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Abstract. Given a tree T with n edges and a set W of n weights, we deal with labelings of the 
edges of T with weights from W, optimizing certain objective functiorls. For some of these 
function& the optimization problem is shown to be NP-complete (e.g., finding a labeling with 
minimai diameter), and for others we find polynomial-time algorithms (e.g., finding a labeling 
with minimal average distance). 

1. Introduction 

1.1. Definitions 

Let T(V,E) be a tree with vertices V={l,2,....,n+l} and ledge; E= 

kl, e2,..., e,}. A tree is considered to be unrooted, urJess otherwise stated. A 
vertex of degree one is a leaf, and an edge incident with a leaf is a terwzim;zl edge. 
P,, denotes a path with n vertices. W = {wl, 1~2, . . . , w,) is a set of weights such 
,that 0 c li’min = ~1 s ~2 s l l l s We = wmax. A labeling of the edges of T wiith weights 

from W is a bijection f: E + W. In this paper we considf:r labelings that optimize 

certain objective functions. 
Let p(i, j) denote the (unique) path connecting vertices i and i in T. Given a 

labeling f of T, the distance df(i, 6) between i and i is 

The diameter I+(T) of the tree T, labeled with f, is 
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No& We omit thle references to f and T whenever possible; i.e., we use the 
notations d(i, j) and 9 instead of df(J, j) and Bf( T), respectively, and similarly for 
the functions defined in the sequel, 

A center of a labeled tree is a vertex i for which maxj+i(d(i, j)} is minimal, and 
this value is called the radius 92 of the tree; i.e., 

B = min{max {d(i, j)}}. 
i i 

The terms diameter, radius and center are similarly defined for labeled undirected 
graphs. In a rooted tree the center is located at the root. 

The maximal weight and minimal weight on p(i, j) are 

max(i, j) = ,?,~~~fi, {f(e)) and 
_ -_ 

min(i, j) = mpj, {f(e)), 
* 

respectively. 
The number of edges in p (i, j) is Ip (i, j)l, and 

d(i, il 
adi, i) = rp(i, 

is the average weight on p(i, j). 

1.2. The objective functions 

The quantities which we optimize, for a given tree T, over all possible labelings 
f, are the following: 

(1) 99 
(2) a, 
(3) SUMDISIT) z= xi+ d(i, j), 
(4) SUMMAX(7’) = CiCj max(i, j), 
(5) SUMMIN(T) = CiCj min(i, j), and 
(6) SUMAVR( T) = Ci<j avr(i, j). 

The functions (3)-(6) are average measurements, since the summations are over 
all pairs of vertices. 

1.3. Motivation 

This work is applicable in the design of communication networks. Given com- 
munication lines of different properties, such as communication cost, capacity, 
vulnerability and reliability, we want to assign these communication lines to the 
direct connections, (‘eldges’) of a given communication network (of a tree structure), 
such that certain objective cost functions will be optimized. 

For example, the function SUMDIS is measuring the average communication 
cost of the network (see [4] and [8]). The diameter is measuring the maximal 
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communication cost in the network, and the radius is measuring the maximal 
communication cost from a directory optimally located in the network. Let c(e) 
and u(e) be the capacity and vulnerability of a communication line assigncd to the 
edge e, respectively, Define the capacity and vulnerability between the vertices 1 
and j as 

c(i, j) = mFi, {c(e)) and 
, 

v(i, j) = eyp~fi, {v(e)), 
9 

respectively. Then the functions SUMMIN and SUMMAX measure the average 
capacity and vulnerability of the network, respectively. 

1.4. In Section 2 we present several NP-complete problems, concerning optimizing 
the radius and the diameter of a tree and of a binary weighted (0,l weights) general 
graph. Polynomial-time algorithms for special cases of minimizing the radius of a 
trre are shown in Section 3. In Section 4 we present polynomial-time algorithms 
for optimizing average measurement functions of the tree, such as SUMDIS and 
SUMMAX, Open problems are found in Section 5. 

2. Radius and diameter: NP-complete results 

2.1. In this section the following problems are shown to be NP-complete (see [6]): 

Problem 1. Given a tree 7’ with n edges, a set W of n non-negative weights, 
and an integer k > 0, to determine whether there exists a labeling f with diameter 
Sk. 

Problem 2. Like PROBLEM 1, for radius Sk. 

Note. (1) This result holds also for rooted trees. 
(2) PROBLEMS 1 and 2 remain NP-complete when the weights are integral and 

bounded by a polynomial in n. 

Problem 3. Like PROBLEM 1, for radius ak. 

Note. (1) Maximizing the diameter of a tree is trivial. 
(2) PROBLEMS 1, 2 and 3 are NF-complete also for the corresponding vertex 

labeling problems, e.g., 

1’. Given a tree T with n + 1 vertices, a set W of n + 1 non-negative 
weights and an integer k > 0, to determine whether there exists a labeling of the 
vertices of T with the weights of W such that the sum of the weights of the vertices 
along any path in the tree is not greater than k. 
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Problem 4. Given a connected graph G with m edges and a set of 0,l weights 
w, ]wl= m, to determine whether there exists a labeling with radius 4. 

Problem 5. Given a connected graph G with n + 1 vertices and a set 0f 0,l 
ts W, 1 WI = n, to determine whether G contains a spanning tree which can 

be iabekd such that its diameter Q!. 

2.2, The reductions are from the PARTITION problem and the MAXIMUM 
be NP-complete (see [6] TERMINAL SPANNING TREE probEem, both known to 

and 121): 

P~ftiti@~, Given positive integers ai, i = 1,2, . . . , n, to 
existsasetIc{l,2,...,n)suchthat 

c ai = z Lli. 
icl idI 

Maximam Tmninsl Spmning Trea Given a graph G 
determine whether G has a spanning tree with at least k 

2.3. Prmf for PROBLEM 1 

determine whether there 

and an integer I& > 0, to 
terminals ( = leaves). 

We show that PARTITION is reduced to PROBLEM 1. Given ai, i = 1,2, . . . , n, 
(an instance of PARTITION), we define the following instance of PROBLEM 1: 

2 
n edges P 

We prove that there exists a solution to the PARTITION problem iff there exists a 
labeling of T with diameter &k. 

Suppose there exists a solution to the PARTITION problem, namely Ciol ai = xi&r ai 
forsomeIc{l,2,..., n}. The following labeling has a diameter k : label AB with 
xi ai, spread the ai’s for i E I atid iti I on BC and BD, respectively, and label the 
rest of the edges with 0’s. 
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Suppose: there exists a labeling with diameter Q. One can find such a labeling 
in which C ai labels the edge AB (if in the given labeling AB is la’beled with a,, 

for some U, and C ai labels another edge e, then by interchanging C ai and a, the 

diameter is not increased). This means that there exists a labeling such that the ni’s 
on BC and on BD sum up to 3 C ai each, hence we have a solution to the given 

PARTITION instance. 

2.4. Proof for PROBLEM 2 

We prove that PARTITION is reduced to PROBLEM 2. Given ai (as above), we 

define the following instance of PROBLEM 2: 

7’=P2n+1, W={al,a2 ,..., an,?,O,i..,?} k=iCai. and 

nO's 

The rest follows immediately. 

Note. The same reduction holds in the case when this path is rooted in its center, 
which proves that PRY- -LEM 2 is NP-complete also for rooted trees. 

Note. As was pointed out by Johnson [5], PROBLEM 1 and PROBLEM 2 remain 

NP-complete (‘in the strong sense’ [2]) when the weights are integral and bounded 
by a polynomial in n. This is shown by similar reductions from the 3-PARTITION 
problem (see [2]) of 3m integers to corresponding instanc\es of PROBLEM 1 and 
PROBLEM 2, where the labeled tree consists of m paths of three edges each, all 
emanating from a common vertex (which is the root in the rooted tree case of 

PROBLEM 2). 

2.5. Proof for PROBLEM 3 

We prove that PARTITION is reduced to PROBLEM 3. Given Ui (as above), we 

define the following instance of PROBLEM 3: 

T = Pn+2, 

and 

MG’ = (al, a2, . . . , a,,, x} where x 

If there exists a solution to PARTITION, 

radius %! = k. 

2 max {ai) 
i 

then the labeling shown in Fig. 1 has a 

. . . 

0; ‘S fQf iE I 

.e. 

f X Oi ‘S fOf $1 

Fig. 1. 
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If there exists a labeling with radius 8! 2 x +$ c ai, then let D be a center and 
DB a radius (see Fig. 2). Then 

d(D, B) 2 x + $‘z [Zip and hence d(A, D) G i C ai. 

Fig. 2. 

Also d(D, B) s d(A, C), otherwise 6) is not a center. Therefore 

x+~Caicd(D,B)~~d(A,C)~y+d(A,D)~y+4Cai, 

hence x s y. But y s X, hence y = X, and 

d(A, D)=d(B, C)=$Cai, 

which solves the PARTITION problem. 

2.6. Note 

PROBLEM 1, PROBLEM 2 and PROBLEM 3 are also NP-complete for vertex 
labeling. The reductions are from the corresponding edge labeling problems. Adding 
a weight 0 to the given weights, a solution for the vertex labeling problem induces 
a solution for the corresponding edge labeling problem. This is done by regarding 
the vertex labeled 0 as a root of the tree and using a label of any other vertex to 
label the edge directed to this vertex. 

2.7# Proof for PROBLEM 4 

We prove that MAXIMUM TERMINAL SPANNING TREE is reduced to PROBLEM 
4. Given a graph G with n + 1 vertices and k > 0 (an instance of MAXIMUM 
TERMINAL SPANNING TREE), we define the following instance of PROBLEM 4: G 
is the same given graph and W contains n - k 0% and al’, the rest 1’s. We prove 
that G has a spanning tree with at least k leaves iff G has a labeling with radius 8 c 1. 

Suppose G has a spanning tree with at least k leaves. This yields a labeling of 
G with radk 92 s 1, by labeling the internal edges (of the tree) with O’s, and thus 
every internal vertex (of the tree) is a center for the graph G with radius 9? s I. 

Suppose there exists a labeling of G with radius 99 < 1. Let A be a center of the 
labeled graph, and apply a shortest-path algorithm from A to get a ‘shortest-path 
spanning tree’ with radius 92 < 1. The tree k labeled with at least k 1’s. In this tree 
there exists at most one edge labeled 1 on each path from A to any leaf, since the 
radius is 5~ 1. Therefore the number of leaves in the spanning tree is at least as the 
number of l’s in the tree, i.e. ak. 

2.8. Proof for PROBLEM 5 

The reduction is similar to that of PROBLEM 4. 
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3. Radius: polynomial results 

3.1. In the previous section we proved that minimizing the diameter or the radius 

in a tree are NP-complete problems. Here we present polynomial-time algorithms 

for certain instances of these problems. 

3.2. Problem 6. Given a tree T and a set of 0,l weights W, to find a labeling 

with minimal radius. 

The following algorithm solves this problem in r)(n) running-time: 

Algorithm A 
1. while (number of leaves in T) G (number of l’s in “jv) 

do begin 
label all the terminal edges with 1; 

delete the terminal edges from T; 
delete the used l’s from W; 
end; 

2. Put all the remaining l’s on terminal edges; 
label all other edges with 0’s. 

Proof. Left to the reader. 

Note. Algorithm A is applicable also for rooted trees. 

3.3. Problem 7. Like PROBLEM 6, for a set of a, b weights, a < 6. 

The following algorithm solves this problem in O(n log n ) running-time in the 
case when T is a rooted tree. An 0(n2 log n) algorithm for unrooted trees is 
obtained by applying this algorithm from every vertex in the tree. 

Algorithm B 
1. Label all edges of T with a’s; 

insert all terminal edges into a ‘cagdidate list’; 
2. while W contains at least one b 

do begin 
find an edge (x, y) in the ‘candidate list’., which lies on a path of minimal 

length from the root to a leaf; 

label ix, y) with b ; 

delete this b from W; 
delete (x, y) from the ‘candidate list’; 
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cif x has no sons labeled with a 

then begin 
find the unique w such that (w, X) E T; 
insert (w, x) into the kandidate hst’; 

end; 
end; 

Proof. Let T be the tree labeled by the algorithm while T’ is an optimally labeled 
tree minimizing the radius and satisfying the condition that if a (directed) edge 
(x, ;r ) is label e with b, then sll edges in the subtree Tb rooted at y are labeled d 
with b (all the b-weights are pushed towards the ‘reaves). Note that T satisfies this 
conidition by the algorithm. 

First we show that there exists such an optimal labeled tree T’. Let T” be an 
optimal labeled tree not satisfying this property. Denote by H, d’ and d” distances 
in T’, T’ and T”, respectively (note that all these three trees differ only by their 
labelings). There exists an edge (x, y) labeled b in T” while some edge (w, z) in T,, 
is labeled with a, Exchanging the weights of the edges (x, y) and (w, z) yields a 
labeling where d”(r, u) is decreased by b - a for every u E TY - Tz and is not changed 
for any other vertex in the tree. Repeating this process yields a labeled tree T’, 
satkfying the desired property, without increasing the radius, and therefore T’ is 
also optimal. 

Assume t?ow that the tree T labeled by the algorithm is not optimal, i.e., there 
exists a vertex x E T such that d(r, X) > %!, where R is the radius of T’. Then the 
path from r to x contains an edge labek2 :=:T?h b in T and labeled with a in T’. 
Let (y, z) be the first such edge from the root r. On the other hand there exists an 
edge (u, u) labeled with 6 in T’ and labeled with a in T. By the property of T’ all 
the edges in the subtree TV are labeled with 6. Let w be a vertex in Tu with maximal 
distance &(r, w). d’(r, w) s 92 since 9? is the radius of T’ (see Fig. 3). 

Fig. 3. 
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Note that the edge (u, u) is labeled with a in T and with b m T’, and thus 

d(r, w)l+(b--a)~d’(r, w&R. 

Hence 

d(r, w)< R -(b-a). 

By our assumption d (I; x) > R. Thus before the algorithm I;l.beled the edge (y, z) 

with b we had 

d(r,x)+(b-a)>R or d(r,x)>R--(b-a) 

and therefore 

d(r, w) c d(r, x). 

Hence the algorithm should have labeled the edge (u, u) with b before labeling the 

edge (y, z), a contradiction. 
Therefore the labeling of T is optimal. 

3.4. Problem 8. Like PROBLEM 7, for a maximal radius, 

In a rooted tree this is done by finding a longest path from the root, labeling its 
edges with as much b’s as possible, and labeling the rest of the edges arbitrarily. 
In an unrooted tree this is done by finding a longest path,, labeling it with [g/2] 
b’s on one end and [x/2] b’s on the other (where x is the number of b’s), and 
labeling the rest of the edges arbitrarily. Both algorithms are: of O(n) running-time. 

3.5. Problem 9. Given a tree T and a set of 0,l weights W, to find a labeling 
with minimal diameter. 

This is done in O(n) running-time algorithm, identical to that of PROBLEM 6. 

4. Average measurements: polynomial resullts 

4.1. In this section we present polynomial-time algorithms for optimization prob- 
lems concerning the functions SUMDIS, SUMAVR, SUMMIN and SUMMAX. 

4.2. Problem 10. Given T and W, to find a labeling that maximizes or minimizes 

SUMDIS( T) = C d (i, j). 
iCj 

Following Hu [4] we observe that instead of summing the d (i, j)‘s we can count 

the number of occurrences of each edge in the summation. Suppose that an edge 
e partitions the tree T into two subtrees with X: and n + 1 - k vertices, respectively. 



Then e is counted k(n +1-k) 
k(w + 1-e k) the con!itection of e. 

SUMDIS( T) = F c(e) l 

and the next theorem follows: 

Y. Perl, S. Zaks 

times in SUMDIS( T). We call this value c(e) = 
Now 

f(e) 

‘Ekoremr. Given the connections of the edges of the tree “r; c (el) s c (ez) s l 8 l < c (e,), 
the labeling of ei with wi(wn+l- i), for i = 1,2, . . . , n., maximizes (minimizes) the 
function SUMDIS( T). 

The optimal labeling is unique up to permuting edglzs with equal connections. 
Assumirlg that all weights are distinct, the number N o:f optimal labelings satisfies 

The bounds are achieved for the graphs Pn+l and &. 
The cknnections can bie calculated in O(n) time by regarding T as rooted and 

traversing it in end-order (see [7]). Therefore, and because of the sorting step 
invoker& the algorithm for optimal labeling (for either maximizing or minimizing 
SUMP) fS( T)) has O(n log n) running-time. 

4.3. Problem lls Given T and M/, to find a labeling that maximizes or minimizes 

d(i, j) 
!PJMAVR(T) = c - 

iC=i IPK i)l l 

‘1 he solution is essentially similar to the solution of PROBLEM 10. The only 
change is that the connections c(e) are replaced by the average connection c’(e) 
defined by 

CjW 
E(e)=C- 

i i’ 
where c&e) is the nu&:- br of paths of length j through the edge e. 

Calculating the average connections is done by a breadth-first search (see [l]) 
from every edge e, getting the nurnber of paths of length i on each side of e (for 
every i), and then ‘merging’ the information from both sides of e by convolution 
double in O(n log n) time (see Cl]). Therefore the algorithm in this case is of 
0(n2 log n) time. 

4.4. Problem 12. Given T and W, to find a labeling that minimizes 

SUMMAX( T) = c max(i, j). 
iCj 
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The problem of maximizing SUMMAX is still open. Similarly, our algorithm 
for solving PROBLEM 12 solves also the problem of maximizing the function 
SUMMIN( T), while the problem of minimizing SUMMIN( T) is still open. 

Comjecture. The problem of maximizing (minimizing) SUMMAX( T) 
SUMMIN( T)) is NP-hard. 

The algorithm to solve PROELEM 12 is based on the following theorem: 

Theorem. Given T and W as above, and assuming wi < wi+l for every i, k/e have: 
(1) In any labeling that minimizes SUMMAX the largest weight w,, labels a 

terminal edge. 
(2) For any terminal edge there exists an opltimal labeling in which w,, labels this 

edge. 
(3) minf {SUMMAXf( T)} = xi i 9 wi (which means that this optimr4 value is 

independent on the tree T). 

Note. The result holds also for the case 0 s w1 G l . l s wn, and the modification of 
the proof is left to the re:ader. 

Proof. We prove the theorem by induction on n. The theorem holds for n = 1,2 
and 3. Assume it holds for a tree with less than n edges. Let T be a tree with n 
edges. Assume f is a labeling that minimizes SUMMAX( and that w,, labels a 
non-terminal edge e, thus partitioning T into two subtrees Tl and1 ‘T; containing 
k and n + I- k vertices, respectively, for some 2 G k < n - I. Wlog we assume that 
w,,-1 labels an edge in T1. Appiying the inductive hypothesis to T.1 we know that 
there exists an optimal labeling for Tl in which a specified terminal edge is labeled 
with W” - 1. We choose this edge to be such that by removing it with its corresponding 
leaf we won’t disconnect T (see Fig. 4). Note lhat all the paths from vertices in 
Tl, containing wn, are not effected by this new labeling of Tl (since on them w,, is 
maximal), and, as for Tt, the value of SUMMAX is not changed by the inductive 
hypothesis. In the current labeling the contribution of w, and wn -1 to SUMMAX( T) 
is 

k(n+l-k)w,+(k.-l)W,-1. (1) 

By interchanging w~._~ and wn we get a labeling f’ in which their contribution is 

nw, +(k - l)(n + I-- k)w,+ (2) 

But subtracting (1) from (2) gives 

(2)-(l)=(k-l)(n-k)(w,,;-l--w,)<0 

because 1< k c n and w,,_l < wn, a contradiction. 



12 I/. P4, S. Zaks 

L I f -v-- 
k vertices n+ l-k vertices 

Fig. 4. 

We know that in an optimal labeling of T wn lab& a terminal edge. It is clear 
that the contribution of wn to SUMMAX is / 

1 

raw,. 
t 

I 
(3) 

It is allso clear that we can label any terminal edge jwith wn, and, after erasing it 
together with the corresponding leaf, we apply thtf inductive hypothesis to the 
remaining tree, getting optimal labeling with a value /Df 

I 

hence fGi T we get the optimal value of IyE1 iwi. I 
1 
1 

Following the above proof, it is clea: how to get art O(n) labeling algorithm that 
minimiaes SUMMA-X( 7’). , t 

4.5. As for the number of optimal labelings, it can be shown that, when all the 
weights are distinct, the number 1K of such labelings :i;atisfies 

2 “-‘sN<nl, 

when the bounds are achieved for the graphs Pn+p and .&,,. 

4.6. Problem 13. Given T and W, to find a labeling that maximizes 
SUMMAX( 7). 

We s’tated our conjecture (above) that this problem is N&hard. As a matter of 
fact, we don’t even know how to solve this problem in thz case when the tree T 
is a path (&+I). Note that the ‘natural’ approach of labeling the edge with maximal 
connection with the largest weight w, is not optimal; for example, consider the 
case when T = Pb and W = (1,2,3,&g}. 

4 7. We consider now the case when T is a path and W contains a bounded number 
of distinct weights. We present an exact description of the solution when W contains 
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only two ki,nds of weights, and give an optim.al labeling algorithm for the case \when 
W contains a bounded number of distinct weights. 

4.8. A path, 2 weights 

Were 7’ = Pn+l, and W contains k weights b and n - k weights a, a c b. The 
structure of the solution is characterized in the following theorem: 

Theorem. Let T and W be as above, and denote a labeling f as a squsnce 

a”Gba”‘b . . . &a’t-Iba”t (4) 

where xi 2 0 and C xi = n - k. If the labeling f is optininl, then 

I xi - xjl s 1 for every i and j. 

Proof. For a labeling function f as described in (4), let Nf(a) @Q(b)) denote the 
number of paths p(i, j) in which the largest label is a (6). It is clear that by minimizing 
Nf(a) over all possible labelings f we will also maximize SUMMAX over all 
possible labelings f, since a c b and 

It is clear that 

(5) 

Assume that f is an optimal labeling Lrnd that the theorem doesn’t hold. Wlog we 
may assume that 

xo>xl+l. (6) 

We define a labeling f’ as follows: 

‘. f . a”“-‘1ba”“‘bax2b . . , ba”t-‘ba”t, 

By (5) we have 

(7) 

Nf(a)==(T)+(x112)+* n l +(“‘l’). 

Using (5), (8) and (6) it can be shown that 

Nf (a)<Nf(a), 

hence SUMMAXr( T) > SUMMAXf (T), a contradiction. 

Using this theorem it is clear how one should ‘spread’ the a’s among the h’s in 
order to get a labeling that maximizes the function SU 
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4.9. A path, k weights 

Kere T = PI+, md W contains mi copiesof wi for i = 1,2., . . . , k, where ml + m2 + 
l *+mk =n and w$w~>* l l > wk 3 0. The following dynamic programming 
algorithm, proposed by Megiddo [9], solves the problem in time 0(n2’+‘). Let 
s := (§I, $2,. . . , sdandp=(pl,p2,-, pi,) be integral vectors where 0 s si s mi, 0 s 
pgSn for i-1,2,..., k. Consider the following problem: Given a path of length 
m = C si (denote its vertices by 0, 1, . . . , m), label the edges with si copies of wi 
(i=4,2,..., k), maximizing SUMMAX, where pi is the lowest occurrence of Wi 
(if sj = 0, then we assume pi = 0). (There may be no feasible solution.) Let 4(s, p) 
be #his maximal value (if not feasible let &, p) = 0). For a feasible solution (s, p) 
let @(s, p) denote the contribution of the vertex 0 to SUMMAX. This contribution, 

1 max(0, i), depends only on s and p (and not on the particular labeling), and 
can be computed Tn O(m) time. Now, 4(s, p) can, be computed recursively, as 
follows: Given a feasible (s, p), there is a unique t, 1~ t s k, such that st > 0 and 

PC = 3. Then 

46, pi = #I(s, P) 

Thuti, the function (b(s, p) is evaluated at no more than n2k points, and each 
evatuation does not require more than O(n) time, hence the algorithm runs in time 
CWk+’ ). This bound is a non-trivial one, since a complete enumeration requires 
O(V) time. 

5. Open problems 

The first two open problems are related to hOBLEM 5: 

Pr&lem A. Given a connected graph G with m edges and a set W of 0,l weights, 

WI = m, to determine whether there exists a, labeling with diameter ~2. 

This problem seems to be NP-complete. Kowever, :‘t is not clear hhat it can be 
reduced from the MAXIMUM TERMINAL SPANNING TREE problem; new ideas are 
needed. Furthermore, we conjecture that the following problem is also NP- 
complete: 

Problem B. Given a connected graph G with m edges and a set W of 0,l weights, 
WI= m, to determk whether there exists a labeling with diameter ~1. 

We have the following observations about this problem. Suppose the graph G 
is labeled with the given weights such that its diameter 5~ s 1. Xt is clear that 3~ = 0 
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iff G contains a spanning tree with all edges labeled 0, Thus the interesting case 
is when 9 = 1. In this case we may assume that the edges labeled with 0 generate 
a forest in G, since if they generate any cycle we can replace one O-edge with a 
l-edge without increasing the diameter (putting this O-edge in another arbitrary 
place not closing a cycle of O’S). Let Ti = (Vi, Ei), i = 1,2, . . . , j be the trees in this 
forest. A graph G” = (V’, E’) is constructed from G by contracting (see 131) all the 
vertices of each tree Ti, i = 1,2 , . . . , j, into one vertex ui. It can be shown that G 
is lalbeled with a dismeter 9~ = 1 iff G’ is a complete graph. This observation leads 
us to the above conjecture. 

It can also be observed that this conjecture is equivalent to the following 
contractability problem: 

Problem C. Given a graph G and an integer t >C, to determine whether one can 
obtain the complete graph Kt from G by a series of edge contractions, i.e., a series 
in which each step replaces two adjacent vertices II and v by a single vertex w 
adjacent to exactly those vertices that were previously adjacent to at least one of 
u and v. 

The next two problems are related to the conjecture of Section 4 that the problem 
of maximizing SUMMAX( T) is NP-hard. 

Problem D (see 4.4 and 4.6). Given a tree T = P,,+ 1 and W, to find a labeling 
that maximizes SUMMAX( T). 

Problem E. Given a tree T and a set W of a, b weights, to find a labeling which 
maximizes SUMMAX (this is an interesting special case of the open problem 
of maximizing SUMMAX for general T and ‘IW). 
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