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Assuming the existence of a functional relation among the Standard Model (SM) gauge couplings α1 and
quartic λ, we determine the mass of the Higgs particle. Similar considerations for the top and bottom
Yukawa couplings in the minimal supersymmetric SM lead to the prediction of a narrow window for
tanβ , one of the main parameters that determine the light Higgs mass.
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1. Introduction

Copious theoretical efforts to establish a deeper understanding
of Nature, led to very interesting constructions such as Superstring
Theories that aim to unify consistently all interactions. The main
goal expected from a unified description of interactions by the Par-
ticle Physics community is to understand the present day large
number of free parameters of the Standard Model (SM) in terms
of a few fundamental ones. Realistically, one expects to achieve
at least a partial reduction of couplings. Indeed, the celebrated SM
had so far outstanding successes in all its confrontations with ex-
perimental results. However, its apparent success is spoiled by the
presence of a plethora of free parameters mostly related to the ad-
hoc introduction of the Higgs and Yukawa sectors in the theory.

Towards reducing the independent parameters of the theory,
a method has been developed which looks for renormalization
group invariant (RGI) relations [1–9,11] holding below the Planck
scale, which in their turn are preserved down to Grand Uni-
fied (GUT) or lower scales. This program applied to dimensionless
couplings of supersymmetric GUTs, such as gauge and Yukawa
couplings, had already noticeable success by predicting correctly,
among other things, the top quark mass in the finite and in the
minimal N = 1 supersymmetric SU(5) GUTs [1,2]. An interest-
ing prediction of the lightest Higgs mass in a N = 1 finite SU(5)
GUT [1] will soon confront the experiment. An impressive aspect
of the RGI relations is that one can guarantee their validity to all
orders in perturbation theory by studying the uniqueness of the
resulting relations at one loop, as it was proven in the early days
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of the couplings reduction program [5]. Even more remarkable is
the fact that it is possible to find RGI relations among couplings
that guarantee finiteness to all orders in perturbation theory [9]
(see also [10]). Here, we would like to examine to which extent
the above method can be applied to minimal schemes such as the
SM and its minimal supersymmetric extension, the MSSM. In fact,
the former, was one of the first applications of the above reduction
scheme [6,8,11] assuming a perturbative ansatz. The implications
of a stronger condition were examined in Ref. [12].

Let us first recall some basic issues concerning the reduction of
couplings. A RGI relation Φ(g1, . . . , gN) = 0, has to satisfy the par-
tial differential equation μdΦ/dμ = ∑N

i=1 βi∂Φ/∂ gi = 0, where βi
is the β-function of gi . There exist (N − 1) independent Φ ’s,
and finding the complete set of these solutions is equivalent to
solve the so-called reduction equations (REs), βg(dgi/dg) = βi ,
i = 1, . . . , N , where g and βg are the primary coupling and its
β-function correspondingly. Using all the (N − 1)Φ ’s to impose
RGI relations, one can, in principle, express all the couplings in
terms of a single coupling g . The complete reduction, which for-
mally preserves perturbative renormalizability, can be achieved by
demanding a power series solution, where its uniqueness can be
investigated at the 1-loop level. The completely reduced theory
contains only one independent coupling with the corresponding β-
function. This possibility of coupling unification is attractive, but it
can be too restrictive and hence unrealistic. To overcome this prob-
lem, one may use fewer Φ ’s as RGI constraints.

After investigating specific examples, it becomes clear that
the various couplings in supersymmetric theories have easily the
same asymptotic behavior. Therefore, searching for a power series
solution to the RGEs is justified. This is not the case in non-
supersymmetric theories. Still, in the SM α3 and α2 have the same
behavior but one cannot be reduced in favor of the other [11].
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Here, we will examine in some detail the possibility to reduce the
couplings α1 and the scalar quartic coupling λ of the SM, which
have the same asymptotic behavior too.

As already mentioned, the method of reduction was applied in
the couplings of the SM in Refs. [6,8,11]. The predictions for the
Higgs boson mass given in Refs. [6,8] and for the Higgs and the
top quark masses in Ref. [11] did not survive confrontation with
experiment. In the present work, after studying the evolution of
the SM couplings under the renormalization group flow, we look
for solutions of the reduction equations following Refs. [1–5,8,9,11]
by generalizing their perturbative ansatz. Eventually, we are led to
the updated solutions of Ref. [6]. Although exact reduction can-
not be realized, numerical investigations show that an approxi-
mate reduction still holds especially for the high energy region.
Therefore, we will try to further investigate this interesting prop-
erty both semi-analytically and numerically, and use it to predict
the Higgs mass. Our results suggest a Higgs running (pole) mass
∼ 163 (155) GeV, i.e. in a region that is currently under experi-
mental investigation, which we do not consider as totally conclu-
sive yet.

If the experimental results persist as in [13] when better statis-
tics are available, then we will consider the SM case as an ed-
ucative example and a motivation for applying our method to the
MSSM, which is examined here too.

2. Studies of the behavior of the couplings under RGEs

In the following, we will investigate the behavior of the SM and
MSSM couplings under the renormalization group equations in or-
der to establish a possible realization of the reduction scenario.
The most promising case appears to connect the scalar quartic cou-
pling λ and the U(1) gauge coupling α1. We expect that such a
relation leads to a prediction for the Higgs mass. Let us start with
the 1-loop contributions. At this level, the RGEs for the gauge and
the (top) Yukawa1 can be solved analytically. The running of the
quartic coupling is governed by the equation

dλ̃

dt
= βλ = 1

2π

[
L2λ̃

2 + (A1Lα1 + A2Lα2)λ̃

+ A11α
2
1 + A12α1α2 + A22α

2
2 + HLαt λ̃ + H2α

2
t

]
, (1)

where

λ̃ = λ

4π
, αt = h2

t

4π
, t = ln(E),

L2 = 6, A1L = −3

2
, A2L = −9

2
,

A11 = 3

8
, A12 = 3

4
, A22 = 9

8
, HL = 6, H2 = −6,

and αi , i = 1,2,3 are the gauge couplings.
To check that the ratio λ over α1 indeed tends to a constant

value at high scales, we plot the derivative of the ratio ηλ ≡ λ̃/α1
as a function of t , for several initial values of the λ̃ coupling,
which we trade for the (running) Higgs mass. In Fig. 1 we show
such a plot. Starting from mH = 165 GeV, we see that the deriva-
tive is positive for high energies. Upon lowering the Higgs mass,
the derivative decreases and, for mH ∼ 162 GeV, it goes asymp-
totically to zero. Further lowering the Higgs mass the derivative
becomes negative but again for mH ∼ 151.5 GeV goes once more
asymptotically to zero. For even smaller values of the Higgs mass
the derivative becomes positive but now λ̃ passes through negative

1 Only the top Yukawa coupling is taken into account in the running.
Fig. 1. Plotting the derivative dηλ/dt as a function of t .

values.2 Notice that ηλ becomes constant at energies well above
the Planck scale, however at the 2-loop order the situation im-
proves appreciably. Let us explore the above situation a bit further.
We can easily express the running of the ratio ηλ in the form

dηλ

dt
= 1

α1

dλ̃

dt
− λ̃

α2
1

dα1

dt

= 1

α1
βλ(α1,α2,αt , λ̃) − λ̃

α2
1

β1(α1), (2)

where β1 is the 1-loop β-function for the α1 coupling. This ex-
pression can be easily cast in the following form

dηλ

dt
= α1βλ(1,α2/α1,αt/α1, ηλ) − α1ηλb1 (3)

where β1 = b1α
2
1 . Since at the 1-loop level the differential equa-

tions for the gauge and Yukawa couplings can be solved indepen-
dently of the λ̃ coupling, we can express α1, α2 and αt as functions
of t and recast the above equation in the form

dηλ

dt
= α1(t)βλ(t, ηλ) − α1(t)ηλβ1(1) ≡ α1(t)Fηλ(t, ηλ), (4)

using the same symbol βλ for the new function of t and ηλ .
In Fig. 2 we plot contours of constant value (−0.01, 0 and 0.01)
for α1(t)Fηλ (t, ηλ) in the (t, ηλ) plane. We clearly see that the
zero value contour tends, for albeit very high energies, to a con-
stant value for the ratio ηλ (∼ 1.3 and ∼ 0.05).

Let us now adopt a different point of view and treat α1,
α2/α1 ≡ η2, αt/α1 ≡ ηt and ηλ as independent variables. Then we
rewrite Eq. (3) in the form

dηλ

dt
= α1 Fηλ(η2, ηt , ηλ) (5)

using again the same symbol Fηλ . The derivative of ηλ with respect
to α1 is given by

dηλ

dα1
=

dηλ

dt
dα1
dt

= α1 Fηλ(η2, ηt, ηλ)

b1α
2
1

= Fηλ(η2, ηt , ηλ)

b1α1
. (6)

If ηλ tends to a constant value, then the above derivative should
tend to zero. This is of course true when α1 becomes very large
but also when the numerator, Fηλ (η2, ηt , ηλ) is equal to zero.
Just to have a first impression, we put η2 = ηt = 0 (both ratios tend

2 Recall that the assumption the λ stays always positive, for the whole energy
scale, gives a lower bound to the Higgs mass ∼ 149 GeV.
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Fig. 2. Contours of constant value of the derivative dηλ/dt in the (t, ηλ) plane for
three values: −0.01, 0 and 0.01.

Fig. 3. Surfaces of constant ηλ and parametric curves of (η2(t),ηt (t),ηλ(t)) for three
values of the Higgs mass (1-loop).

to zero for very high energies). Then Fηλ(0,0, ηλ) is just a second
order polynomial in ηλ with zeros at ∼ 1.34 and ∼ 0.047, which
are the two fixed points observed many years ago [6]. We can plot,
in the space of (η2, ηt , ηλ), the surface where Fηλ (η2, ηt , ηλ) = 0.
We can also numerically solve the differential equation and ex-
press ηλ as a function of t . Then we can make a parametric plot
of the curve (η2(t), ηt(t), ηλ(t)). We expect that for high ener-
gies, i.e. low values of η2 and ηt , the curve will lie on the surface
Fηλ = 0. This is shown in Fig. 3. There are two surfaces correspond-
ing to Fηλ = 0 and we have plotted the parametric curves for three
Higgs masses. We clearly see that for the values mH ∼ 162.5 and
151.6 GeV, the parametric curves lie on the surfaces for low values
of η2 and ηt .

3. The reduction equations

The observations made in Section 2 suggest that the cou-
plings λ̃ and α1 at least, are not independent in the SM and there
Fig. 4. The “constant” c1 as a function of α1.

may exist a functional relation among them at high scales. It is
therefore justified to look for solutions of the reduction equation

dλ̃

dα1
= βλ

β1
. (7)

Let us first look for solutions of Eq. (6) at one loop using the ansatz

λ(t) = c1α1(t), (8)

where c1 would be a constant in the perturbative approach of
Ref. [1–5,8,9,11], but here we are searching for more general so-
lutions. Taking the 1-loop expression for α1(t) we can solve for t
and express α2(t) and αt(t) (which are present in βλ) as functions
of α1. Using the ansatz given in Eq. (8), Eq. (7) becomes a second
order polynomial in c1, where, of course, the coefficients depend
on α1. In Fig. 4 we plot the two roots of the polynomial as func-
tions of α1. We clearly see that for large values of α1 (i.e. large
energies), the two roots tend to constant values. This is easily un-
derstood, since for high energies, we can neglect all the couplings
but α1 itself, and Eq. (7) reduces to

c1 = L2α
2
1c2

1 + c1 A1Lα
2
1 + A11α

2
1

b1α
2
1

= L2c2
1 + c1 A1L + A11

b1
(9)

and the two roots become independent of α1 (1.34233 and
0.0465609 respectively). We have already encountered this be-
havior when examining Eq. (6). The second order polynomial
above is essentially Fηλ (0,0, ηλ). It is worth mentioning that the
values of α1, when c1 approaches one of its fixed points corre-
spond to energies well above the Planck scale. (At the Planck scale
α1 ∼ 0.017!)

We can go one step further and postulate that

ηλ = λ̃

α1
= c1 + c2(η2). (10)

For high energies, the ratio η2 tends to zero and in order to ob-
tain our first ansatz, we must require that c2(η2 → 0) = 0. From
Eqs. (10) and (3) we easily get

dc2

dt
= dηλ

dt
= α1βλ(1, η2, ηt, ηλ) − α1ηλb1. (11)

Writing

dη2

dt
= 1

α1

dα2

dt
− α2

α2
1

dα1

dt
= α1

(
b2η

2
2 − η2b1

)
, (12)

where b2 is the one loop β-function coefficient for α2; dividing the
last two equations we get the derivative of c2 with respect to η2.
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Fig. 5. Plotting c2 as a function of η2 for the two values of c1 (1-loop).

Fig. 6. Plotting c1 + c2 = ηλ as a function of log10(E) for the two values of c1 (1-
loop).

All that remains to be done is to express the ratio ηt as a function
of η2. Having the 1-loop analytical expressions for αt and α1 as
functions of t , we can substitute t from the relation

η2 = α2

α1
=

α20

1− b2
2π α20(t−t0)

α10

1− b1
2π α10(t−t0)

→

t = t0 + η20 − η2
1

2π [η0b1α10 − η2b2α20]
, (13)

where η20 = α20/α10 and α10 and α20 are the corresponding val-
ues at the scale t0. Substituting ηλ = c1 + c2(η2) and solving the
differential equation for c2(η2), we get c2(η2). In Fig. 5 we show
the solutions for the two choices of c1 using the initial condition
c2(η2 = 0.2) = 0 (see Fig. 4). In Fig. 6 we show c1 + c2 (i.e. ηλ) as
a function of the energy scale. The curve which corresponds to the
higher c1 value has almost reached that value at the Planck scale,
while the one that corresponds to the lower c1 value, apart from
passing through unacceptable negative values, is still far away from
that value. In Fig. 7 we plot the function (c1 + c2(t))α1(t), i.e. λ̃(t)
itself, for the higher c1 value curve. The corresponding running
(pole3) Higgs mass is ∼ 162(154) GeV.

Going to 2-loop order, we should first determine the value(s) of
the constant c1 in Eq. (8). In this order, the procedure of keeping
only the large terms in the high-energy regime, does not lead to

3 For the known value of the top mass and the specific region of the Higgs mass,
the Higgs pole mass is lower than the running mass by an amount of ∼ 4.6–4.7%.
The relation between running and pole mass can be found in Ref. [14].
Fig. 7. Plotting (c1 + c2)α1 = λ̃ as a function of log10(E) for the higher value of c1.
The corresponding running Higgs mass is ∼ 162 GeV (1-loop).

Fig. 8. Plotting ηλ as a function of log10(E) for c1 = 1.395. The corresponding run-
ning (pole) Higgs mas is ∼ 163 (155) GeV (2-loop running).

an independent of α1 value(s) c1. Nevertheless, for a wide range of
α1, c1 varies by less than 5% from its 1-loop values: 0.0448–0.0465
for the lower value and 1.342–1.395 for the higher one. We may
now solve the 2-loop differential equation for c2 using as initial
value of ηλ at (very) high energies (i.e. low value of η2) c1 = 1.395.
The new value drives the ratio ηλ to its constant value early on
the energy scale (see Fig. 8). To be more specific, we see that
ηλ(MPlanck) = 1.459 and it remains pretty stable for higher ener-
gies. The Higgs running (pole) mass is ∼ 163 (155) GeV. At the 2-
loop level, the problem with the lower c1 value persists: ηλ passes
through negative values.

4. The MSSM case

If we assume that the top and bottom Yukawa couplings are
related, the reduction equation is

dαt

dαb
= βt

βb
= αt(6αt + αb − c(t)

i αi)

αb(6αb + αt + ατ − c(b)
i αi)

,

where c(t)
i = (13/15,3,16/3) and c(b)

i = (7/15,3,16/3). Let us ig-
nore, for simplicity, the contribution of ατ and the small difference
between c(t)

1 and c(b)
1 . It is then straightforward to deduce that if

the ratio αt/αb is constant, this ratio is equal to the corresponding
ratio of the β-functions and equals 1.

d

dt

(
αt

αb

)
= 0 → 1

α2
(αbβt − αtβb) = 0 → αt

αb
= βt

βb
.

b
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Fig. 9. (a) The ratio ht/hb and (b) the derivative of the ratio as a function of energy for several values of tan β and MSUSY = 1 TeV, mt = 172 GeV and mb(M Z ) = 2.82 GeV.

Fig. 10. Plots of the ratio ht/hb ((a) and (c)) as well as the derivative of the ratio ((b) and (d)) as a function of energy for MSUSY = 1, 5 and 10 TeV ((a) and (b)) and varying
the bottom mass in the experimental error region ((c) and (d)).
This result combined with the previous equation leads to

6αt + αb − c(t)
i αi = 6αb + αt + ατ − c(b)

i αi → αt = αb.

That is, if we start with αt and αb equal at an energy scale, equal-
ity will persist at all energies. Putting back the τ Yukawa coupling
and the difference between the c(t)

1 and c(b)
1 constants, we expect

a small deviation from that behavior.
Thus, the procedure goes as follows: we start the running (with
the SM RGEs) from the known values of the top-, bottom- and tau-
mass. At MSUSY , we choose the appropriate tan β value that keeps
the ratio αt/αb constant for all energies. Of course, we expect4 this
constant to be near 1.

4 The fact that tanβ could be predicted using reduction of couplings was sug-
gested in [4] in a discussion with a different focus.
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Fig. 11. Contours of constant mh (pole) mass in the plane of (m0,m1/2) for initial
value A = 0 GeV and for tanβ = 56. The dashed and the dotted–dashed contours
correspond to (lightest) squark and gluino masses of 1.2 TeV and 1 TeV correspond-
ingly.

In the MSSM scenario, at the scale MSUSY , we have the relations

αt(SM) = αt(MSSM) sin2 β,

αb(SM) = αb(MSSM) cos2 β,

ατ (SM) = ατ (MSSM) cos2 β. (14)

Above the MSUSY scale, the running of all the parameters obeys the
MSSM renormalization group equations, while below that scale,
the SM regime is active.

In Fig. 9 we plot the ratio ht/hb (a) and the derivative of the
ratio (b) as a function of energy, for several values of tanβ and
MSUSY = 1 TeV, mt = 172 GeV and mb(M Z ) = 2.82 GeV. We clearly
see that in the range tan β = 52.25–58.55, the derivative of the
ratio almost vanishes (actually it is less than 6 · 10−3). The two
values of tan β: 52.25 and 58.55, are the limiting cases. For values
below the first one, the derivative remains positive, while above
the second one the derivative remains negative for the whole en-
ergy range.

In Fig. 10 we plot the ratio ht/hb (in (a) and (c)) as well as
the derivative of the ratio (in (b) and (d)) as a function of en-
ergy for the central value of tanβ = 56. In (a) and (b) we show
three curves corresponding to MSUSY = 1, 5 and 10 TeV, keep-
ing the masses of the top and bottom quarks at their central
values. In (c) and (d) we vary the bottom mass mb(M Z ) = 2.75,
2.82 and 2.89 GeV, keeping the top mass at its central value and
MSUSY = 1 TeV. The differences upon varying the top mass are neg-
ligible.

Now, using SUSPECT [15],5 we can plot in the (m0,m1/2) plane
contours of constant (pole) mass values for the lightest supersym-
metric Higgs mh

6 for tanβ = 56. In Fig. 11 we show these con-
tours for mh = 114,116,118,120 GeV for initial A = 0 GeV and

5 We run the program using the mSUGRA model, 2-loop running and evaluation
of pole masses. In all cases sign(μ) = +1.

6 We keep mH for the SM Higgs and denote by mh the lightest Higgs in the
MSSM.
Fig. 12. The same as in Fig. 11 for the two limiting tanβ cases: 58.55 and 52.25.

tan β = 56. The dotted-dashed contour corresponds to a gluino
mass of 1 TeV, while the dashed contour to (the lightest) squark
mass of 1.2 TeV. According to recent data from ATLAS/LHC and
CMS/LHC [16], the two values represent the lower bounds for de-
tection of the corresponding particle. Finally, in Fig. 12 we plot the
same contours for the two limiting tan β cases: 58.55 and 52.25.

5. Conclusions

The idea of couplings reduction in a field theory is very appeal-
ing since it increases its predictive power. Successful reduction led
to all-loop finite theories and a prediction for the top-quark mass.
The latter property was used as a selection criterion for a success-
ful GUT. In the present work, we have investigated the approximate
reduction of α1 and the scalar quartic coupling λ couplings that
appears to hold in the SM and MSSM models. Under plausible as-
sumptions we have obtained a prediction for the Higgs particle
running (pole) mass: ∼ 163(155) GeV.

Previous studies have either overlooked this possibility, or did
not include the heavy top-quark contribution. We have also initi-
ated an analogous analysis for the MSSM, which we plan to extend
in a forthcoming publication.
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