicles/bead) (Figure 6D). In contrast,
beads coated with SidM showed considerable binding
activity to host cell vesicles (18.9 6 4.5). However, the si-
multaneous presence of both SidM and LidA on beads
resulted in a large increase in the vesicle recruitment
efficiency (37.8 6 9.1), showing that LidA stimulates the
vesicle binding activity of SidM. Preincubation of SidM +
LidA-coated beads with GDP-locked Rab1(S25N) led
to a strong reduction in vesicle binding (Figure 6E),
demonstrating that vesicle recruitment by SidM + LidA
is dependent on activated Rab1. The addition of soluble
SidM in trans to U937 cell lysate had no stimulatory effect
on vesicle binding by LidA-coated beads (Figure 6F),
showing that efficient recruitment of vesicles in vitro
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Figure 5. SidM Is Required for Recruitment of Rab1 to LCVs

(A) BMMs were infected for 30 min with the indicated L. pneumophila strains, and association of LCVs with cellular Rab1 was visualized by

indirect immunofluorescence microscopy with Rab1-specific antibody (middle column). Intracellular bacteria were detected by using an anti-

Legionella antibody (left column). Right column: merged images showing intracellular L. pneumophila (red) and Rab1 (green). Arrows indicate

the location of the LCVs that are magnified in the inset of each image.

(B) Quantification of LCVs colocalizing with Rab1 30 min or 2 hr after bacterial uptake by BMMs visualized by immunostaining. *, p < 0.001 (t test).

(C) Efficiency of large, replicative vacuole formation of L. pneumophila strains. BMMs were incubated for 1 hr at an MOI of 1 with the indicated

L. pneumophila strains. Extracellular bacteria were removed, and infected cells were incubated for an additional 12 hr at 37ºC. The number of

bacteria per vacuole 13 hpi was visually determined for at least 300 vacuoles per strain. *, p = 0.013 (t test).

Results in (B) and (C) represent the mean 6 SD of two independent experiments.
requires the combined local activity of SidM and LidA on
the beads.

To confirm that SidM and LidA specifically target ves-
icles of the early secretory pathway, we determined the
protein composition of vesicles bound to SidM + LidA-
coated beads by Western blot analysis (Figure 6G). Pro-
teins of the secretory pathway such as Rab1, Syntaxin-5,
Sec22, or p115 were associated with beads coated with
SidM + LidA, whereas Rab5 (a marker for early endo-
somes), bCOP (a component of the COPI protein coat
complex), or GM130 (a Golgi-resident tethering factor)
were almost undetectable. Taken together, these stud-
ies show that SidM and LidA combine to specifically
intercept host cell vesicles of the Rab1-regulated early
secretory pathway.
Discussion

Shortly after internalization by macrophages, L. pneu-
mophila recruits ER-derived membrane components
as well as the host GTPase Rab1 to its surrounding vac-
uole. Here, we show that two secreted effector proteins
from L. pneumophila modulate Rab1 function and pro-
mote binding of host cell vesicles.

To our knowledge, SidM and LidA are the first translo-
cated effectors encoded by intravacuolar pathogens
shown to target a host cell GTPase of the Rab family.
Furthermore, to our knowledge, SidM is the only GEF
from any source known to act on mammalian Rab1,
the key regulator of ER-to-Golgi trafficking. SidM stimu-
lates nucleotide exchange with much higher efficiency
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Figure 6. SidM and LidA Synergize during

Recruitment of Early Secretory Vesicles

Paramagnetic beads coated with SidM, LidA,

or both proteins were incubated with PNS

from U937 cells. Beads were harvested,

fixed, and prepared as described (Experi-

mental Procedures), and cut sections were

analyzed by transmission electron micros-

copy (TEM).

(A) Example of a vesicle (arrow) bound to the

surface of a SidM-coated bead.

(B and C) Magnification of the vesicle shown

in (A). The lipid bilayer of the vesicle is indi-

cated by arrowheads (C).

(D) Quantification of vesicles from U937 cell

lysate associated with beads coated with

the indicated proteins.

(E) Effect of Rab1(S25N) on vesicle recruit-

ment by SidM + LidA-coated beads. Para-

magnetic beads coated with both SidM and

LidA were incubated with a molar excess of

recombinant Rab1(S25N) prior to incubation

with PNS from U937 cells. Vesicle recruitment

efficiency was determined by TEM as de-

scribed above.

(F) Effect of soluble recombinant SidM on vesicle recruitment to LidA-coated beads. Paramagnetic beads coated with LidA were incubated with

PNS from U937 cells supplemented with purified recombinant SidM (1 nM). Vesicle recruitment efficiency was determined by TEM as described

above.

(G) Western blot analysis of SidM + LidA-coated beads after incubation with PNS of U937 cells with antibodies specific for the indicated proteins.

Results in panels (D–F) are the mean 6 SD of two independent experiments.
than that observed for other bacterially encoded ex-
change factors such as the Rac1-GEF SopE (Hardt
et al., 1998) or the Arf-GEF RalF (Nagai et al., 2002). To
avoid trafficking into the degradative pathway, L. pneu-
mophila modifies host cell signaling processes immedi-
ately after uptake by the host (Roy et al., 1998). The high
activity of SidM may allow the bacterium to compete
with a host GEF for Rab1, or to accelerate the slow in-
trinsic activation of Rab1 by cellular GEFs, leading to
efficient recruitment of Rab1 to the LCV.

The analysis of Rab1 colocalization with LCVs showed
that vacuoles containing L. pneumophila DsidM mutants
were defective for Rab1 recruitment at each time point
examined, demonstrating that Rab1 recruitment is de-
pendent on SidM. Mutations in lidA resulted in a delay
in large-scale Rab1 recruitment compared to wild-type
L. pneumophila (Figure 5B), consistent with a comple-
mentary role of LidA during SidM-mediated Rab1 re-
cruitment. LidA may accelerate SidM-promoted accu-
mulation of Rab1 about the LCV in a number of
fashions. LidA could (1) inhibit the intrinsic GTP hydroly-
sis activity of Rab1, (2) interfere with the binding and in-
activation of GTP-Rab1 by GAPs, or (3) bind GDP-Rab1
after GTP hydrolysis, thereby preventing membrane
extraction of GDP-Rab1 by GDP dissociation inhibitors
(GDIs). The mammalian Rabex-5/Rabaptin-5 complex
involved in the endocytic pathway provides a precedent
for SidM/LidA cooperation (Horiuchi et al., 1997;
McBride et al., 1999). Rabex-5 catalyzes Rab5 GDP/
GTP exchange and forms a complex with Rabaptin-5
(Horiuchi et al., 1997). Rabaptin-5 stabilizes GTP-Rab5
and promotes binding to the tethering factor early endo-
some antigen (EEA) 1 (McBride et al., 1999).

LidA may have many roles in supporting L. pneumo-
phila intracellular replication, since it is able to bind three
known Rab proteins (Figure 4C). The observation that
this protein cooperates with SidM to promote Rab1-de-
pendent vesicle binding to synthetic beads indicates
that one of these roles may involve vesicle recruitment
to the LCV (Figure 6). Several studies predict a regulatory
role for Rab1 in tethering or docking of vesicles during
ER-to-Golgi transport, possibly through the interaction
of active GTP-Rab1 with proteins in the donor and/or
target membrane, such as the tethering protein p115
(Allan et al., 2000). Rab1 may play a similar role during
SidM/LidA-induced vesicle binding. LidA presumably
supports vesicle binding only in the presence of SidM
because, in the absence of SidM, there is not sufficient
activated Rab1 available to allow vesicle binding in our
system. Consistent with this, a GDP-locked Rab1 mu-
tant efficiently blocked vesicle association with pro-
tein-coated beads, indicating that active Rab1 is directly
involved (Figure 6E). It should be noted that although
vesicle binding by beads was largely dependent on
Rab1, some vesicle association was probably indepen-
dent of Rab1 function, since beads coated solely with
SidM showed higher vesicle binding efficiencies than
control beads (Figure 6D). SidM probably recognizes
a vesicle-associated factor in addition to Rab1, since
Rab1 binding by SidM is only transient and is limited
to the inactive form of Rab1 (Figure 2E).

As Rab1 is involved in recruitment of early secretory
vesicles to the LCV, it may seem unexpected that
a DsidM mutant showed no intracellular growth defect
in BMMs, while mutants lacking LidA were reduced in
the formation of mature replicative vacuoles in BMMs
(Figure 5) (Conover et al., 2003). These observations
most likely reflect the recent discovery that several
host trafficking pathways deliver membrane material to
the LCV, and that elimination of only one of these traf-
ficking pathways by RNA interference is not sufficient
to cause severe defects in intracellular replication of
L. pneumophila in Drosophila cells (Dorer et al.,
2006). The contribution of multiple pathways must be
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considered when analyzing mutations affecting SidM
and LidA. SidM exclusively binds Rab1 (Figure 1C),
whereas LidA also interacts with Rab6 and Rab8
(Figure 4C), two GTPases that regulate the transport of
vesicles from the Golgi complex to the ER and to the
plasma membrane, respectively (Huber et al., 1993;
White et al., 1999). Multiple sites of action for LidA may
be the reason why a mutation affecting this protein
caused a growth defect in BMMs, and they may also in-
crease the likelihood that additional disruptions in the
secretory pathway could further depress intracellular
growth of this mutant. In support of this, RNA interfer-
ence studies indicate that the intracellular growth of
a DlidA mutant can be further reduced when this strain
is introduced into Drosophila cells depleted for single
proteins involved in vesicle trafficking between the ER
and the Golgi (M.S. Dorer and R.R.I., unpublished
data). L. pneumophila DsidM mutants, on the other
hand, were much more tolerant of disruption of individual
membrane trafficking pathways in these studies. Thus,
compensatory trafficking pathways exist that may
mask defects caused by individual mutations in sidM
or other effector proteins of L. pneumophila, and, as a re-
sult, simultaneous disruption of several different host
cell membrane transport steps may be required to ob-
serve a depression in intracellular growth.

Taken together, our data show that L. pneumophila
secretes molecular mimics of host cell proteins involved
in vesicle trafficking that facilitate integration of the LCV
into the secretory pathway. Although SidM and LidA
from L. pneumophila are the first, to our knowledge,
bacterial effector proteins known to target host cell
Rab GTPases in this particular fashion, it seems likely
that other intravacuolar pathogens have developed sim-
ilar strategies for utilizing Rab GTPases for their survival
in host cells. Further analyses of the molecular function
of SidM and LidA and pathways for vesicle recruitment
by L. pneumophila should provide detailed insight into
how pathogens hijack host cell secretory traffic.

Experimental Procedures

Strains, Media, and Plasmids

L. pneumophila strains were grown and maintained as described

(Feeley et al., 1979; Gabay et al., 1985). L. pneumophila strains

Lp02 (thyA hsdR rpsL) and Lp03 (Lp02 dotA3) are thymine-auxo-

troph derivatives of Philadelphia-1 (Berger and Isberg, 1993; Berger

et al., 1994). The strain Lp02DlidA was a kind gift of Dr. Zhao-Qing

Luo (Purdue University, Indiana). Lp02DsidM harboring an in-frame

deletion in sidM was constructed as described previously (Luo

and Isberg, 2004; Dumenil and Isberg, 2001).

Plasmids for production of recombinant SidM (pGEX-sidM),

human Rab1A (pGEX-rab1), or human Rab2 (pGEX-rab2) in E. coli

were generated by subcloning PCR fragments into pGEX-6P-1

(Amersham Pharmacia). Rab1A mutants Rab1(S25N) and Rab1(Q70L)

were generated by using the QuikChange Site-Directed Mutagene-

sis Kit (Stratagene). The complementation plasmid psidM for pro-

duction of SidM in L. pneumophila under the control of its native pro-

moter was created by subcloning a PCR fragment containing the

sidM open reading frame and its upstream promoter sequence

into pJB908 (J. Vogel, Washington University School of Medicine,

St. Louis). The plasmid plidA for production of LidA in L. pneumo-

phila under the control of the sidM promoter was created by digest-

ing psidM with XhoI and SphI, followed by ligation with a XhoI/SphI-

digested lidA PCR product generated with primers 50-AATCCTCG

AGTACATGGCAAAAGATAACAAATCAC-30 and 50-TTGAGCATGCG

GTGGGGAGGGGTAGAGC-30 that encode full-length LidA. pEGFP-
sidM for production of green fluorescent protein (GFP)-labeled

SidM in COS1 cells was created by subcloning a sidM PCR fragment

into pEGFP-C1 digested with BglII/SalI (Clontech).

Bone marrow-derived macrophages (BMMs) were prepared and

cultured as described previously (Celada et al., 1984; Swanson

and Isberg, 1995). Macrophage-like U937 cells were cultured as de-

scribed elsewhere (Alrutz and Isberg, 1998; Berger and Isberg,

1993). Antibodies were purchased from Santa Cruz Biotechnology

(antibodies against Rab1B, Rab2A, Rab4, Rab5A, Rab6, Rab7,

Rab8B, and Sec23), Transduction Laboratories (anti-Rab11), or Cal-

biochem (anti-GM130). Antibodies against Sec22b and syntaxin-5

were kindly provided by Jesse Hay, University of Montana, and an-

tibody against p115 was a kind gift of G. Watters, Merck, Inc.

Recombinant Protein Production and Purification

LidA was purified as described previously (Conover et al., 2003).

SidM, Rab1, Rab1(S25N), Rab1(Q70L), and Rab2 were produced

as GST fusion proteins in E. coli BL21(DE3) (Stratagene). For protein

production, bacteria were grown at 37ºC in LB medium (100 mg/ml

ampicillin) to an OD600 of 0.5, shifted to 20ºC, induced with 0.5 mM

isopropylthio-D-galactopyranoside (IPTG), and cultivated for an ad-

ditional 18 hr at 20ºC. Cells were harvested and lysed by French

press, and soluble proteins were incubated with glutathione Sephar-

ose resin (Amersham Pharmacia) equilibrated with PreScission Pro-

tease cleavage buffer (50 mM Tris/HCl, [pH 7.0], 150 mM NaCl, 1 mM

DTT) to separate recombinant GST-tagged proteins from bacterial

proteins. The GST tag was removed by incubation with PreScission

Protease (100 U) (Amersham Pharmacia) for 2 days at 4ºC, and re-

combinant proteins were eluted with PBS. If required, GST-tagged

Rab1 and Rab2 were washed with cleavage buffer + EDTA (20 mM)

prior to the addition of PreScision Protease to remove protein bound

guanosine nucleotides.

Immunofluorescence Microscopy

Immunofluorescence microscopy studies on BMMs were performed

and processed as described (Conover et al., 2003; Swanson and

Isberg, 1995). LidA (Conover et al., 2003) and SidM were labeled by

using affinity-purified polyclonal antibody followed by FITC-conju-

gated goat anti-rabbit antibody (Zymed). Rabbit anti-SidM antiserum

was generated by immunizing a rabbit with purified recombinant full-

length SidM according to standard protocols (Pocono Rabbit Farm

and Laboratory). Rab1 was detected by affinity-purified rabbit anti-

Rab1B antibody (sc-599, Santa Cruz Biotechnology).

Postnuclear supernatants (PNSs) from infected U937 cells were

prepared, and the integrity of the vacuolar membranes was con-

firmed as described (Derré and Isberg, 2004).

Affinity Chromatography from Cell Lysates

Purified recombinant LidA was immobilized on Affigel beads ac-

cording to the manufacturer’s recommendation (BioRad). U937 cells

were resuspended in ice-cold lysis buffer (PBS, 5 mM DTT, protease

inhibitor cocktail [Roche]) and lysed in a Dounce homogenizer. Un-

broken cells and nuclei were pelleted by centrifugation at 10,000 3

g for 10 min at 4ºC. The PNS was added to beads and incubated

for 12 hr at 4ºC. Beads were washed five times with lysis buffer, re-

suspended in SDS sample buffer, and analyzed by SDS-PAGE and

silver staining (BioRad) or by Western blot analysis. Individual pro-

tein gel bands were isolated, digested with trypsin, and analyzed

by high-performance liquid chromatography/mass spectrometry

(HPLC/MS). To isolate Rab1 binding proteins, a culture of L. pneu-

mophila DlidA was grown to postexponential phase and lysed by

French Press, and soluble proteins were incubated for 12 hr at 4ºC

with glutathione Sepharose beads linked to noted proteins. Bound

proteins were identified as described above.

Assay for Binding of Purified Proteins

Microtiter plates (96-well, Linbro/Titertek) were coated overnight at

4ºC with purified LidA (2 mg/well) and blocked for 1 hr with 1% BSA in

PBS prior to probing with biotinylated Rab1(S25N) or Rab1(Q70L) for

4 hr at room temperature. Wells were washed five times with PBS

and incubated for 1 hr with streptavidin conjugated with alkaline

phosphatase (Zymed) and were analyzed as described (Leong

et al., 1995).

For coimmunoprecipitation of Rab1 with SidM, 50 pmol GDP-

Rab1 was incubated for 30 min at room temperature in reaction
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buffer (PBS, 15 mM MgCl2, 100 ml total volume) in the presence or

absence of equimolar amounts of SidM and 1 mM GTPgS. The reac-

tion was transferred to 4ºC and incubated with Affiprep beads (Bio-

rad) coated with antibody directed against SidM. After 1 hr of incu-

bation, the supernatant containing unbound proteins was removed,

and beads were washed five times in reaction buffer and resus-

pended in SDS sample buffer. Rab1 in the supernatant (SN) or bound

to bead-immobilized proteins was detected by Western blot analy-

sis by using polyclonal anti-Rab1 antibody (Calbiochem).

GDP/GTP Exchange Reaction

Proteins were dialyzed against loading buffer (Rab1) or reaction

buffer (SidM), and all guanine nucleotide exchange experiments

were performed at room temperature. For the [3H]GDP release as-

say, 50 pmol EDTA-washed, nucleotide-free Rab1 was incubated

for 2 hr with 1 nmol [3H]GDP in loading buffer (50 mM Tris/HCl [pH

7.5], 50 mM NaCl, 1 mM DTT, 0.1 mM EDTA). Nucleotide binding

was stabilized by the addition of MgCl2 (5 mM final concentration),

and SidM was added to the reaction along with 10 nmol unlabeled

GTP. Aliquots of the reaction were removed at indicated time points

and passed through nitrocellulose membrane filters (HAWPO2500,

Millipore). Filters were washed twice with 1 ml reaction buffer

(50 mM Tris/HCl [pH 7.5], 1 mM DTT, 50 mM NaCl, 5 mM MgCl2),

transferred to scintillation vials containing 8 ml scintillation fluid

(Fisher Biotech), and analyzed in a scintillation counter.

For [g35S]GTP incorporation assays, EDTA-washed, nucleotide-

free Rab1 (50 pmol) was loaded with unlabeled GDP (5 mM) for 2 hr

in loading buffer. Nucleotide binding was stabilized by the addition

of MgCl2 (5 mM final concentration), and nucleotide exchange was

started by transferring GDP-Rab1 into loading buffer plus 5 mM

MgCl2 containing 50 pmol indicated proteins in the presence of

1 nmol [g35S]GTP. Aliquots of the reaction were removed and ana-

lyzed by scintillation counting as described above.

Vesicle Binding Assays

Paramagnetic beads (Dynal) were coated with recombinant SidM,

LidA, or both proteins according to the manufacturer’s recommen-

dation. U937 cells were mechanically lysed in PBS (250 mM sucrose,

0.5 mM DTT, protease inhibitor cocktail tablet [Roche]), followed by

centrifugation for 10 min at 10.000 3 g to generate PNS. A total of 1 3

107 beads were incubated for at least 4 hr at 4ºC with PNS (contain-

ing 1 nM soluble SidM when indicated), pelleted, and processed for

electron microscopy (Li et al., 2005). For immunological analysis of

vesicle composition, Affigel beads coated with SidM, LidA, or both

proteins were incubated for 5 hr at 4ºC with PNS (prepared as de-

scribed above) of U937 cells. Beads were pelleted by centrifugation

(<200 3 g), washed three times with PBS (250 mM sucrose, 0.5 mM

DTT, protease inhibitor), and boiled in sample buffer, and proteins

retained by the beads were analyzed by SDS-PAGE and Western

blot analysis. If indicated, beads coated with SidM + LidA or with

LidA alone were incubated for 2 hr at 4ºC with purified Rab1(S25N)

(50 mM) prior to incubation with PNS.
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Conover, G.M., Derré, I., Vogel, J.P., and Isberg, R.R. (2003). The Le-

gionella pneumophila LidA protein: a translocated substrate of the

Dot/Icm system associated with maintenance of bacterial integrity.

Mol. Microbiol. 48, 305–321.
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