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PARABOLIC PROBLEMS WITH MIXED VARIABLE
LATERAL CONDITIONS: AN ABSTRACT APPROACH

By Giuseppe SAVARE

ABSTRACT. — We study the initial value problem for parabolic second order equations with mixed and time-
dependent boundary conditions obtaining optimal regularity results under weak assumptions on the data and on
the geometrical behavior of the boundary. An approximation approach to abstract evolution equations on variable
domains is the basic tool we develop; an application to parabolic problems in non-cylindrical domains is also given.

0. Introduction

Let €2 be a uniformly C1! open set of RY with boundary T" = 9€; for a fixed positive
number 7' > 0 we set

Q = Q2x]0,TY, Y =TIx]0,T,

and we choose a uniform family of C'-! submanifolds (with boundary) Ty C 992, ¢ varying
in [0,T]; ¥, will be the subset of ¥ covered by this family, that is:

U Ff) X {t}, El ': z \i().

t€10,7|

We want to study the mixed boundary value Cauchy problem

( Ou(z,t
—“g;’—) + Au(z,t) = f(z,t), inQ,
( ) ’LL(.’L', t) = gO(-'Ea t)a on 20,
PP
ou(z,t)
81/‘4 - gl(xat)a on Ela
uw(z,0) = up(x), on Q.

Here A is a uniform elliptic second order operator with variable coefficients of the type

(0.1) Au=— Z aii( (x t) ) Zb (z,t) t + c(x, t)u,

4
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322 G. SAVARE

with a € WL (Q). b',c € L®(Q). ¢’/ = a'', and

(0.2) Ja>0: Z(l'i-f(;z:,f){,;ﬁ_j > alé). VeEeRY, V(e t)eQ:

vy =1 (1 f\ is the related conormal vec o I'x ] Tl . oan g1 and ug

SR2N O OMRIAARR 2RSS = sA 1P JITUS had

are the data

given in sultable Sobolev spaces of functlon deﬁned on () and its boundary.

Problems of this kind have been studied for long time from many points of view. Among
the first contributions (whose references can be found in [32]), we quote a uniqueness [31]
and an existence [32] result by Magenes, the latter one holding when X, is of cylindrical
type, i.e. I' is independent of time. This particular case can also be studied either in the
natural variational framework via the standard theory of abstract evolution equations (see
[26], [23], [29]) or by a more direct analysis in suitable weighted function spaces, which
take into account the lack of regularity near the interface between ¥, and X; (see [38]

and the references quoted by [12]).

These techniques (analogous to the Vishik-Eskin’s ones [37] for the elliptic case) are
further developed by [11], [12] and consequently adapted to the case of time dependent
mixed conditions; here X, £, have to be C'° submanifolds of X and their interface must
never be tangent to the hyperplanes ¢ = const (except for £ = 0, in [12]), so that a
careful change of variable transforms the problem in the previous cylindrical form and
the solution will belong to function spaces closely connected to the geometrical structure
of the boundaries.

On the other hand, it is interesting to know existence and regularity properties of the
solution in spaces independent of the geometry involved and under weaker assumptions
on the data and on the boundary. Thanks to a general result about evolution equations in
variable Hilbert domains, Baiocchi obtained in [7] a theorem of existence and uniqueness of
the solution of (/”F’) with homogeneous lateral boundary conditions (g,, g1 = 0) under very
weak geometric assumptions; more precisely, if f, g are in L?(Q) and L?((2) respectively,
then a suitable weak formulation of (P P) admits a unique solution u belonging to the class

HYY2(Q) = L2(0,T; HH () n HY2(0,T: L*(0))  (Y).

A remarkable fact is that at this level of regularity no smoothness of Xy,3; (and also
of the ") is needed.

Other weak results of this kind could be obtained in more general Banach frameworks by
applying the widely developed abstract theory (see [24], [23], [18], [1] and the references
quoted therein (2): for a comparison of the various hypotheses see [2]): differently from
the Baiocchi’s work, however, all these more technical results require careful elliptic-type

(') See (29] for the complete definitions and the properties of the H*, H"* hilbertian families of function
spaces; we shall recall some of them in the next sections.

(%) The nonlinear case is deeply studied in [13] and [27]: for evolution equations of hyperbolic type with
variable domain we refer to [4], [15].
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PARABOLIC PROBLEMS WITH MIXED VARIABLE LATERAL CONDITIONS 323

estimates linked to the behavior of the boundary, which must be regular in some sense.
In any case the singular nature of the mixed conditions does not allow to recover either
a strong solution (i.e. time differentiable for a.e. ¢ €]0,7[ in some L space of the
a-variable) or the expected maximal regularity supplied by the data.

We will be concerned with these last two related questions in the simpler variational
Hilbert context of [7]; more precisely, we are interested in sufficiently wide conditions on
{I't }+c 0,7y in order to obtain stronger regularity of the type (*)

du
i . . —, Au € L*Q),
(0.3) f e L*Q), wug,go,g: in suitable trace spaces = { Ot e LHQ)
[Vu(- )|z € L=(0,T).

We have already noticed that for cylindrical 3, the abstract variational theory works well,
so that (0.3) holds; a partial extension of this result is given by [10] (see also [21]), where
'/, must not increase with respect to ¢.

Our aim is to show that (0.3) also holds if we assume that the excess

e(T,T5) = sup d(z,T), s,t€10,7],
xz€lY

for t > s can be controlled by the uniform linear bound (*)

(0.4) e(Iy, Ty) < K(t — s), Vs <t

for a constant K > 0 independent of s and ¢. Let us remark that this condition includes the
monotone previous one, since the points of I'; which also belong to I', do not affect the
excess in (0.4); so we are only imposing a one-side condition on the growth of I'} and we
could say that the points of I'fy “go away with a bounded speed” as the time # increases.
Of course, smooth manifolds (in space and time) are allowed and the same is true in the
case of a Lipschitz time dependence of I'y with respect to the Hausdorff distance between

the subsets of I'; in these conditions better regularity properties can be derived.
Our proof is characterized by two different features:

I. A new regularity and perturbation result for the solution of an elliptic problem with
mixed boundary conditions proved in [34];

II. A simple approximation procedure of (PP) by the backward Euler scheme, which is
also interesting from a numerical point of view; we shall apply this technique in the
abstract framework proposed by [7] since the structural hypotheses suggested by the
previous point I are common to very different situations as parabolic equations in non
cylindrical domains.

(*) The choice of the good spaces for the boundary data is suggested by the theory for the pure Cauchy-Dirichlet
and Cauchy-Neumann problems (see [29]): we will detail it in Sect. 4.
(*) But weaker conditions could be given; see Sect. 4.
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324 G. SAVARE

Let us describe this framework in the case of ([71?) with go, 97 = 0 and A independent
of time. On the Hilbert space V = H'(2) we introduce the bilinear form associated to A:

a(u«u)=‘/¥{Za”<l>"f‘% dg,, #3005 o) + el <r>v<:r>}dzr:

ij

which we can always assume to be coercive.

We consider u, f as functions of the time with values in V and H = L*(2) respectively.
The homogeneous Dirichlet condition will be imposed by requiring that for a.e. £ € |0, T

(0.5) u(t) € V; = Hi (@) = {v € H'() : v|, = 0 in the sense of traces}.

and the equation together with the “natural” Neumann condition will be recovered by the
variational formulation

(0.6) (v (), v)g + a(u(t), v) = (f(t), v)u, VoeV,, foractel0, T
If f € L*0,T;H) and uy € Vy we ask for u € HY(0,T: H) N L>(0,T:V) satisfying
(0.5), (0.6) and u(0) = wuy.

Substantially, the known abstract theory assumes the monotonicity of V; (see [10]) or
the continuity (or even the Holderianity) of the time derivative of the resolvent operators
associated to a and the family V; in the space of the linear and bounded operators of H

(see [26], [18]), a condition which does not hold in our concrete case (°) and is not
compatible with the previous monotonicity one.

We overcome the use of the derivative of these operators by directly comparing two
different solutions of the family of elliptic time dependent problems

(0.7) given L € H findu€eV,: a(u,v)=(L,v)n, YoeV,.

Obviously the difficult lies on the varying test-functions sets; the idea is to measure their
difference by considering the “residual” functional on V

ve Vi alu,v) — (L,v)g = Rp+(v).

Of course R is identically zero on V;; we shall show that it is enough to control it on those
elements w of V; which solve the analogous of (0.7) at the time s < . In other words, if

weV,: alwv)=(L"v)n, YoeV, withL € H,

then we ask that

(0.8) Ry o(w) = au,w) — (L,w)y < K|t = s| | Lllz 1L " lwllt

(®) [26] derives it by a time-differentiability property of the projections on the V;: see the related comparison
remarks of [10].
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PARABOLIC PROBLEMS WITH MIXED VARIABLE LATERAL CONDITIONS 325

for some # €]0,1] and K > 0 independent of ¢, s and the data. In our concrete case this
estimate is exactly proved by [34] for § = 1/2.

An interesting fact is that (0.8) holds also for a suitable abstract formulation of parabolic
equations with Cauchy-Dirichlet conditions in non cylindrical domains under simple
geometric assumptions quite similar to (0.4) (°); moreover, (0.8) is a good assumption in
ardar ta nraova the otahility and the canvaraance of tha cimnlagt digorata crha we ran
iUl W PIUV\./ e nauuu_y atiu Lllb \/UllV\/lEbllb\/ Ul Lll\/ bllll}}lbbl Ulbblbl\/ Dbllblllb WO Lall UDC

to approximate (0.6). We conclude this introduction with a brief sketch of this approach,
coming back to the concrete version of (PP).

We divide the time interval |0, 7] in « > 0 subintervals of equal length 7 = T'/x
and we choose suitable approximations f"(z),g¢"(x) of f(t,x),g1(t,x) at the nodes

t=mnr, n=201,...,K; then we solve recursively the elliptic problems in the unknowns
ul (x):
1 i 1 n ' :
~(u(@) = 7M@) + Au(e) = f7(x), in Q2
( ) — O on nT
(EP,) ou(x) "
=g {x), on I'}7,
C)I/A
u;(2) = ug(x), in Q.

The values {u!},—01, . give raise to a continuous and piecewise linear (with respect to
time) function &, (x,t) which takes v (r) at £ = nr and we shall show that %, converges
to the solution u of (PP) as 7 = T/x goes to 0.

The plain of this paper is the following: first we develop the abstract theory stating
in that context the approximation and regularity results we need; proofs are given in the
next two sections and the last one is devoted to the applications to (£ ) and to parabolic
equations in non cylindrical domains.

1. The abstract theory
Let us give two separable Hilbert spaces V' C H with continuous and dense inclusion,
let || - || and | - | be their norms and (-, -) the scalar product of H. As usual we identify H
with its dual H’, so that H can be densely embedded in V' and its scalar product can be

uniquely extended to the duality pairing between V'’ and V. Furthermore, we are given

a family {V}};c 0,71 of closed subspaces of V'

and

a family of continuous bilinear forms a(t;-,-) : V x V=R, € [0,T].

(®) For this kind of equations we could repeat almost the same previous remarks; see e.g. [19], [16]; we shal
detail our results in Sect. 4.
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326 G. SAVARE

We consider the following:

PROBLEM 1. — Given ug € H and L : [0.T[— V' find w : [0,T) — V such that for
ae. t €]0,T]

{(u(t) eV,
(PP") (W' (1), v) + a(t;u(t),v) = (L(t),v), Yve WV,
(L(O) Up-

We have already said in the introduction that the existence of a weak solution of (PP’) is
proved in [7] () whereas a stronger solution can be found in [10] assuming that the V,
are non decreasing; in this case [21] gives some other results of regularity and proves the

AAAAAAAAAAAA A smanaligatinm cnhamsa I o3 B IAN
Conveigence Ul d pcuauLauuu SCHCINC lUl L P ).

We follow a different procedure, requiring some compatibility and regularity conditions
on the V;-family and the bilinear forms a(¢; -, -). First of all we assume that:

(H1) {for every t € [0,T] a(t;-,-) is symmetric and coercive on V:

Ja>0: a(tiu,u) > oflul|®*, YueV
and we impose a one-side control on the time dependence of a:
(H2) there exists a bounded measure y on [0, 77 such that
a(t;u,u) — a(ssu,u) < p(ls, ) |ull?, VueV, 0<s<t<T.

We shall see later how these two conditions could be relaxed; we just note that { H2)
allows non increasing quadratic forms.

1.1. REMARK. — It is easy to see that (H1-2) imply the uniform boundedness of the
family a(t;-,):
(1.1) 18> 0: alt;u,v) < Plull|lv]l, Yu,veV
Moreover, we shall show that there exists a countable set S, such that, for every choice
of u,» € V, the mapping
(1.2) t — a(t;u,v) is continuous for every ¢ € [0,7]\ S..

In particular a(t;-,-) is weakly measurable (see [26]). O

(7) The basic assumption of this work, besides the coercivity of a, is the existence of a closed vector space 1%
contained in each V4, such that (V. V') /5, = H.
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PARABOLIC PROBLEMS WITH MIXED VARIABLE ILATERAL CONDITIONS 327

We consider now the behavior of V;, via the following construction. To every functional
L in V' and to every time ¢ we associate the unique solution (thanks to the coercivity
assumption (H1)) v = up(f) of

(1.3) we Ve altiuv)=(L.v), Yeel;

and the corresponding residual R = R, (¢) in V'

(1.4) (R,'U) = a{t;u,v) — (L.’U), VoeV.

We will assume that the restriction of ¥ on a suitable subspace of V, with s < ¢ is of
the same order of t — ¢ as s — ¢_, if L belongs to a space W “better” than V.

Therefore we fix a Hilbert space W between H and V'

HcwcV

and we denote by D, the domain in V; of the bilinear form «(¢:-,-) with respect to W:

(1.5) Diy={ueV,: a(t;u,v) = (L.v),YoeV, with L e W}

which is an Hilbert space if it is endowed with its natural norm

(1.6) llullp, = inf{||Lijw-. L satistying (1.5)}.

We assume

There exist a positive number K and a 6 €]0.1] such that
(H3) forevery Le W, t€]0.T]. ve D, with s <{.
(Re(t),0) < K(t =)Ll [loll” o]
1.2. REMARK. — If V; are not decreasing, then (H3) is trivially satisfied. On the other
hand, it is interesting to study what kind of better properties follow by assuming that

(H2-3) hold also for s > t (with the obvious changes, of course). We shall refer to this
case as (H2') and (H3') respectively. [

1.3. REMARK. — In the previous formula we can restrict s in the range [t — hg,t] for a
fixed ho > 0; this will be useful in order to apply the estimates of [34]. O

1.4. REMARK. — Thanks to a standard interpolation result (®) (H3) is equivalent to

(Re(t),v) < K{t = $)|ILIlw f[ollp.ary,, - Vo€ (D V) O

(®) We use the real interpolation functor ot J.-L. Lions and J. Peetre [30] ( ) 1 see (9], [14].

0.
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328 G. SAVARE

1.5. REMARK. — We can give another version of (H3) assuming for simplicity «a
independent of time and W = H. Define D as in (1.5) with the whole V instead of
V; and substitute (1.3) with:

o { aweV: alu,v)=(Lv), VYeel:
o w=ur(t) e V.. alult)—av)=0. VeeV.

We are taking the projection of «# on V; with respect to the scalar product a(-,-): let us
denote by P, this linear operator, which maps DD onto D; too. Thanks to the properties
of P, (H3) becomes

(1.8) a(Pra —w,v) = a(Pyit — 4, v — Pow) = alia, v — Po)
< K(t = s)llallpllvlicp. vy, -

Since

a(v,u)

|[v] = sup Yo eV,

ue D u#0 ”uHD
the previous formula can be rewritten in the more readable form

(1.9) v€(Dy.V)er = |v—Pow| <K({=s)|lvllp.vy,,, s<t
When (H3') holds too, as in [34] we deduce that

a|| P — P&.TLHQ < a{Pyu — Py, P — Py1i)
= a(ii — Dti, Pyit) + a(it — Py, Pyit) < 2K |t — s} ||| 3 1))
for every s and ¢ in [0.7), « € D. O
(H3) has interesting (and, in a certain sense, unexpected) consequences on the

“regularity” of the family V;, which better clarify some properties of the solution of
(PP") we shall see in a moment. Following [25], we define

sliminf V; as the set of the limits of the families v, € V; as t — ¢
1

t—to

and

slimsup V; as the set of the cluster points of the families v; € V; as t — 1

t—tn

in the strong topology of V. Replacing “strong” by “weak” we obtain the corresponding
notions of wliminf, .;,, wlimsup,_, ; we use the symbol of limit when the two sets
are equal. The definition of the left and right limits are straightforward as well as the
following inclusions

liminf V, C limsup V,, (both with s or w),
s5—t

s—t

sliminf V, C wliminf V,, slimsup V, C wlimsup V.
s—t s—t

s—t s—t
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We have
TuEOREM 1. — If (H1-3) hold, then for all t we have:

(1.10) wlimsup V, C V; C sliminf V,.

§—t s—t

Moreover the family Vi is strongly V-measurable in the sense that (see [17]).

(1.11)  Vu eV the mapping [0,T] 5t — d(u, V) = ’iél‘f’ |l — v|| is measurable.
1.6. REMARK. — Thanks to the general results of [17], it would not be difficult to show
that in (1.10) we can replace the inclusions with identities for a.e. t €]0.7[. O

1.7. Remark. — In the case of a non decreasing family of spaces

s<t = V,cV

(1.10) becomes obvious since

lim V, = U V.. lim V, = (V. O

s—t— s—tt

s<t s>t

1.8. REMARK. — If (H2'-3") hold then we easily deduce

(1.12) limV, = V;, Vtel0,T]

s—t

both in the strong and in the weak topology of V. [J
We can prove:

THEOREM 2. — (Existence.) With the previous hypotheses (H1-3) let us assume that

(D1) L= f+gy, feLl*0,T;H), geLl*0,T;W)ynwWtio,T;V") (%)

and

(1)2) Uy € L%.

(°) For a generic Hilbert space H, L”(0,T;H), 1 < p < o, is the Banach space of the (strongly) measurable
‘H-valued functions whose H-norm is in LP (0, T'); the corresponding (first order) Sobolev spaces are:

W1P(0,T;H) = {f absolutely continuous in [0, 7] with values in H : f' € LP(0,T;H)}.

As usual HY(0, T H) = W20, T H).
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330 (i SAVARE

Then Problem 1 admits a unique solution v € 1O T 1) 0 L0772V ("), Moreover
w satisfies

(1.13) w(ty eV for coery t €107,
1.9. REmark. — We shall show that (/22) can be replaced by the weaker

(D2) e €V, = wlimsup V. O
.l
1.10. RemArk. — Let us recall that the functions of HY(0.T:H) N [>(0,T:V) are
continuous with respect to the weak topology of V' so that the range of the trace operator

HY 0T HYNn L0 T: V)3 ¢ —o(0) eV

is contained in V;". From Theorem 2 and the previous remark it follows that this operator
is a surjection on Vb and by (1.13) we have:

b . . N . .
Vo = wlimind Vo= e im WV, (“) C]
s S0

1.11. REMARK. — Let us point out that from the equation we easily read that « belongs to

w € L2(0.1:V) such that 3L € L*(0.T: W) with

1.14)  L*0.1:D) =
( ) ( ) allzu(l)y. v) = (L(/);{,‘). VeeV,. forae 1 €]0.T[

1.12. REmARk. — Theorem 2 shows a natural “semigroup” property for the solution u
of (PP’): if we split the interval [0,7] into [0.s] and [s.T], the restriction of u to the
second interval can be recovered solving (PP1”') in [s. T} with respect to the initial datum
given by the right trace of " at 5. O

As we said in the introduction, we approximate the solution of Problem 1 by the
backward Euler method: we divide the interval 0.7 in # subintervals

I" = - ). nrl. n=1..... .

of equal size 7 = 1T'/r and we look for a sequence {u”}, o .. of points of V which
is a suitable approximation of the values of u at the nodes nrt.

With this aim we consider the sequence of variational problems (n = 0..... &)

Find «! € V. such that.

(AP”) ’“,:rl = Uy, llé/l == ().

" vl

U Ul )
(——Z———'—— . 1') +al{ul )

f

(L:.’n). YoelV,,.

(" We write L7(0.7: V) p € (1~ ] for the space L€ LU(LT:V) s u(l) € V) aed.
("' This property holds for every right Hmit of the family {17}, 1.7 of course.
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where

1
(1.15) a(-,-) = a(nt;-,-) and L = - / L{t)dt e W.
Jry

The coercivity assumption, ensures that (AF,) can be uniquely solved so that it defines
recursively the sequence u7; we introduce the piecewise constant and linear interpolant
of the values {ul'}

(1.16) u (t) =u?, G.(t)=@#/T—n+Dul+(n—t/r)ul"t, if tel?
and we have:

THEOREM 3. — (Approximation) With the same hypotheses of the previous theorem, as
7 goes to 0 1, converges to the solution u of Problem 1 in the “energy norm” of
C°0,T;H) N L*(0,T;V) and in the weak® topology of H'(0,T;H) N L=(0,T;V).
Moreover u.(t) and G.(t) converge to u(t) in V for every V-continuity point t of u in
[0.T]\ S, (see (1.2)).

1.13. Remark. — For other approximation results see the next section; following the
approach of [21] it is possible to give a more precise estimate of the convergence in
the energy norm. We also observe that the scheme (AP,) requires neither a preliminary
regularization procedure of the family V; nor a penalization technique. Of course the
estimates are strongly dependent on (H3). O

We give now other information about the regularity:

THEOREM 4. — (Regularity) The solution v given by the previous theorems belongs also
to By/2(0,T; V) (') and it is right continuous with respect to the strong topology of V at
every point of [0,T|, the discontinuity set being at most countable. Moreover, if (H2'-3")
hold, then w is strongly V' -continuous in the whole interval [0, T).

1.14. REMARK. — A simple consequence of this result is:

3 lim V,, Yitel[0,T].

gttt

both in the strong and in the weak topology of V. [

(") For 0 < s < 1, B3__(0,T;’H) can be defined as the Banach space of the L2(0, T; H)-functions » such

that the seminorm -
2
[v]gs = sup /
200 h

0<h<T.

2
dt
H

v(t) —v(t — h)

is finite; as usual, the norm of this space is obtained by adding the L?(0, T: H)-one. We recall that an equivalent
definition follows by real interpolation

B3 . (0,T;H) = (L*(0,TyH), H(0,T: H))

ER=

with the continuous inclusions

H*(0.T;H) € By (0, T;H) C H* (0, T;H), Ve >O0.

We refer to [36], [33] for analogous examples of this kind of intermediate regularity in the framework of abstract
evolution equations and inequalities.
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We make a few comments about some easy extensions of these Theorems:

1.15. EXTENSION. — The assumptions (H {-2) on the bilinear form a can be weakened
assuming that

[a=ay+a. ag satistying (H1-2) and
1@1 being uniformly bounded on V x H;

in particular we can consider the case of a weakly coercive bilinear form. Observe that
we can limit ourselves to check (H3) only on the principal part ag. The proof of this
case follows by the usual method of continuity in a parameter (see [6], Sect. 5 for a
similar application). [J

1.16. ExTensioN. — In (H3) the term K (¢ — s) can be substituted by the integrai

-t
(1.18) / p(€)d¢ for a fixed non negative function p € L*%(0,T).

Our simpler initial choice corresponds obviously to p € L>(0,7). O

1.17. Extension. — Following [21] we could also replace ||L||y in (H3) by different
intermediate norms between W and V', obtaining better summability exponents in (1.18),
but requiring stronger “elliptic™ estimates. In order to fix our ideas, let us assume W = H
and substitute the last line of (H3) by:

ot

(1.19) (Re(t),v) < (tILH?wHLIl}f“)(IIUHHIlvHE”)/ p(€) d€

a1

with 8,0 € [0,1], 6 + o > 0; in this case we can allow

(1.20) p e L+9(0,T).

In the framework of Remark 1.5 (1.19) can be rewritten as:

o1

(1.21) v€ (Ds,V)y, = llv = Polliyy,.. <0l / p(€) dg,

o

obtaining a finer scale of conditions in order to evaluate the time dependence of the
projectors P;. Of course, combinations of the various assumptions are possible. [J

1.18. ExTensioN. — In (D1) we could replace the absolutely continuous functions of
W10, T; V') by the bounded variation ones of BV (0,T; V') (as in [8] and [33]); since
we are also interested in the V-continuity properties of the solution, we do not insist
with this setting. [
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2. Preliminary results

The aim of this section is to prove some properties of the bilinear forms a(¢;-,-) and
of the family of spaces {Vi}icjo,77.

In order to have a shorter notation we denote by a(s;-) the quadratic form associated
to CL(S; ) )

a(s;u) = a(s;u,0);
we also assume that the three imbeddings

Vo Hoe WV

have norms < 1 and in our arguments we take account of extension 1.16; (1.19) only
requires minor changes, as detailed in [21].

2.1. PROPOSITION. — Assume (H1-2); then there exists a countable set S, C [0, T] such that

(2.1) [0,T] 3 t — a(t;u,v) are continuous in [0,T}\ S., Vu,v€ V.

Proof. — Let M be the countable set of ]0,7] where “u jumps”:

M= {t€)0,T]: u{t} > 0}.

We note that for every choice of v € V the mapping

[0,7] 3 t = a(t;v) + u(]0, t])lv]l*

is not increasing so that it is continuous except at a countable set; denoting by G, the
union of this set with M, the map ¢ — a(¢;v) is surely continuous outside G,,.

Let us fix now a countable dense subset V of the unit closed ball of V and define

S, = U G,.

veV

The family {t — a(t;v)},ev, o<1 is the closure of {t — a(t;v)},c¢ in the topology of
the uniform convergence, so that its elements are continuous outside S,. By homogeneity
we deduce the same property for every a(¢;v), v € V, and by the standard polarization
identity (**) we prove it also for the associated symmetric bilinear form. M

('3) That is

a(tyu,v) = [a(t; u+v) ~—alt;u— 1))]. Yu,veV.

o
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2.2. REMARK. — As a consequence of the previous proof we find that for every w.v € V
there exists the limit

lim a(s;u,v) = a(t:u,v)

a—tt

and it defines a bounded symmetric bilinear form which coincides with a(t; 4, v) outside
S., is right continuous and satisfies:
a(t;u) < alt;u);  alt;u) —a(s;u) < p()s, 1)l YueV,s<t [
We can obtain a sort of uniformity of the limit outside S,:

2.3. PROPOSITION. — Let t € S, be a “regular” point for a and let t, € [0,T), u, € V
be two sequences such that:

lim £, =1, [ten|| is bounded by a constant U < +o0.
n—oQ

Then for any v € V
(2.2) lim |a(tn; tn, v) — a(t; un;v)| = 0.

Proof. — We observe that the bilinear form

q(u,v) = a(s;u,v) — alt;u,v) + p(]s, t]) (u,v) s < t,
is positive by (H2) so that by Schwarz inequality |q(u, 'u)|2 < q(u,u)q('u,'v) we get:

la(s;u,v) — a(t; u,v)|

< wlls, Dllllol] + [a(s:w) = alts ) + (s, 1) f?)
x [a(si0) = altyv) + u(s, D)),
In our situation, denoting by I,, the interval limited by ¢ and ¢,,, we obtain
la(tn; thn, v) — (L(f' U, V)]
< UllollaE) + U VBT alTn)llats0) = altaio)] + (L) o212,
As n—oc we have
u(ln) =0, la(t;v) — altn;v)| =0

since t € S, D M; we conclude. B

2.4. COROLLARY. — With the same notation of the previous Proposition, let us suppose
that u,—u in V. Then

(2.3) lim inf a(t,; un) > a(t; u)

n—oc
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and

(2.4) limsup a(t,;u,) < a(t;u) = lim |lu, —ul| = 0.

n—od

Proof. — Since t ¢ S,, the difference between a(t,;u,) and a(t;u) has the same
behavior of

(2.5) a(ty; u,) — aty;u)

as n goes to oo. Now we write
a(tn; un) — a{tn; u) = a(tn;tun — u) + 2a(tn, ¥, un — 1)
> oty — ul|® + 2[altn; u, un — u) — alt;u, u, — u))
+ 2a(t;u, uy, — w)
and apply (2.2) together with the weak convergence of u,. W

2.5. REMARK. — In the previous two results, if we replace a by a (see Remark 2.2) and
we impose t,, greater than t, then (2.2), (2.3) and (2.4) hold for every t € [0,T[. O

Now we study the measurability properties of the family {V;}, by using an approximation
procedure based on the family of linear operators {.J*(¢); € > 0, t € [0, T]}, which send
an element v of H into the solution v*(t) of
(2.6) ve(t) € Vi (v5(t) — v, w) + ealt; v (1), w) = 0, YweV,.

These estimates are well known (see [28]).

2.6. LEMMA. — For any choice of ¢,t we have v<(t) € D, with:

@) + 20eo" (O < o, [ollp, < |—

bl

(2.7) eV = lirr(l) [v°(t) — v| = 0;

2 v
veV, = glue(t) —v|? + a(t;v°(t)) < a(t;v), liII(l] |ve(t) — || = 0.
e—
In particular, D, is dense in V,, for all t. Finally, if v € D, witht — hy < s < t we have:
(2.8) e [vo(t) — v|* + a(t; v (1) + allv®(t) — ol|* < alt;v) + E*(t — s)|o]|*’ [Jo]|5,*

with B2 = [ p*(€) d€ (see 1.16).
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Proof. — We have to prove only this last formula; by (H3) with L = —(v° — v)/e
we obtain

2e % +a(t; v (1)) + alt; 05 (1) — v)
< aftio) + 2| L ol [ ey

ve(t) —w ?

<alt;v) + E*(t— )|l |oll5% + € [ |

2.7. CorOLLARY. — For everv t € [0, T[ we have:

V: C sliminf V..
sttt
Proof. — 1t is sufficient to show that D; C sliminf V; for a given v € D, we choose
s—ott

v, = J"(t + h)v and we deduce that v,—v as h—0T by applying the last formula and
taking into account Remark 2.5. W

A consequence of these estimates is the following theorem:

2.8. THEOREM. — Let us given a sequence v,, € V, such that

(2.9) tn <t, t, —t€]0,T; v, — veEV.
Then v belongs to V,. In other words,
wlimsup V, C V.

Proof. — Let us set v5 = J*(t,)v,, v° = J*(t)v; by (H3) in the modified form of
1.16 we have the estimate

ve—v||v;, = Up

(0" —v,0° —v8) 4 ealt; v, 0" — o) < e
£

[ " €) de.

A ™

Now we write —v¢ in the first term as —v + (v — v, ) + (v, — v5) obtaining

1
51115 — | + %a(t;vs)

1
< %a(f u) + 5]1)" — =2 4+ (vF = v, v, — )

[ " e) de.

Sty

5 . e _
|V v |V — vy

+ e
€
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We pass to the limit as n—oc in the right hand member, observing that the last two
terms go to 0 whereas

lo" — o2 |2 + ealt;vs) < Cellv, |

with ' independent of ¢ and n. We deduce that

[v° — v]? + ea(t;v°) < Celiminf |[v, ||
n—o0

and v° converges to v in H and weakly in V, as e—0, since ||v,|| is bounded; being V;
(weakly) closed, we conclude. W

2.9. CoroLLARY. — The mapping

0,T] 3t d(u. V) = lél‘f [l — ]|
is measurable for all v € V.

Proof. — We shall show that the functions # — d(u, V;) are left lower semicontinuous
and therefore measurable ('%).

Let us fix u in V, ¢ €]0,T[ and choose u(s) € V,, s < ¢ so that

lw —u(s)|] < d(u,Vy)+t—s;
u(s) is bounded in V; hence from every sequence s,, converging to ¢ from the left as n—oo
we can extract a subsequence (still denoted by s,,) such that u(s, ) weakly converges to
%. By the previous Theorem, # belongs to V; and we obtain

d(u, Vi) < ||u — @] < liminf o — u(s, )| = hwinf d(u, Vy,)
2 OO n-—00

by the lower semicontinuity of the V-norm with respect to the weak convergence. M
e The proof of Theorem | is then complete.
The importance of this last property is highlighted by the following result:

2.10. PROPOSITION. — Assume that v is an H-valued measurable function; then the map

t— [Jo0)(t) = JE()u(t)

is also measurable (*°).

('*) A left lower semicontinuous function f :]0,7[+— R is measurable since the inverse images
F.={te|0.T[: f(t) > ¢}
are left-open subsets of |0.7'[, in the sense that
w€F. =3 >0:]e~ec.a]CF.

Now, a left-open set is a countable union of a family of left-open intervals (the connected components) and
consequently it is measurable.
('3) In this case strong and weak measurability coincide by Pettis’ theorem.

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



338 G. SAVARE

Proof. — For a constant bilinear form a(-. -) this property follows from the general results
of {171, being Jv(t) the pointwise projection on V; with respect to the scalar product:

(2.10) (u,v) + ea(u,v)

of the V-measurable function ¢ defined as in (1.7) with (2.10) instead of a(-,-). In the
case of a time dependent form, we consider the step function

tr=nr on IT

and we define z, as

2. (t) € Vis (2:(t) — v(t), w) + ealty; 2-(t), w) = 0, Vw eV,

which is measurable by the previous remark, being ¢, constant on I?. Applying 2.3 we
easily find that for ¢ ¢ S, z,(t) weakly converges to [J°v|(t) as 7—0. W

2.11. CoroLLARY. — Forallp € [1, 00| J maps L*(0,T; H) into L*(0,T; D); moreover,
if v belongs to LP(0,T;V), p < oo, then J°v converges to v in L*(0,T;V) and a.e. as
e—0. In particular L?(0,T;D) is dense in L?(0,T;V).

3. Proof of Theorems 2-4

Let u” be defined by (APF,) and let us consider the functions w, and %, as in (1.16);
we want to show that as 7 goes to 0 there exists the limit of 4, in the weak™ topology of
HY(0,T; HYNL>(0,T; V) and it defines the solution of (PP’). The following Proposition
gives the basic estimate we need:

3.1. PROPOSITION. — There exists a constant C > 0 such that, for 7 < hg (*¢) we have:

T

‘ al () dt , \ \

(3.1) qoup i (f)”Z < Cflluoll” + Hf||L2(0,T;H) + ||9”L2(O,T;W)mwm(o.T;V’)]-
té[O,T] ™

(%) hg is given by Remark 1.3; from now on we shall denote by C' the constants independent of the data and
of the parameter 7.
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Proof. — We observe that the solution ! of (AP,) belongs to D, so that we have,
for n > 1 (17):

ut — 1
(3.2) a(u,ut —ut )+ | T — LM — !
T
’ ’ un un—l ’
= ar(ut, —wp ) [ g e
ut — un~1 ‘ un—l _ un72 1-6
<ron| =t | || -
W W
where we set (see 1.16)
. n 1
(3.3) == ple)de.
T Jrn
The last term of (3.2) can be easily bounded by
, —1 12 n—1 n—2 2
2701 n_in2 . T [ |uy —ur urTt — U
Crlpr Pz + | 2 i
n||2 n—142
+4r(IL2 v + 1177 {lw)
whereas the first one is greater than (%)
3r|ur —ur 1?1 1 1 ,
B Can () — ety + el — ur )
4 T 2 2 2
ult — un—l
~rlfrp - o (o )
-
Now setting 1" = “%2) we can substitute the term —1a™(u"~1) in the last formula b
T T 27T\ y

1 n— n— n—
—5(17 1(“’7’ 1)_7-“:““’7' 1”2'

(') For n = 0 we simply have

0 2
. 1
Y "W 5a{0;uo).

1 1
Ea(();u?.) + -2-(1,((); ul —ug) +7

('8) With obvious notation, we split L? = f7 + g,
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Summing up from n = 0 (see note '7) to m < k we obtain

2 m
U L 1

_Z Ur T8

n=0

n=>0
m

1(0; uo +TZ UF21P + Nl e +

n=I

L\DI»—t

Since

R

n=1

by the application of a discrete version of the Gronwall lemma we find

m

(3.4) %Z

n=0

n
T

m

U

n=>0

1 m
(& n
<e T[E‘L(U?UOH'TZ (IF7 17+ llgrlf) + sup

n=1

Now recalling that

B

S (grur =y = (g3,u) -

n=1

Z [lur —

+ 37 Sl — P e

(12 | ) ™

P3G ) < 0 T+ [ IR e

J0

n IHZ ” mHZ

Z

1<s<m —1

-1

n+1 n o,n
JT’ 7‘ E — 9> u'r)

< ||g||W1-1(o,T;W)(SUP H“T”

and

K

n=1
we obtain the final

(3.5) TZ

<.

2
U Tiide 1

0<n<k

W=l
Since @ (t) = “=—=— if t € I we get

K

~12
uy —uy 1
D
-
n=1
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1<n<k

P (1 gt ) < [ QSR + ol

R

+ o sup |lu?l + Z g —ul M

n=0

T
:/ |4/ (£)|? dt
40

+ (gn

T

MUHZ + “f||2L'2(0,T;H) + HQH%Z(O,T;H') + HQH%VH((),T;V’)]'

n 1)

n

— U

n—1
T

)]
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and analogously

sup |[ull] = ldrllL=7;v) 2 l[urllL>0,mv)-

In this way (3.1) is equivalent to (3.5). H

3.2. COROLLARY. — The families i, and u, have at least one common weak™ accumulation
point u € L*(0,T;V) which also belongs to H*(0,T; H); moreover we have:

llg}) HfLT - “rHLx(o,T;H)
(3.6) lim |, ~ tr |l L2011 =0
Viows oy (4N 0y (# N,
;1—1:1 ”(,l/-r\b} (l:-,-\l/ I}”L‘(U,I,‘) )
Proof. — Tt is sufficient to note that
(3.7) ur(t) — 4-(¢) = 7L (B)aL(8) = £ (O)[ur(t) — u (t — 7))

with 0 < /Z,(¢) < 1; then we use (3.5). W
Now we want to show that the function u given by this Corollary solves Problem 1.

To this end we observe that ., and 4., satisfy a suitable approximate problem; in order
to describe it, we introduce the spaces (see (°) and 1.10) for p € [1, 00]

LP(0,T;V,) = {v e LP(0,T;V) such that v(t) € V,,, forae. t € I}

and

[P(0.T:D,) = u € LP(0,T;V;) such that 3L € LP(0,T; W) with
T | as(tult), v) = (L(t),v), Vv € V,,, forae. tel’,

with the corresponding natural norms. With this notation w, and 4. satisfy

ur € L=(0,T;V;), 4, € H'(0,T; H) N C°([0,T); V),

(APT) '[LT(O) = ’11,67

T
/ [(1},;,’1)) + a-(t;u-, V) — (LT,T’U)] dt =0, V7w e LY0,T;V,),
Jo

where of course L,(t) = L? on I”. If we want to pass to the limit with respect to 7 in
(AP;) we have to answer the following questions:

[@Q1] does u belong to L>(0,T;V)?

[Q2] are all the elements of L'(0,7T;V) approximable in the norm of L!(0,7;V)

by a family of v € L*(0,T;V;) so that they are admissible test functions in the limit
formulation of (AP,)?

[@3] can we pass to the limit in the bilinear term a.(¢; u., v)?
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An affirmative reply to them gives immediately the proof of:

3.3. COROLLARY. — Any weak” cluster point u solves the following weak form of Problem 1:

[ue L0, T; VYN HY0,T: H),

0N
Uuy) —= ug,

(wPP") T
/ [(u’,v) + a(t;u,v) — (L,v)] dt = 0, Vo e LY0,T:V).
0

Of course, it is not restrictive to assume v € L>°(0,7: V) in [(Q2] and in the last formula.
[Q1]  u(t) belongs to V; for every t € [0,T].

Proof. — We know that u,(t) weakly co verges to u(t) in V for all . The case ¢t = 0
being trivial, we can assume 1‘ >0 an observe that also u.(t — 7) weakly converges

to u(t). We already denoted by

(3.8) t, = Tmin{n : t < n1}, s, = t.—7, with the property ¢t €]s,,t,] € {I'}=1. .«

and we have u,(t — 7) € V,_; now we can apply Theorem 2.8. W

(2] For each function v € L*(0,T;V), there exists a uniformly bounded family
v € L*(0,T;D,) converging a.e. to v; in particular "v—v in LP(0,T;V) for all
p € [1,00][.

Proof. — By 2.11 we can assume v € L°(0,7;D). For the Lebesgue points t € 1"
of v we define:
"v(t) € Var as  J7(nr)u(t) = J7(t,)v(t)
and we apply (2.8) obtaining a uniformly bounded family in L*=°(0,7"; V') with

v - v in L*(0,T; H) and  To(t) — u(t) inV.

We conclude if we show that "v(t) strongly converges to v(t) for ae. t €]0, 7.
We apply the final estimate of Lemma 2.6 obtaining

oll"w(t) — oI < altri0(t)) - alt:To(t)) + O

and we recall 2.3). W
Finally we have:
(@3]  Let v,™v be given as in the previous (Q2] and v as in Corollary 3.3; then we have

T
(3.9) lim lar(t;ur, "v) — a(t;u, v)| dt = 0.

0 [

Proof. — Being the integrand in (3.9) uniformly bounded we have only to prove its
a.e. convergence.

TOME 76 — 1997 — N° 4



PARABOLIC PROBLEMS WITH MIXED VARIABLE LATERAL CONDITIONS 343

We know that there exists a negligible set S C [0, 7] such that (2.1) holds and "v(t)—wv(t)
if t ¢ S. For a given £ € S we bound the modulus in (3.9) by the sum:

lar(t;ur, "0 = 0)| + |ar (b ur, v) — alt; ur, v)| + |a(t; ur, v) — a(t; u, v)).

The last term goes to O since u.(£) weakly converges to u(t) in V; the same holds for
the first one, by the strong convergence of "v(t). The estimate of

lar(t;ur, v) — a(t; ur, )| = |a{t;;ur, v) — a(t; ur, v)

is given in 2.3. MW

It is a straightforward consequence that u solves also the pointwise formulation of
Problem 1 (see i.e. [21]). Since at this level of regularity the uniqueness of the solution
is immediate, we deduce that the whole family 7., converges to u in the weak™ topology
of HY(0,T; H)n L>=(0,T;V).

In order to see that ug can be chosen in V0+, let u, € V4, , t,—0, be a sequence such
that u,,—u in V; let us consider the corresponding solutions w,(¢) of Problem 1 starting
from the initial condition wu,,(t,,) = 4, and extended to the whole interval [0, T] by setting

Un(t) = un, if t€[0,%,].
Of course u,,(#) is uniformly bounded in H*(0,7; H) N L>(0,T; V) and satisfies:

U, € L®(t,, T; V)N HY(0,T; H), Uun(0) = uy;
T
/ [(u;l,v) + alt; up,v) — (L7'U)] dt| < C\/Zn“'l)(t)”Lw(O,t,,;V)a
0

Yve L>=(0,T,V)

It is easy to see that a weak™® accumulation point u of u,, satisfies (wPP’) and then (PP’).

o This concludes the proof of Theorem 2 and the related Remark 1.9.

Theorem 3 is almost completely proved, too; the strong convergence in L2(0,T; V) and
in L>=(0,T; H) of 4, is a standard fact: choose v = u, in (AP, ) and recall that by (3.7)

(@ (t), ur (1)) > (@(t), (1)), ae. in ]0,7].
We obtain

T

(3.10) %|11T(T)|2+/ a(t; u,(t)) dt

0

T T
< %|u6|2 +/0 (Lo (t), ur(t)) dt + /0 [a(t;ur (1) — ar(t;u.(t))] dt
whereas u satisfies:
T T
%'U(T)F + /0 a(t;u(t)) dt < %|uo|2 + '/0 (L(t), u(?)) dt.
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Since
lim i[I)lf [ (T)* > |u(T)% lin}) L, — L||20,7:v) = 0; lin}) lug — uol| = 0;
the strong convergence in L2(0,7T;V) follows if we show that
T
(3.11) limsup/ [(L(t; ur(t)) = (LT(t;uT(t))] dt < 0.
70 JO

We extend trivially u.(t) and a(t; -, -) outside [0, 7] and we split the integrand as:

[a(t;ur(t)) — a(sr;ur(t)] + [a(sr;ur(t)) — alsr;u(t — 7))
(53t = 7)) — altes 1y (6)]
< U2N(]3Ta t]) + 26U ||Ju, (t) — ur (¢t = 7)|| + [a(sr3ur (2 — 7)) = altr; u-(2))],

where U is an upper bound of supy, 7 ||u-||. We integrate from 0 to T" and we observe that

tg [ fulls ) + e (®) = ur(t = Dl e = 0
0

by Lebesgue convergence theorem and (3.6); finally

T T
[a(sr;u (t — 7)) —a(tr;urc(t)] dt = — / a(T;u.(t))dt <O0.

Y T—1

Combining these results we obtain (3.11).

At this point the uniform boundedness of @, in H'(0,T;H) implies the uniform
convergence in L°>°(0,T; H). In order to prove the strong V convergence in every
V-continuity point of the solution, we can just repeat the argument of [21], Thm. 3.8. W

We consider now the proof of Theorem 4 adapting an idea developed in [21]; for the
sake of simplicity, we initially assume

ug € Dy, L e L*0,T;H)
and we call U = |Jul|pe(0,7;v)-

We choose a number r €]0, T and set v = u(t) — u(t — k), 0 < h < hg (1) obtaining
by (H3):

2(u'(t), ult) — u(t — h)) + a(t;u(t)) + a(t; u(t) — u(t — h))
< a(t;u(t — h)) + 2(L(t), u(t) — u(t ~ h))
Cu h(|u' () + [/ (t = B> + L)y + LG = RIG) [ p*°(s)ds

t—h

< a(t — hyu(t — h)) + p()t — b thU? + 2(L(t), u(t) — u(t — k)

—+

+ Co R OF + 1 (¢ = W + IO + 15 - 1)) [ () s

('®) We set u(t) = ugp for t < 0; being ug € Dy there exists an Lo € W such that a(ug,v) = (Lo, v) for
v € V and consequently we define L(t) = Lo for ¢t < 0.
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We can replace a(t;u(t)) in the left hand member by a(#;u(t)) and we integrate from 0
to r+ h < T obtaining:

b rth
(3.12) /0 [(u/ (), u(t) — u(t — h)) + a||u(t) — u(t ~ h)|1?] dt + / a(t; u(t)) dt

r+h
< ha(0;u(0)) + hU?u(]0,r 4 h]) + 2 /0 ' (L(t), u(t) — u(t — b)) dt

r+h

vr-+h .
+20y h{ [ (wor+ i) o+ huLou%V} s
] 0

Finally we divide by h and pass to the limit as A goes to 0 applying Fatou’s lemma:
(3.13) / [u'(£)|? dt + a(r; u(r))
0
<al0iu) +Cuy [ IEON -+ 0 i
0

+2 /0 (L(t), 4 (t)) dt + U u(]0,7]),

obtaining a relation which does not depend on the additional hypothesis uo € Dy. This
relation gives the right continuity of u(¢) in V' at ¢ = 0 thanks to (2.4) and Remark 2.5,
since we obtain

lim sup a(r; u(r)) < a(0;up).

r—0t

Moreover, in this argument the choice of the initial time ¢ = 0 plays no role by the
semigroup property, so that we deduce the right continuity at all points of [0, T7.

Rewriting (3.13) starting from an initial time s < r we get
a(r;u(r)) < a(s;u(s)) + v(s, 7)),

where v is a finite measure on |0, T'] depending on y, L and w; this relation implies that the
mapping ¢ — a(t; u(t)) is of bounded variation and v is continuous except at a countable
subset thanks to 2.1 and 24.

In order to obtain the B./?

2000, T; V) estimate we recall that it is sufficient to prove
that the seminorm

1 /7
2 2
U L= sup — u(t) —u(t — h)||* dt
Wz oy = 500 g [t = (e = 1)
is finite: this is given by (3.12) choosing r = T — h.
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Finally, when (H2'-3') hold too, we can apply our arguments to the function

Wty =u(T —t) eV, = Vp_,

which solves

(W' (t),v) + a(T — t;u,v) = (L(T — t) — 2u'(T — ), v), VoeV, B
3.4. REMARK. — When L admits the decomposition (D1), in (3.12) we have to control
the additional term

rth
/U (g(t),u(t) —w(t — h))dt
-h

(g(t), u(t)) dt - / (g(t),uo) dt

0

rt+h

= /AT (g(t) — g(t + h), 'u,(t)) dt + /
J0 .

s

which is obviously bounded by Cy; h||g||w1.1(0,r;1+) and becomes, after the previous limit
process leading to (3.13),

- / (g ()ult)) dt + (g(r)u(r)) — (9(0), u0).

Being ¢ absolutely continuous, this quantity tends to 0 as » goes to 0. H

4. Applications to parabolic problems
Application 1

Let us deal with the equation (PP) stated in the introduction, under the regularity
hypothesis (0.4), or better:

t

(4.1) 3pe LH0,T) . ¢(I§,T§) < / p(&)de,  0<s<t<T
4.1. THEOREM. — If we are given:

feL*Q), uoe HY(Q), go€ H¥**(%y), g1 € H/2V4(E) (*)

(*®) i.e. go, g1 admit an extension to functions in H?/2:3/1(%) H/2:1/4(5) respectively, where
H™(S) = L2(0,T: H" (D)) N H* (0, T; L*(T)).

We recall that these trace assumptions (together with the possible required compatibility conditions) give the
exact regularity of (0.3) in the case of pure Dirichlet or Neumann boundary value problems; in those cases
we obviously deduce also u € H?-'(Q), which is in general false when mixed conditions occurs, even in the
cylindrical framework.
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satisfying the initial compatibility condition
uo(z) = go(x,0) on Ty,
then (PP) has a unique solution u satisfying:
ou

o Aue L¥(Q), we L®(0,T; H'(Q)) N BY2(0,T; H'()).

Moreover, if (4.1) holds also for the Hausdorff distance (instead of e(-,-)) we have
uw € C°0,T; H(Q)).

Proof. — By the trace result of [29] chap. 4, sect. 2.5, it is not restrictive to assume
go.91 = 0, so that the Dirichlet condition becomes

w(z,t) =0 on T%.
We choose
V=HY(Q), H=LQ), V,=Hn(9)
and the bilinear form

. du dv i
() = 9 (2, —_— E Bz, t
a(t;u,v) /Q{ZC' (z )3_771. dx; * - (=:8)

Y]

J
0

U
Ty

v+ ¢z, t)uv} dux,

which is admissible thanks to extension 1.15 (we assumed a global Lipschitz condition
on the coefficient /). (H3) is satisfied with § = 1/2 thanks to the estimates of [33],
thm. 5, and (4.1) corresponds to 1.16. W

4.2. REMARK. — We can apply our abstract theory in a more direct way by choosing:

W= Le(H'() :(Lv) = /Qf(.’L) u(:z:)d:n-i—‘/Fg(l')u(:z:)dH"—l.'I,’,
with f € L*(Q), g € HY*(T),

with the norm induced by L?(Q2) x H'/?(T); in this case g, is the restriction to 3, of
a function

g1 € LX0,T; HY2T)) nwhi(o,T; H-Y3(T)) O

4.3. REMARK. — The time regularity assumptions on the differential operator A could be
weakened: for instance, if A = —a(t)A then every function a(-) > a > 0 of bounded
variation in [0,7] is allowed. O

Application 2

Let us given a uniform family of C1'* open sets Q;, C RV for ¢ € [0,7) and consider
the following subsets of R x]0,T7:

Q= 2@x{t}, u= |J o x({1).

te}0,T| t€ 10,7
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We suppose that () is open and we consider the following boundary value problem

Ou(x, b
“E‘;f B 4 Au(e.t) = fla. 6, in Q.
(PP) u(z,t) =0, on ¥,
w(x, 0) = up(x), on {2.

We can apply the abstract results quoted in the introduction also in this case. We assume
that A is defined by (0.1) in all RV x ]0,7] (*') and

fe L*Q), wy € Hy(S).

The family Q, have to satisfy a condition analogous to (4.1) (*?): there exists a function
p € L*(0,T) with

ot
(4.2) e(2,,8) = sup d(z, ) < / p(&) dE, it 0<s<t<T.
rEQN\Q, Js

We have:

4.4. THEOREM. — With the previous hypotheses, there exists a unique solution « of (PPs)
satisfying

du  Ou 0%

4.‘ ) 9 i P
(4.3) gt Odxy oz, 0

€ L*(Q)

u(t) € Hy(Q): 3C >0 ||[Vul, )llz2 < C, vtelo,T]

Moreover, if (4.2) holds for the Hausdorff distance between S}, and 2, then the trivial
extension of u outside Q belongs to C°(0,T; H'(R™)) n By/2(0, T; H'(RM)).

200

Proof. — We extend v and f to 0 outside ) and we set V = HY(RV), H = L*(R") and

V= {ue H'(RY) :supp(u) € e} = {uw € H'RY) s upp,,, =0}

For the sake of simplicity, we will sometimes identify V; with H3(£):). Let us check (H3)
for the bilinear form (see 1.15):

' i du v _
(4.4) ag(t;u,v) = ./RN { z at (x, f)—d—;ja—x—J + uv} dx

4.J

(*'y For simplicity; in fact a cylinder containing ( is sufficient.
(*?) As in the other case, a monotone family (non decreasing) is allowed.
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observing that the standard regularity theory ensures

Dy = H2(Q,) N HH Q)

with a uniform bound of the respective norms. So we fix F € L*(R") and we consider
the solution u € V; of

a(t;u,w) = F(z)w(z)dz, YweWV,.

RN

By the usual Green’s formula, we have for a given v € D,:
(Rp(t),v) =a(t;u,v)—/ de:c—/ Fudx
Q .\

:/ a“udHN—l—/ Fudz
a0, v, QAR

=/ auudHN*l—/ Fudsz.
a0, N, v, QS

By [34], Lemma 3.10, being {2 }c[o,7) @ uniformly CY1! regular family, if e(€,, Q) is
small enough we have:

sup d(z,0Q;)+ sup d(z,00,) < Ce(€dy,8)
TEQ\Q zEQ N\,

with C only depending on the C! character of {Q;}:c(o,7). We have (see [36], [21])

ou _ z
/ vdHN Y < Cllullpz@ollella @ollvllz el Vol @ae)
89N, v,

< C(llullp ull)IVoliZ@,\0.) €(2s )
< C(llullp lullv ) Vollz @Il @,) e(s, )’
< C(llullp, Nellv)(lollv vl p, Je(S2, )*

and

/ o] do < e(Qn QI F Nl o]l
Q,\

so that

t
2
(Re(t),9) < CUFIL Nl Ilollg2 Mol + 1 Flzlollv) / p(€) dE.
Applying Remark 1.17 with § = o = 1/2 and with § = 1,0 = 0 we conclude. W
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