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Abstract. Given a tree T with n edges and a set W of n weights, we deal with labelings of the
edges of T with weights from W, optimizing certain objective functions. For somz of these
functions the optimization problem is shown to be NP-complete (e.g., finding a labzling with
minimal diameter), and for others we find polynomial-time algorithms (e.g., finding a labeling
with minimal average distance).

1. Introduction

1.1. Definitions

Let T{V,E) be a tree with vertices V={1,2,...,n+1} and edges E =
{e1, ea, ..., e,}. A tree is considered to be unrooted, urnless otherwise stated. A
vertex of degree one is 2 leaf, and an edge incident with a leaf is a terminul edge.
P, denotes a path with n vertices. W ={wy, w,, ..., w,] is a set of weights such
that 0 S Woin = W1 S W2 <" * * < W, = Wnax. A labeling of the edges of T with weights
from W is a bijection f: E - W. In this paper we consider labelings that optimize
certain objective functions.

Let p(i, j) denote the (unique) path connecting vertices i and j ir T. Given a
labeling f of T, the distance d;(i, j) between i and j is

de(i,j)= X fle).

eep(i.j)

The diameter Ds(T) of the tree T, labeled with f, is
24(T) = max {dy(i, j)}.

* This work was done while bcih authors were at the Depariment of Computer Sciem:g, Univ‘?rsity
of Iilinois at Urbana-Champaign, Urbana, IL 61801, and was suppoited in part by the National Science
Foundation under grant NS¥ MCS 77-22830.
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Note. We omit the references to f and T whenever possible; i.e., we use the
notations d{i, j) and @ instead of d,(i, j) and 2¢(T), respectively, and similarly for
the functions defined in the sequel.

A center of a labeled tree is a vertex i for which max;.;{d(i, j)} is minimal, and
this value is called the radius R of the tree; i.e.,

R = miin{m’ax {d(, Ni.

The terms diameter, radius and center are similarly defined for labeled undirected
graphs. In a rooted tree the center is located at the root.
The maximal weight and minimal weight on p{i, j) are

max(i, j)=wlgﬂtj){f(e)} and min(, j)=,,2,’,i({‘,~,{f(e)}’

respectively.
The number of edges in p(i, j) is |p(i, j)|, and
.o dG, )
aveL J) =1
D=1, )

is the average weight on p(i, j).

1.2. The objective functions

The quantities which we optimize, for a given tree T, over all possible labelings
f, are the following:

(1) 2,

(2) &,

(3) SUMDIS(T) =}, ;d(, j),

(4) SUMMAX(7)=%,;max(i, j),

(5) SUMMIN(T) =}, min(, ), and

(6) SUMAVR(T)=%,_;avr(i, j).
The functions (3)-(6) are average measurements, since the summations are over
all pairs of vertices.

1.3. Motivation

This work is applicable in the design of communication networks. Given com-
munication lines of different properties, such as communication cost, capacity,
vulnerability and reliability, we want to assign these communication lines to the
direct connections (‘edges’) of a given communication network (of a tree structure),
suzch that certain objective cost functions will be optimized.

For example, the function SUMDIS is measuring the average communication
cost of the network (see [4] and [8]). The diameter is measuring the maximal
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communication cost in the network, and the radius is measuring the maxirnal
communication cost from a directory optimally located in the network. Let cie)
and v(e) be the capacity and vulnerability of a communication line assigned to the
edge e, respectively. Define the capacity and vulnerability between the vertices /
and j as

c(i,j)= min_{c(e)} and v(i,j)= max {v(e)},
eep(i,f) eepli)

respectively. Then the functions SUMMIN and SUMMAX measure the average
capacity and vulnerability of the netwuik, respectively.

1.4. In Section 2 we present several NP-complete problems, concerning optimizing
the radius and the diameter of a tree and of a binary weighted (0, 1 weights) general
graph. Polynomial-time algorithms for special cases of minimizing the radius of a
tree are shown in Section 3. In Section 4 we present polynomiai-time algorithms

for optimizing average measurement functions of the tree, such as SUMDIS and
SUMMAX. Open problems are found in Section 5.

2. Radius and diameter: NP-complete results
2.1. In this section the following problems are shown to be NP-complete (see [6]):

Problem 1. Given a tree T with n edges, a set W of n non-negative weights,
and an integer k >0, to deterrnine whether there exists a labeling f with diameter
<k.

Problem 2. Like PROBLEM 1, for radius <k.

Note. (1) This result holds also for rooted trees.
(2) PrOBLEMS 1 and 2 remain NP-complete when the weights are integral and
bounded by a polynomial in n.

Problem 3. Like PROBLEM 1, for radius =k.

Note. (1) Maximizing the diameter of a tree is trivial.
(2) PrROBLEMS 1, 2 and 3 are NF-complete also for the corresponding vertex
labeling problems, e.g.,

Problem 1'. Given a tree T with n+1 vertices, a set W of n+1 non-negative
weights and an integer k >0, to determine whether there exists a labeling of the
vertices of T with the weights of W such that the sum of the weights of the vertices
along any path in the tree is not greater than k.
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Problem 4. Given a connected graph G with m edges and a set of 0, 1 weights
W, |[W| = m, to determine whether there exists a labeling with radius <1.

Problem S. Given a connecied graph G with n+1 vertices and a set of 0,1
weights W, |W|=n, to determine whether G contains a spanning tree which can
be labeled such that its diameter <2.

2.2. The reductions are from the PARTITION problem and the MAxXiMuM
TERMINAL SPANNING TREE problem, both known to be NP-complete (see [6]
and [2]):

Partitien. Given positive integers a;,i=1,2,...,n, to determine whether there
exists aset I < {1,2,...,n}such that

Ya=Y a.
iel 744

Maximuom Terminal Spanning Tree. Given a graph G and an integer k>0, to

e L 5ieY T ev Uy R0

determine whether G has a spanniag tree with at least k terminals (=leaves).

2.3. Prcof for PROBLEM 1

We show that PARTITION is reduced to PROBLEM 1. Given g;,i=1,2,...,n,
(an instance of PARTITION), we define the following instance of PROBLEM 1:

®A
T /B
././ \ n edges / s
c I
W={a1,a2,...,an,0,0,...,O,Za,-}.
N —

n0’s

k=

ol
-t

a;.

We prove that there exists a solution to the PARTITION problem iff there exists a
labeling of T with diameter <k%.

Suppose there exists a solution to the PARTITION problem, namely Y., ;ai =Y, ., a:
for some I ={1,2,..., n}. The following labeling has a diameter k: label AB with

Y a;, spread the a;’s for ie I and i€ I on BC and BD, respectively, and label the
rest of the edges with 0’s.
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Suppose there exists a labeling with diameter <k. One can find such a iabeling
in which } a; labels the edge AB (if in the given labeling AB is labeled with a,,
for some 1, and Y a; labels another edge e, then by interchanging ) a; and 4, the
diameter is not increased). This means that there exists a labeling such that the a;’s

on BC and on BD sum up to 3 a; each, hence we have a solution to the given
PARTITION instance.

2.4. Proof for PROBLEM 2

We prove that PARTITION is reduced to PROBLEM 2. Given a; (as above), we
define the following instance of PROBLEM 2:

T=Ps.1, W={aj, as...,a,0,0,...,0} and k=3Ya.
N e
n0's

The rest follows immediately.

Note. The same reduction holds in the case when this path is rooted in its center,
which proves that PRoeLEM 2 is NP-complete also for rooted trees.

Note. As was pointed out by Johnsen [S], PROBLEM 1 and PROBLEM 2 remain
NP-complete (‘in the strong sense’ [2]) when the weights are integral and bounded
by a polynomial in n. This is shown by similar reductions from the 3-PARTITION
problem (see [2]) of 3m integers to corresponding instances of PROBLEM 1 and
PROBLEM 2, where the labeled tree consists of m paths of threc edges each, all
emanating from a common vertex (which is the root in the rooted tree case of
PROBLEM 2).

2.5. Proof for PROBLEM 3

We prove that PARTITION is reduced to PROBLEM 3. Given a; (at abcve), we
define the following instance of PROBLEM 3:

T=Pn+2’

W ={ai, as,...,a,x} where x =max {a;}
t
and
k =x+%2a,~.

If there exists a solution to PARTITION, then the labeling shown in Fig. 1 has a
radius # = k.

@ @-.- @ & @—0 - .+ O——O—B
a.'s for el (x a’s for i¢l

Fig. 1.
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If there exists a labeling with radius # =x +3 Y a;, then let D be a center and
DB a radius (see Fig. 2}. Then

d(D,B)=x+3Y a;, and hence d(A,D)<3iY a.

(S

A Dy C B

Fig. 2.
Also d(D, B)<d(A, C), otherwise D is not a center. Therefore
x+3Ya,<d(D,B)=d(A,C)<y+d(A,D)<y+3¥ a,
hence x <y. But y <x, hence y =x, and
d(A,D)=d(B,C)=1% a,

which soives the PARTITION probiem.

2.6. Note

PROBLEM 1, PROBLEM 2 and PROBLEM 3 are also NP-complete for vertex
labeling. The reductions are from the corresponding edge labeling problems. Adding
a weight 0 to the given weights, a solution for the vertex labeling problem induces
a solution for the corresponding edge labeling problem. This is done by regarding
the vertex labeled 0 as a root of the tree and using a label of any other vertex to
label the edge directed to this vertex.

2.7. Proof for PROBLEM 4

We prove that MAXIMUM TERMINAL SPANNING TREE is reduced to PROBLEM
4. Given a graph G with n+1 vertices and k>0 (an instance of MAXIMUM
TERMINAL SPANNING TREE), we define the following instance of PROBLEM 4: G
is the same given graph and W contains n —k 0’s and all the rest 1’'s. We prove
that G has a spanning tree with at least k leaves iff G has a labeling with radius # < 1.

Suppese G has a spanning tree with at least k leaves. This yields a labeling of
G with radius & < 1, by labeling the internal edges {of the tree) with 0’s, and thus
every internal vertex (of the tree) is a center for the graph G with radius # < 1.

Suppose there exists a labeling of G with radius # < 1. Let A be a center of the
labeled graph, and apply a shortest-path algorithm from A to get a ‘shortest-path
spanning tree’ with radius # < 1. The tree is labeled with at least k 1’s. In this tree
there exists at most one edge labeled 1 on cach path from A to any leaf, since the
radius is <1. Therefore the number of leaves in the spanning tree is at least as the
number of 1’s in the tree, i.e. =k.

2.8. Proof for PROBLEM 5

The reduction is similar to that of PROBLEM 4.
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3. Radius: poiynomiai resuits

3.1. In the previous section we proved that minimizing the diameter or the radius
in a tree are NP-complete problems. Here we present polynomial-time algorithms
for certain instances of these problems.

3.2. Problem 6. Given a tree T and a set of 0,1 weights W, to find a labeling
with minimal radius.

The foliowing algorithm solves this problem in ${n) running-time:
Algorithm A
1. while (number of leaves in T) < (number of 1's in W)
do begin
label all the terminal edges with 1;
delete the terminal edges from T';
delete the used 1’s from W,
end;
2. Put all the remaining 1’s on terminal edges;
label all other edges with 0’s.

Proof. Left to the reader.
Note. Algorithm A is applicable also for rooted trees.

3.3. Problem 7. Like PROBLEM 6, for a set of a, b weights, a <b.

The following algorithm solves this problem in O(n log n) running-time in the
case when T is a rooted tree. An O(r’logn) algorithm for unrooted trees is
obtained by applying this algorithm from every vertex in the tree.

Algorithm B
1. Label all edges of T with a’s;
insert all terminal edges into a ‘candidate list’;
2. while W contains at least one b
do begin
find an edge (x, y) in the ‘candidate list’, which lies on a path of minimal
length from the root to a leaf;

label (x, y) with b;
delete this b from W,
delete (x, y) from the ‘candidate list’;
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if x has no sons labeled with a
then begin
find the unique w such that (w, x)e T}
insert (w, x) into the ‘candidate list’;
end;
end;

Proof. Let T be the tree labeled by the algorithm while T is an optimally labeled
tree minimizing the radius and satisfying the condition that if a (directed) edge
(x, ) is labeled with &, then all edges in the subtree T, rooted at y are labeled
with b (all the b-weigiits are pushed towards the leaves). Note that T satisfies this
condition by the algorithm.

First we show that there exists such an optimal labeled tree T'. Let T" be an
optimal labeled tree not satisfying this property. Denote by 4, 4’ and d" distances
in T, T' and T", respectively (note that all these three trees differ only by their
labelings). There exists an edge (x, y) labeled b in T" while some edge (w, z) in T,
is labeled with a. Exchanging the weights of the edges (x, y) and (w, z) yields a
labeling where d"(r, u) is decreased by £ — a for every u € T, — T, and is not changed
for any other vertex in the tree. Repeating this process yields a labeled tree T,
satisfying the desired property, without increasing the radius, and therefore T’ is
also optimal.

Assume row that the tree T labeled by the algorithm is not optimal, i.e., there
exists a vertex x € T such that d(r, x) >R, where R is the radius of T'. Then the
path from r to x contains an edge labeied with b in T and labeled with a in T".
Let (y, z) be the first such edge from the root r. On the other hand there exists an
edge (u, v) labeled with b in T’ and labeled with a in T. By the property of T' all
the edges in the subtree T, are labeled with b. Let w be a vertex in T, with maximal
distance d'(r, w). d'(r, w) < R since AR is the radius of T’ (see Fig. 3).

X J
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Note that the edge (u, v) is labeled with a in T and with b 'an T', and thus
dir,w)+(b-a)<d'(r, w)<R.
Hence
dir,w)<R—-(b—a).

By our assumption d(r, x) > R. Thus before the algorithm lzbeled the edge (y, z)
with b we had

dir,x)+(b—a)>R or d(rx)>R—-(b—a)
and therefore
d(r, wy<d(r, x).

Hence the algorithm should have labeled the edge (u, v) with b before labeling the
edge (y, z), a contradiction.
Therefore the labeling of T is optimal.

3.4. Problem 8. Like PROBLEM 7, for a maximal radius.

In a rooted tree this is done by finding a longest path from the root, labeiing its
edges with as much b’s as possible, and labeling the rest of the edges arbitrarily.
In an unrooted tree this is done by finding a longest path, labeling it with [x/2]
b’s on one end and [x/2] b’s on the other (where x is the number of b’s), and
labeling the rest of the edges arbitrarily. Both algorithms ar« of O(n) running-time.

3.5. Problem 9. Given a tree T and a set of 0, 1 weights W, to find a labeling
with minimal diameter.

This is done in O(n) running-time algorithm, identical to that of PROBLEM 6.

4. Average measurements: polynomial results

4.1. In this section we present polynomial-time algorithms for optimization prob-
lems concerning the functions SUMDIS, SUMAVR, SUMMIN and SUMMAX.

4.2. Problem 10. Given T and W, to find a labeling that maximizes or minimizes

SUMDIS(T) = . d(i, j).

i<j

Following Hu [4] we observe that instead of summing the d(i, j)’s we can count
the number of occurrences of each edge in the summation. Suppose that an edge
e partitions the tree T into two subtrees with k and n +1 -k vertices, respectively.
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Then e is counted k(n+1—k) times in SUMDIS(T). We call this value c(e)=
k(n +1- k) the connection of e. Now

SUMDIS(T) = g cle)- f(e)
and the next theorem follows:

Taeorem. Given the connections of the edges of the tree T, c(e1) <c(ex) <" - - <c(en),
the labeling of e; with w;(Wn.1-:), for i=1,2,...,n, maximizes (minimizes) the
function SUMDIS(T).

The optimal labeling is unique up to perrauting edges with equal connections.
Assumirg that all weights are distinct, the number N of optimal labelings satisfies

212l < N <p!,

The bounds are achieved for the graphs P, and K} ..

The ¢onnections can be calculated in O(n) time by regarding T as rooted and
traversing it in end-order (see [7]). Therefore, and because of the sorting step
involved, the algorithm for optimal labeling (for either maximizing or minimizing
SUMDIS(T)) has O(n log n) running-time.

4.3. Problem 11. Given T and W, to find a labeling that maximizes or minimizes

SUMAVR(T)= £ Izg’ ; ;I .

1he solution is essentially similar to the solution of PROBLEM 10. The only

change is that the connections c(e) are replaced by the average connection é(e)
defined by

E(e)=);&'§.e—),

where c;(e) is the nureber of paths of length j through the edge e.

Calculating the average connections is done by a breadth-first search (see [1])
from every edge e, getting the number of paths of length i on each side of ¢ (for
every i), and then ‘merging’ the information from both sides of ¢ by convolution

double in O(n log n) time (see [1]}). Therefore the algorithm in this case is of
O(n? log ) time.

4.4. Problem 12. Given T and W, to find a labeling that minimizes

SUMMAX(T) = ¥, max(i, j).

i<j
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The problem of maximizing SUMMAX(T) is still open. Similarly, our algorithm

for solving PROBLEM 12 soives aiso the probiem of maximizing the function
SUMMIN(T), while the probiem of minimizing SUMMIN(T) is still open.

Conjecture. The problem of maximizing (minimizing) SUMMAX(T)

SUMMIN(T)) is NP-hard.
The algorithm to solve PROBLEM 12 is based on the following theorem:

Theorem. Given T and W as above, and assuming w; <w;., for every i, ve have:

(1) In any labeling that minimizes SUMMAXI(T) the largest weight w, labels a
terminal edge.

(2) For any terminal edge there exists an optimal labeling in which w, labels this
edge.

(3) ming {SUMMAXK(T)}=Y,i - w; (which means that this optim:l value is
independent on the tree T).

Note. The result holds also for the case 0= w;<:: < w,, and the modification of
the proof is left to the reader.

Proof. We prove the theorem by induction on n. The theorem holds for n =1, 2
and 3. Assume it holds for a tree with less than n edges. Let T be a tree with n
edges. Assume f is a labeling that minimizes SUMMAX(T), and that w, labels a
non-terminal edge e, thus partitioning T into two subtrees T; and 7T, containing
k and n +1 —k vertices, respectively, for some 2<k ==n —1. Wlog we assume that
w,—1 labels an edge in 7T;. Appiying the inductive hypothesis to T, we know that
there exists an optimal labeling for T, in which a specified terminal edge is labeled
with w,_1. We choose this edge to be such that by removing it with its corresponding
lcaf we won’t disconnect T (see Fig. 4). Note that all the paths from vertices in
T, containing w,, are not effected by this new labeling of T} (since on them w, is
maximal), and, as for T;, the value of SUMMAX is not changed by the inductive
hypothesis. In the current labeling ilie contribution of w, and w,_; to SUMMAX(T)
is

kin+1-k)w,+(k-1)w, 1. (1)
By interchanging w,-; and w, we get a labeling f' in which their contribution is

nw, +(k —=1)(n+1—~k)w,_1. (2)
But subtracting (1) from (2) gives

2)— (1) =k —1(n—k)(w,.-1—wa) <0

because 1 <k <n and w, - <w,, a contradiction.
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N
—1

[/ ‘\l
T
v ) I v V)
k vertices n+1-k vertices
Fig. 4.

We know that in an optimal labeling of T w,, labels a terminal edge. It is clear
that the contribution of w, to SUMMAX(T) is

nw,,. 3)

It is also clear that we can label any terminal edge iwith w,, and, after erasing it
together with the corresponding leaf, we apply th¢ inductive hypothesis to the
remaining tree, getting optimal labeling with a value pf

n-1
Y iw;
i=1

hence fc: T we get the optima! value of ¥;_, iw,.

Following the above proof, it is clea: how to get ari O(n) labeling algorithm that
minimizes SUMMAX(T').

4.5. As for the number of optimai labelings, it can be shown that, when all the
weights are distinct, the number N of such labelings satisfies

n-1
2" "sN=s~nl,

when the bounds are achieved for the graphs P,.; and X ,..

4.6. Problem 13. Given T and W, to find a labeling that maximizes
SUMMAX(T).

We stated our conjecture (above) that this problem is NP-hard. As a matter of
fact, we don’t even know how to solve this problem in thc case when the tree T
is a path (P,.,). Note that the ‘natural’ approach of labeling the edge with maximal
connection with the largest weight w, is not optimal; for example, consider the
case when T =Pz and W={1,2,3,8,9}.

4.7. We consider now the case when T is a path and W contains a bounded number
of distinct weights. We present an exact description of the solution when W contains
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only two kinds of weights, and give an optimal labeling algorithm for the case when
W contains a bounded number of distinct weights.
4.8. A path, 2 weights
Here T =P,+1, and W contains k weights b and n—k weights a,a <b. The
structure of the solution is characterized in the following theorem:
Theorein. Let T and W be as above, and denote a labeling f as a sequence
a*ba*b - - - ba™-'ba™ (4)
where x; =0 and X x; = n — k. If the labeling f is optin:al, then
|x; =xl<1 for everv i and j.
Proof. For a labeling function f as described in (4), let Ny(a) (Ny(b)) denote the
number of paths p(i, ) in which the largest labei is a (b). It is clear that by minimizing

Ni(a) over all possible labelings f we: will also maximize SUMMAX(T) over all
possible labelings f, since a <b and

N,(a)+N,(b)=(n;1).

It is clear that

Nf(a)=(x0+ 1) +(x1 + 1) +

2 2 +(x';1)' (5)

Assume that f is an optimal labeling and that the theorem doesn’t hold. Wlog we
may assume that
xo>x1+1. (6)

We define a labeling ' as follows:
f': a* 'ba**'ba*b - - - ba*-'ba™. (7

By (5) we have
_ Xo X1+2) (X,+1) 8
N,.(a)-(2)+( S (00 (8)
Using (5), (8) and (6) it can be shown that
Ny (a) < Ng(a),
hence SUMMAX(T) >SUMMAX,(T), a contradiction.

Using this theorem it is clear how one should ‘spread’ the a’s among the b’s in
order to get a labeling that maximizes the function SUMMAX.
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4.9. A path, k weights

Here T = P,.1 1nd W contains m; copiesof w;fori=1,2,..., &, where m; + my+
ceo+me=n and wi>wy>-->w,=0. The following dynamic programming
algorithm, proposed by Megiddo [9], solves the problem in time O(n***"). Let
§ = (51, 52, ..., Sx) and p = (p1, P2, - - . » Px) be integral vectors where 9 <s,<m;, 0<
pisnfori=1,2,...,k. Consider the following problem: Given a path of length
m =Y s; (denote its vertices by 0, 1,..., m), label the edges with s; copies of w;
(i=1,2,..., k), maximizing SUMMAX, where p; is the lowest occurrence of w;
(if 5; =0, then we assume p; = 0). (There may be no feasible solution.) Let ¢(s, p)
be this maximal value (if not feasible let ¢ (s, p) =0). For a feasible solution (s, p)
let (s, p) denote the contribution of the vertex 0 to SUMMAX. This contribution,
Z;',',, max(0, j), depends only on s and p (and not on the particular labeling), and
can be computed in O(m) time. Now, ¢(s, p) can be computed recursively, as
follows: Given a feasible (s, p), there is a unique ¢, 1 <<k, such that 5,>0 and
p.= 1. Then

&(s,p)=d(s, p)

+ . L:'ﬁa}‘l ¢(sl) ooy Si—15 80— 19 St+1s 009 Sk Ph s ,Pr—l, i, P:+1, oo ,Pk)~
Thus, the function @(s, p) is evaluated at no more than n”* points, and each
evaluation does not require more than O(n) time, hence the algorithm runs in time

O(n***'). This bound is a non-trivial one, since a complete enumeration requires
O(k") time.

5. Open problems

The first two open problems are related to PROBLEM 5:

Problem A. Given a connected graph G with m edges and a set W of 0, 1 weights,
|W| = m, to determine whether there exists a labeling with diameter <2.

This problem seems to be NP-complete. However, it is not clear ihat it can be
reduced from the MAXIMUM TERMINAL SPANNING TREE problem; new ideas are

needed. Furthermore, we conjecture that the following problem is also NP-
complete:

Problem B. Given a connected graph G with m edges and a set W of 0, 1 weights,
|W|=m, to determine whether there exists a labeling with diameter <1.

We have the following observations about this problem. Suppose the graph G
is labefed with the given weights such that its diameter & < 1. It is clear that 2 =0
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iff ( contains a spanning tree with ali edges iabeled 0. Thus the interesting case
is when @ = 1. In this case we may assume that the edges labeled with 0 generate
a forest in G, since if they generate any cycle we can replace one 0-edge with a
1-edge without increasing tiie diameter (putting this 0-edge in another arbitrary
place not closing a cycle of 0's). Let T; =(V, E;), i=1,2,...,j be the trees in this
forest. A graph G' = (V’, E') is constructed from G by contracting (see [3]) all the
vertices of each tree T}, i=1,2,...,j, into one vertex u;. It can be shown that G
is labeled with a diameter @ =1 iff G' is a complete graph. This observation leads
us to the above conjecture.

It can also be observed that this conjecture is equivalent to the following
contractability problem:

Problem C. Given a graph G and an integer ¢ >, to determine whether one can
obtain the complete graph K, from G by a series of edge contractions, i.e., a series
in which each step replaces two adjacent vertices u and v by a single vertex w
adjacent to exactly those vertices that were previcusly adjacent to at least one of
u and v.

The next two problems are related to the conjecture of Section 4 that the problem
of maximizing SUMMAX(T) is NP-hard.

Problem D (see 4.4 and 4.6). Given a tree T =P,.; and W, to find a labeling
that maximizes SUMMAX(T).

Problem E. Given a tree T and a set W of a, b weights, to find a labeling which
maximizes SUMMAX(T') (this is an interesting special case of the open problem
of maximizing SUMMAX(T) for general T and W).
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