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Abstract

In this article we study the limit, as the Rossby number ¢ goes to zero, of the primitive
equations of the atmosphere and the ocean. From the mathematical viewpoint we study the
averaging of a penalization problem displaying oscillations generated by an antisymmetric
operator and by the presence of two time scales.
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1. Introduction

The study of the limit, as the Rossby number ¢ goes to zero, of the equations of the
atmosphere and the ocean is a major physical and computational problem to which
much effort has been devoted. In a more mathematical context, this problem is
related to the averaging of oscillations using renormalization and other averaging
procedures.
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In the mathematical literature, an important contribution is due to Schochet [18]
who tackled similar problems by studying an asymptotics in the fast time variable;
such problems have also been studied in the general framework of wave equations by
Joly et al. [9], Grenier [8], and Gallagher [7]. For the equations of the atmosphere
and the ocean, mathematical work includes the following: Embid and Majda [6],
Babin et al. [1-3] or Warn et al. [23]. Many more articles on the subject are available
in the physics and mathematical literature.

In the mathematical physics literature, a number of averaging problems and
procedures have been studied or proposed; see e.g., the article [10] by van Kampen on
the elimination of fast variables, or the averaging procedure by Bogolyubov and
Mitropolsky [4]. Our work follows more closely the approach, based on renormalization
theory, of Chen et al. [5] revisited by Ziane [25]. Here we also extend to infinite
dimension part of the work by Temam and Wirosoetisno [22] valid in finite dimension.

As we said, the renormalization method that we use here was introduced in [5,25].
It was then applied to different types of partial differential equations by Moise,
Temam, and Ziane (see [14,15]); the method was also applied to ordinary differential
equations (see e.g., [13,21,25]).

This article is organized as follows: In the first part of Section 2 (Section 2.1), we
present the PEs and recall a few facts on their mathematical setting, some well-known,
and some borrowed from a companion paper [17]. See [16,24] for physics details
regarding the primitive equations; those considered here are the PEs of the ocean; some
slight changes are necessary for the atmosphere. In the second part of Section 2
(Section 2.2), we recall a few facts about renormalization following [5,15,21,25]. In
Section 3 we study the properties of the renormalized system, starting with the existence
of weak solutions and ending the section with the existence of very regular solutions. In
Section 4 we show that we can approximate the exact solution of the primitive equations
by an asymptotic solution which exists for all times and we estimate the difference
between the exact and asymptotic solutions. We end the paper with three appendices: in
Appendix A we give the details of the derivation of the renormalized system, in
Appendix B.1 we give a result of number theory needed in Section 4 to bound some
small denominators necessary for the error estimates, and in Appendix B.2 we present
an alternate method for bounding the small denominators.

2. The initial and renormalized problems

In Section 2.1 we recall the primitive equations in a form suitable for our study. In
Section 2.2 we recall a few facts about renormalization.

2.1. The PEs in space dimension two
We work in the two-dimensional space and consider the domain

M = (O,Ll) X (—L3/2,L3/2),
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Ox being the west—east direction, and 0z being the vertical direction. All the
quantities depend only on x, z and ¢. We consider the PEs written in the non-
dimensional form (2.1) below; a description of the derivation of these equations and
a study concerning the existence and regularity of their solutions is given in [17]:

ou ou ou 1 10p
E+ua+W§*EU+Ea—V1}AH+SH, (213)

%+u%+‘v%+éu:vvmj+&, (2.1b)
%:_Np, (2.1¢)
%+%:0, (2.1d)

%-yu%-kw%—gw:vap—ﬁ—Sp. (2.1e)

Here u, v, w are the non-dimensional components of the three-dimensional velocity
vector, p is the pressure, p is the density and ¢ is the Rossby number. In the more
physical situation, the source terms S,, Sy, and S, usually vanish; they are
introduced here for mathematical generality. Here v, and v, are the non-dimensional
eddy viscosity coefficients, N is the Burgers number, and we set 4 = §?/0x* +
0%/0z. In the physical problem, the total pressure is

Prall = Pref + 5+ P,

and the total density is

Pratl = Pret + 0+ 9.

Here pyr is a hydrostatic pressure corresponding to the reference value of the density
Prer> P 1 the density stratification profile which is linear in z and p is the pressure in
hydrostatic equilibrium with it; p’ and p’ are perturbations from these states. In (2.1)
we do not work with the total pressure and the total density but with the
perturbations p’ and p’ where the primes were dropped and p’ has been replaced by
p'/N. See [17] for more details regarding the derivation of this system.

We also assume that all the unknown functions are .#-periodic. The prognostic
variables of this system are u, v, p and the diagnostic variables are p, w; as we will see
below, p and w can, at each instant of time, be (essentially) determined in terms of
the prognostic variables.
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We recall that an .#-periodic function

_ 2mi(kyx/Ly+k3z/L
U= Z Uy, k)€ ni(kix/Li+kyz/Ls)
<k17k3)Ezz

isin H” (), m>0, if and only if

per

Y (U kPl < o0,

keZ?

where we denoted by k the pair (k;,k3). We denote by Hg’er(%) the functions from
H{,’ér(./% ) with average zero on .#. In order to simplify the writing we will also set
ki =2nk;/L;. We easily notice that if (u,v,p,w,p) is a solution of (2.1) for S =
(Su, Sy, S,), then (7,7, p, W, p) is also a solution of (2.1) for S.. S, S,, where:

(x,z,t) =u(x,—z,1), p(x,z,t) =p(x,—z1),

(x,z, 1) =v(x,—z,1), Su(x,z,1) = Su(x,—z,1),

W(X,Z, t) = —W(X, -z l)a SU(X7Z, l) = SU(X, ) l)7

p(x,z,t) = —p(x,—z,1), S,(x,z,1) = =S,(x,—z,1).
Hence, assuming that S, and S, are even in z, and that S, is odd in z,

Su(x,z,t) = Sy(x, —z,1),

Sp(x,z, Z) = _Sp(x7 ) Z)a

it is natural to look for a solution where u, v and p are even in z and p, w
odd in z,

M(X,Z7 t) = u(x7 -z l)a W(X, Z, l) = —W(X, -z t)?
U()C,Z, t) :U(xa _27[)7 p(X,Z,l) :p(X, —Z, t)a
p(x,z,t) = —p(x,—z,1).

For more details regarding the motivation of this choice (symmetry and periodicity)
we refer the reader to [17].
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In accordance with these requirements of symmetry and periodicity, we introduce
the following function spaces:

V = {(u,v,p)e(H (M) ;u,v even in z,p odd in z,uy, ) =0, Vki€Z},

per

H = the closure of V in (L*(.4))*,

V5 = the closure of ¥V (H2 (.4)) in (H>,.(4))’.

per per

The condition u, o) = 0, Vki, expresses condition (2.3) appearing below.
We can express the diagnostic variables w and p in terms of the prognostic
variables u, v, and p. For each U = (u,v,p)e V we can determine uniquely

w=w(U)=— /L uy(x,2' 1) d7. (2.2)
0

Note that w =0 at z =0 and L3/2 by the requirements of w (periodicity and anti-
symmetry); see more details in [17]. By (2.2), the fact that w = 0 at z = L3/2 gives the

constraint on u

L3/2

/ uydz =0. (2.3)
—L3/2

As for the pressure, it can be determined uniquely in terms of p up to ps, writing

p(x,z,t) = ps(x, 1) — /L p(x,z, 1) dZ.
0

For U, UeV, we set
(U, 0)) = ((u, ) + ((v,8)) + (0, 2)),  [1U|| = (U, U)"?, (2.4)

where we have written d.# for dx dz, and

7 09 0p 0¢ 9
= ——+—— | d. 2.5
(4.9) /(ax L 23
By the Poincaré inequality,
Ul <al|Ull, YUV, (2.6)
so that || - || is a Hilbert norm on V.

The space H is endowed with the usual scalar product of (L2(.))’.
Variational formulation of the problem: We introduce the following forms:

a(U, U) = vo((u, 1)) +vo((0,0)) + v, (0, ),

e(U,U):/ (—vd+ud)d# +N | pwdtl — N | wpdi,
M M M
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~ ou” ou’ oot ov*
# _ . o
b(U, U™, U) /J/ <u—8x +w(U) s )ud(/% + /// (u—ax + W(U)—é)z )Udeﬂ

op* op™\ .

The variational form of the problem is obtained by multiplying (2.1a), (2.1b),
(2.1e), by u, v and p, respectively, integrating over .# and adding the resulting
equations. After some easy calculations we arrive at this problem:

Given 74 >0 arbitrary, Upe H and S = (S,, S, S,) € L*(0,14; H), we look for a
function U from (0,74 ) into V such that

%(u O)y +a(U,U)+b(U, U, U) + %e(U, U)=(S, 0y, YUeV (2.7)
and
U(0) = 0. (2.8)
We also define the linear operators

A: V-V, (AU, Uypy=a(U,U), YU, UeV, (2.9)

L:V-V', (LU, Uypy=eUU), YU UeV, (2.10)
and the bilinear form

B:V x VooV, (BUU), Uy, =bU,UU"), YU U eV, Uehs,
(2.11)

where V' denotes the dual space of V; it is shown in [17] that b is trilinear continuous
onV xVyx Vand V x V x V, so that B is bilinear continuous from V x ¥V, into
V' and from V x V into V5.
Then problem (2.7) with initial condition (2.8) is equivalent to the abstract
evolution equation:
dUu

1
—r tAUTBUU)+-LU=S, in V),

U(0) = Uy. (2.12)

Regarding the existence and uniqueness of solutions of (2.7) we recall from [17] the
following result:

Theorem 2.1. Given Uye H and Se L™ (R, ; H), there exists at least one solution U of
Egq. (2.7) with initial condition (2.8) such that

UeL” (R ;H)NL*(0,t%; V), for all tyx >0. (2.13)
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If UyeV and Se L* (Ry; H), there exists a unique solution U of (2.7)—(2.8) such that
UeL”(Ry; V)N L0, 15 (Hap(M))),  Vig>0.

Moreover, for all meN, m=2 if er(l-']g“er(,ﬂ)me and SeL*(Ry;

(H™ (M) A V), then Ue L™ (Ry; (H™ () ALA0, 1 g s (HS())Y), Vig >0.

per per per

2.2. Asymptotics and renormalization group method

The aim of this article is to present an application of the renormalization group
method (RG) to the 2D primitive equations described above. The RG method gives
us an algorithm for finding approximate (averaged) solutions for a general equation
of the form:

du 1 P
E“FELU—J‘”(U),
U(0) = Uy, (2.14)

where £>0 is a small parameter and L is an antisymmetric operator, so that the
solutions of (2.14) display large oscillations for ¢ small. We assume that L is a
diagonalizable, antisymmetric linear operator (not necessarily bounded) and % is a
non-linear operator. Two natural time scales (at least) are present in (2.14), the slow
time ¢, and the fast time s = ¢/¢. To implement the RG method, we imagine a formal
asymptotic expansion for Eq. (2.14) written in the fast time variable:

dUu . .

— 4+ LU=¢7

ds + LU P/(U),

U(0) = Uy, (2.15)

where we have set U(s) = U(es). In what follows, we drop the checks and the formal
expansion is written as

U=U"+:eU' + 32U+ - . (2.16)
We formally substitute (2.16) into (2.15) and we find

W—&-LU =0, (2.17)

d 1
YLy - 7 (UY), (2.18)

ds

du? 2 0 1

W+LU =VyZ(U") - U, (2.19)

and so on.
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The solution of (2.17) can be written as
U'(s) = e 5 U(0).

For Eq. (2.18) we apply the variation of constants formula and we obtain
N
U'(s) = eiLS/ T (e Uy) ds . (2.20)
0

For U' we choose the initial data to be zero, but other choices may be appropriate
(see [21]).

We set F(s,-) = el 7 (e71¥-) and we split F into two parts: the resonant part Fy(-)
corresponding to the time-independent part of F(s,-) and the remaining non-
resonant part F,(s,-). In our applications, % will be polynomial' in U and the
definition of the time-independent part of F is not problematic. We thus have

F(s,U) = F(U) + Fa(s, U), (2.21)

and we define the primitive of the non-resonant part by
Fap(s, U) = / CEu(s, U) ds. (2.22)
0

Substituting these relations in (2.20) we find:
U'(s) = e B {sF:(Up) + Fap(s, Up) 1} (2.23)

The first-order RG equation, as discussed in [21], is of the form

dUu -
% = 6Fr(U),
0(0) = Up. (2.24)

For the details, see e.g. [15,18,21]. The first-order approximate solution is defined by
U'(s) = e “{U(s) + eFop(s, U(s)) }, (2.25)

and it is shown, e.g., in [18], that U' — U is of order ¢ in an interval of time s of order
O(1/¢) and in an interval of time ¢ of order O(1).

The renormalized system (2.24)—(2.25) gives us an ((¢) approximation to the exact
solution over a timescale ¢~ (@(1) without having to solve an oscillatory differential
equation. Because of the computational difficulties, in this article we only derive the
first-order approximate solution but we can apply the method to higher-order
approximate solutions as described in [21] in the context of ordinary differential
equations.

"Here we call polynomial function a function of the form .# (U) = Z}I:o F (U, ...,U), where n is finite
arbitrary, and #; is j-linear continuous on a suitable function space.
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In this article, the polynomial % is taken to be of the form
7 (U)=8—-4(U)-B(U,U),

where S is an external force, 4 is a linear coercive operator and B is a bilinear
operator. In Appendix A, we explicitly construct the resonant parts of 4 and B. We
will see that the resonant parts of 4 and B have the same properties as the original
operators; this does not seem to happen at higher orders. In Appendices B.1 and B.2
we give two different methods to handle the small denominators, one result being a
typical number theory result and the other is a more particular result, the method
following [3].

3. Description of the renormalized system

We start this section by writing the initial system (2.1) in Fourier modes and by
introducing a change of variables to facilitate the computation of the renormalized
equation (Section 3.1). In the subsequent subsections we prove the existence of weak
solutions (Section 3.2), of strong solutions (Section 3.3) and of even more regular
solutions for the renormalized system (Section 3.4).

3.1. The original equations in Fourier modes

We introduce the fast time s = #/¢ in system (2.1). Abusing the notation, new
functions depending on X, z and s are denoted in the same way as before. We obtain
the following system:

ou Ou ou Op

a+eua+sw57v+a:£vau+eS,,,
%+su%+sw%+u:£v,,Av+aSv,
Ip
X __N
82 p7
Uy +w, =0,

dp ap dp
a+aua+swafNw:evap+8Sp. (3.1)

All the functions being periodic, they admit Fourier series expansions. Hence, for

instance, for u we write
_ i(k! x4k z
U=y g g€

(k1 ,ks3)eZ?
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where k} = 2nk;/L;. Note here that, by periodicity of w, integration of the fourth
equation of (3.1) yields
Ly/2
/ uydz =0. (3.2)
—L3/2

In Fourier series, this is equivalent to the condition u, o) = 0 for all k; € Z, which
appears in the definition of the space V. The fact that w is odd in z implies that
Wik, 0) = 0, for all k1. We use these properties in what follows.

We hereby assume that S,,S,,S, are functions independent of time.

With primes denoting 9/3s, we can write system (3.1) in Fourier modes as follows:

. . . 2
U, +¢ Z (ilyujuy + ilywiug) — vg + ik 1 px = —evolk'[Tuk + €Sy,
=k

. . 2
v t+e Z (iljujvy + ilywivy) + e = —evy|K'|"vp + €Sy,

=k
lkgpk = _Npk7
kjue + Kywie =0,
/ X 7 .7/ _ . 12 \
P & Z (ihujp; + ilywip;) — Nwie = —ev, |[k'|"py + &S, k. (3.3)
=k

The zeroth-order system: We now make explicit for our problem the solution of
the linear zeroth-order equation (2.17), whose solution will be used later on in the
variation of constants formulas and in particular in the analogue of (2.20). With the
same notation as before and with U = (u,v, p), we have

u, — v + ikipr =0,
U +up =0,
ikgpk = —Npy,
kyux + kywyi = 0,
P — Nwe = 0. (3.4)

For k3 = 0, we have u, o) = 0, w, o) = 0 and Pk, 0) = 0 from the definition of the
space V', so only the first two lines of system (3.4) are non-trivial:
—VUr + ik/lpk =0,

v, = 0. (3.5)

This gives us v, 0)(s) = v(, 0)(0) and (3.5) allows us to express py in terms of vy.
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For k3#0 we can express the k-component of the diagnostic variables in terms of

the prognostic variables:

_ N
Pk = lkg P>
Wi = —Oyl,

where for notational conciseness we have set
kl
Ok :k_’; if K5#0, and d; =0 if k5 =0.
Substituting (3.6) and (3.7) in (3.4) we find:
U, — v — O Np, =0,

U +up =0,

,0;C + 0 Nuy = 0.

(3.6)

(3.9)

To solve this system we introduce the following change of unknowns suggested by

the diagonalization of system (3.9). We set

1 oxN -

nj Zﬁ—vk-i-ﬁ—Pk = (Ukypk) i,
k k

where we denoted

Be=(1+ 5N

o (1 &N
Pe = </3,; b )

We also define the following vector:

A E RN
=T B B

and we set my = (vk, p;) - ¥r. For notational conciseness we also set

and

—

Pk = My,  H = NiQy.

Note that (]3;( = (1,0) and ¥, = (0,1) when k3 = 0.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Conversely, given my and ny, the initial unknowns can be recovered using vx =

(mie,nie) - and py = (m, me) - b
In the new variables uy, ny, my, system (3.9) for k3#0 can now be written as

- ﬁknk = 07
ny, + Brux =0,
m, =0, (3.15)

and this system is easy to solve.
Weak formulation (in the new variables): We denote by n and m the functions

/ ! ’
XZS E knk kY+k> XZS E kmk k‘c+kx)

where here and elsewhere 5, means the summation over k = (ki,k3) e Z*\{0}.

We also consider S, and S, similarly defined by their Fourier series. Here we have
set Sl;l,k = (Sv,ka Sp,k) ' ’)_;k and Sn,k = (Sl/ k7 ) ¢)k

As we saw before, my, o) = 0. This motlvates us to introduce the following spaces:

V={(unm)e (Héer(/%))s: Uk, 0) = 0,u,n are even in z,m is odd in z},

H = the closure of V in (L2(.4))*.

Notice that technically the space ¥ is the same as ¥ but the components play
different roles.
We also introduce the space

V5 = the closure of Vm(Héer(ﬂ)) (Hf,er(,/%))S. (3.16)

We now define the linear operators A, L from ¥ into the dual ¥’ of ¥, and the
bilinear operator B from ¥ x ¥ into 17’2. These operators are the expressions of A
and B in the new variables. With V' = (u,n,m), they are defined by their Fourier
series components /Ik, B;. as follows:

AV ZkAk k'YJrk’ )
By, v") =" Bu(v,v7)eltriha),

LV = Zk Ek( V)ei(k’lx—kkg:).
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More explicitly, for A, we have
|k’|2vvuk
AVie= | K von + (v, — vo) K X(NSw/ Bi) (i, mi) - i | for all &,
(K Promc 4+ |K'P(1/ B ) (v = ve) (i me) - i
while for L; we have

Ek:() fOI'k3:07

0 —p 0
Li=|pB 0 0] fork;#0,
0 0 0
and similarly for B,
0
BV, V) = | i k(i +70) - gy | for ks =0,
0
iy (I — 1o )uu;

Ek(Va Vb): lz (li - 3 _;)Lt_,-(ml +I’Zl)-q_§k for k37ﬁ0
P50 (1 — 10) )y (] + 7i}) - i
Here and elsewhere in this paper Zk means that the sum is taken over j, / in Zz\{O}7
forj+/=k.
The resulting system from this change of variables can be written in the form

V' + LV =e9(V), (3.17)
where S = (Su, Su, Sp) and
G(V)y=—AV—-B(V,V)+S.

We also define the bilinear forms a(V,V?) = (AV, Vb>f//‘f/ and é(V,V’) =
(LY, V?> . where ¥ and V7 belong to V. We also introduce b(V, V°, V#) =
CB(V, V), V#) 5, where ¥, V# belong to V and V'’ belongs to ¥,. Writing

explicitly the trilinear form 5 we find
bV, vV, V#) —ZZ (I — 1) yupudu

+ 0 (1 = By (] + i) - (R + 7).
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Here and elsewhere in this paper, >_.° means that the sum is taken over j, /, k, for
jH+1+k=0.
The variational formulation of the problem in the new variables now reads:
Given ty >0 arbitrary, V eH and S = (Sy, Sy, Sin) € L*(0, t*;fi), we look for a
function V from (0,14 ) into V such that

d

AL Vg +aV, V) +b(V,V, V) +e(V, V") = (S, V"), YIeV (3.18)

and
V(0) = T1%. (3.19)

The first-order system: We write the full non-linear system (3.3) in terms of the new
variables.
For k3 #0, system (3.3) in the new variables reads

k
— ﬂkl’lk = —8V,,|k/|2uk — iez (li — lgé,)uju/ + ESu,k7

-

oxN
n;( + :Bkuk = - va‘k/|2nk - £|k/|2(vp - Vv)k— (mkank) : ¢k

B
ZFZ (I} = I30;)u;(my + 1) - $k+SSn,ka

1 -
mg = — 8v,,|k’|2mk — s\k’\z(v,, — v”)ﬁ_ (mye, ni) - P
k
—ie Z (I, — o) u;j(my + 1ip) - Vi + €Smk- (3.20)

For the case k3 = 0 we note that u;, = 0 and my; = 0 because of the definitions of
the spaces.
Study of the new variational problem: We can see, after some elementary

computations, that « is a bilinear and coercive form on ¥, so it remains to prove
the properties of 5.

Lemma 3.1. The form b is trilinear continuous from V x Vy x V to R and from
VxVxV,toR, and

BV, V>, V) =0, YVeV, VV’eV,,

bV, V°, V*) = —b(V,V* V) YV, V°, V¥eV, with V" or V¥eV,. (3.21)
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Furthermore,

BV, V2, VA< VI VIV V2 VL, (3.22)

forall V, V# in V and V° in V>.

Proof. To prove the continuity of the bilinear form and (3.22), we estimate for example
the second term of h(V, V'?, V'#), the estimates being similar for all the terms:

‘Z (I — By (] + i) - (i + 7))
<O W g+ (i + I )

</ MmNy dAl < |0yl 2102l |ns ] e

12, 1/2). 1/2 1/2

<clnyl2lnal )y Il g Insl 2 Insl g

1/2 1/2 1/2 1/2
<AV VLV LRIV VL,

here we wrote

mo= Y 17 1wle™, oy =" 17 1(m]] + |n]])e ™),
J J
1= L+ D

J

It remains to prove the orthogonality property (3.21). For V? = V# we have
bV, V.V 712 (I — Loy uu u)
+1Y (I — B (] + 7)) - (] + 7). (3.23)
Interchanging k& and / and adding the resulting equations to (3.23), we find

N i c
bV, v’ v?) :EZ (1} + Ky = (15 + K3) 0 Jujuf

i ¢ . . . S
+ EZ [+ K — (B + k)0 (7 + 72 - (7l + i)
=0.
We have used here the fact that
I+ K — I+ K)o =~ +J;j} —0. O

Remark 3.2. Because of the algebraic way we changed the variables and the
conservation of the properties for the linear and bilinear operators, we have exactly
the same result as Theorem 2.1 for the new system.
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3.2. The renormalized equation. Existence of weak solutions

We turn now to the renormalized system [the analogue of (2.24) for (3.17)],

av

E+Jr(r7)+l§r(r77 7) =S, (3.24)

The computation of A4, B, and S, is given in Appendix A. It is established there
that a,(V, V#) = AV, V#S i i is a bilinear continuous form in ¥ satisfying

a(V,")za|l7P, (3.25)

and that 6.(V, V# V°) = (B.(V,V#), V"), is trilinear continuous on ¥ x ¥, x
V satisfying

be(V,V, V) = 0. (3.26)

The wvariational formulation of the renormalized problem (3.24): Given ty >0
arbitrary and

VoeH, S.eH,
we look for a function V from (0,14 ) into V| such that, for every test function V¥ eV,

(% |8 V#) +a(V, V) + b(V, 7, V) = (S, V), (3.27)

with
7(0) = 1%. (3.28)

As usual, in order to solve this problem we need to obtain some a priori
estimates. For that purpose, for arbitrary fixed >0, we set V# = F(¢) in
Eq. (3.27). Taking into account coercivity (3.25) and orthogonality (3.26) properties,
we obtain

2
L

S9N+ all PP < (Se D) <SP +clIS,
This gives
d -2 5112 &2
2 VI + allVIF <2 S, (3.29)
Applying Poincaré’s inequality (2.6) we find,

d - . .
7 V12 + ercol P17 <260 | Se 2z, (3.30)
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and, using the Gronwall lemma,

261

|P(0)]72 <™ 7(0) 72 +— |S [2(1 — e ). (3.31)

This bounds ¥(¢) for all ¢ by its initial data,

Eq. (3.31) also gives us a bound on F(¢) independent of the initial data: Setting

13 = (2¢)/cocr) |S~r|%2, we obtain by classical computations (see e.g. [20]) that any ball

B(0,7)) with 7, >r is an absorbing ball and that |P(¢)|7. <r2 for all £>(|Vo,2).
Using the previous estimates and the Galerkin method we can establish the

existence of weak solutions of (3.27) and (3.28) exactly as for the original problem
(Theorem 2.1):

Theorem 3.3. Given ty >0, S, e H and Vye H, problem (3.27)~(3.28) has at least one
solution

VeL™ (R H)nL*(0,t%; V).

3.3. Strong solutions for the renormalized equation

We derive the appropriate a priori estimates. Setting V'# = AV(¢) in (3.27) with
t>0 arbitrary, we find

HV\I + AV <[B:(V, V,AD)| + &S, \Lz+ FIAVI. (3.32)

Bounding the trilinear form on the r.h.s. using Lemma A.1,

16:(V, 7, AV)| <262 | P12 )| AV,

we get
ld /201 7111 A T13/2
17 <2l EIPIAPES + IS + 5 1A
< PP+ &1Ss iw%mmiz
or

d | - _ _ _ .
L PIP + c1|AVI2: 2P P + 265 il . (3.33)

Existence follows from applying the classical Gronwall lemma, giving us a bound on
Vin LZ(0,t4; HY).
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A bound uniform in time is obtained in the following manner: We pick r>0
arbitrary and integrate (3.29) from ¢ to ¢ + r with =0,

t+r
61/ | P[P di <rés] Sl + [ P(0)]-. (3.34)
t

This and the fact that | V], is bounded in L* (R, ) allows us to apply the uniform
Gronwall lemma to (3.33) (as in [20]). Computations similar to those in [17] give us
estimates uniform in time and we have that || V|| is bounded in L™ (R.).

Integrating (3.33) from 0 to 74 we obtain a bound of ¥ in L*(0,7x; ¥V N
(ngr(/%))3). For later purposes, we note that integrating (3.33) from ¢ to ¢ + r gives
us

t+r
/ \AV({) |72 dl <k(r,S}), Yt=0,(Vol,2,r). (3.35)
t
These a priori estimates give the following:

Theorem 3.4. Given S;e H and Vye V| problem (3.27) has a unique solution
VeL” (R V) A L0, tx; VO (H2 (M))), Vg >0. (3.36)

Remark 3.5. (i) Uniqueness in Theorem 3.4 is proved in a classical way.

(i1)) The proof Theorem 3.4 for the renormalized system (3.24)—(3.28) is simpler
than for the original system (2.7) due to the fact that the analogue of (3.33) for the
latter is of the form (see [17]):

d
GIUIP + AU < AU + 41U (3:37)

which does not lead immediately to the appropriate estimates in L (0, ¢; V). The
difference between the r.h.s. of (3.34) and (3.37) arises because the renormalized
system does not contain problematic terms that are present in the original system.

3.4. More regular solutions for the renormalized system

It is desirable to establish the existence of more regular solutions for the
renormalized equation. We do this by induction. For simplicity we take the forcing S
independent of time and S, Voe ), ngr

Suppose that for a fixed arbitrary meN, m>2, we have

VeL” (Ry; Vo (Hp' (1)),

per

t+r
[P <k, (3.38)
t
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for all 1> 1t,_1(Vp), where by K,, we denote as before a constant independent of the
initial condition.
We seek to prove that

VeL™ (Ry; Vo (H™ (M),

per

t+r _ )
/ ) s ! <Ko
t

First we derive the a priori estimates: We set in (3.27)

Pi= (C1)"AT(0) = 3 K a(0 &,

keZ?
with >0 fixed, to get

3O PR+ el Py SIBP, P N (S APl (3.39)
We estimate |br(V, V, A" V)| which, using (A.29), reads
NE 7R 7, m i "
bV VA" =—5 ¢ k’\k’ P ity — @iy - i
J3#0, k3=
ﬂj:ﬁl
i
-3 ST = By - i
Jalaks #0
ﬁ/:ﬁk
i m— — — 7 e
-3 > Bk P i - i
j3#0, 5b=0
ﬂj:ﬁk
i 2
+3 S P — By - i
J3l3ks #0
ﬁ/:ﬁk
i m —
+3 PRALARE T
J3#0, b=0
ﬁj:ﬁk
i e —
+ o D WK - By (i — Ay ) - . (3.40)
Jalaks #0
ﬁ/:ﬁl

The first term of (3.40) is bounded as

i c
3 > k'\k/|2m( i — @)k, - i
J3#0, k3=

ﬁ/:ﬁl
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<D KPP (w1l ||
J3#0, k3=0
ﬁj:ﬁ/

&Y il + ) ad (71" + 1K
J3#0, k3=0
j—P1

6// 4919293 dﬂ—l—q/ q3qaqs d-H
M

<C3|q1|L4‘QZ|L4M3|L3 + C3|‘13‘L2|‘14|L4|45|L4

N

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
<dlalB a1 a2 gl as] 2 + chlasl iz laal, 2 aall 2 las]2 s
> 1/2 1/2 3/2
<L P e P

where we wrote

e Lo
q1 = Z @||j"e), g = Z e’ g3 = Z || )

jer? jer? jer?

=2 Bl g5 =3 [yl

jez? jez?

Estimating similarly the other terms, we finally obtain

Lemma 3.6. There exists a constant ¢3>0 depending only on L| and L3 such that, for
all Vin Vo (HX™ (),

per

be(V, 7, A" D)< es| P 2 7)) 2 P o P e (3.41)

Returning to (3.39) and using Young’s inequality, we find:
1/2 1/2) 711/2| t13/2 5 Am P
S PRy + el PRy < sl PRI PR PLRI P +1(S0, A7 7
Cl | 52 512 52 112 T2
< ? | V|Hm+l + C’l |Sr|Hm—I + C’2| V'ILZ‘VlHl ‘ V|Hm
or

2 A2 72 2
2t 4 20| V1 | V1 | P (3.42)

d - _ .
TPl 1| Vg <2611S;

Applying the classical Gronwall lemma to (3.42) we obtain estimates in

L™ (0,14;H™) for all 4 >0, with the bounds depending on the initial data.
Bounds uniform in time, Ve L* (R, ; H™), can be obtained by using the induction

hypothesis and applying the uniform Gronwall lemma to (3.42). The bound thus
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obtained is independent of |Uy|, when 7>1,(Uy) but the bound of ¥ in
L*(0,1,(Up); H™) depends of course on |Up|,,,.

Applying classical methods (see, e.g., [11,12,20]) to the above a priori estimates, we
find:

Theorem 3.7. For any meN, m=2, given Voe (H™ (M) AV and Sy e (H™' ()’

per per

V., there exists a unique solution V of (3.27) in L* (R, ; (Hgér(%))3).
4. First-order error estimates

We introduce as in Section 2 the first-order approximate solution ¥ (s)
Vi(s) = e *E[V(s) + eGup(V, 5)]. (4.1)

Here F(s) is the solution of the renormalized equation,

av _
% = bGl‘( V)7
7(0) = V. (4.2)

Our aim in this section is to compare the approximate solution V!(s) to the exact
solution ¥V (s), which satisfies

av .
— 4+ LV =9V
LV =(V),
V(0) = V. (4.3)
The notations we have used are as follows:

G4(V)=—AV—-B(V,V)+S,

G(s, V) = el'g(e BY).
The resonant and non-resonant parts of G(s, V') are defined as in (2.21),
G(s, V)= G(V) + Gu(s, V), (4.4)

and the primitive Gnp(s, V) of Gn(s, V) is defined as in (2.22).
Denoting the error by

W(s) = V'(s) = V(s) = e L[V(s) + eGup(V(s),5)] — V(s), (4.5)
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we find after straightforward computations that it satisfies:

aw . . 8 N N
o T LW e AW eB(W, W) + eB(VI, W) +eB(W, V') = &R,

wW(0) =0, (4.6)

where

R, = — Ae L Gyy(s, V) — Ble LV, e LGy (s, 7))
- E(e’SEan (s, V), e’”:l_/) - 81§(e’SL~an (s, V), e’S[an (s, 7))
— eIV G (s, ) - Gi(V). (4.7)

We take the scalar product of (4.6) with W in (L2(.#))* and, using the coercivity
and orthogonality properties, we obtain,

1d -
S WL+ e Wi < albOV, V! )] 42| (R, W),

S elb(W, VL, W)| + e2co|Rel 2| W 1 (4.8)
The first term on the r.h.s. is bounded using Lemma 3.1,
OV, VL W< WISV LV e LW (49)

applying Young’s inequality to this and to |R;|,»| W/, we find

24 ect | Wi < |Ry[3s + ec WLV o [V 3. (4.10)

d
— | W
ds'

It remains to estimate R, and V.
Estimates for R,: We start with

|Re[ 2 < c|e_ESan(I7> ) + ‘e_ESVI?an(Va 5)- Gi(V)

%
1BV G (7.5) |12+ [Ble™ " G (7.5), 72T
+ 6| Be B Gop(V,9), 65 Gop(7,9)) | 12- (4.11)
Note that since the eigenvalues of the matrix L; are purely imaginary for all ke Z2,
e By, (4.12)
where here | - | denotes the usual Euclidean norm in R>.

By arguments similar to those used in the proof of Lemmas 3.1 and 3.6, one can
show that, for all peN,

Vo ypas YV, VeV A (HPE2(M)). (4.13)

per

BV, V") o <cal Vg
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Using this and (4.12) in (4.11), we have
[R;[ 12 < €| Gup (V. 8) g2 + 24| V]| Gup (W, 5) 2 + 84| G (7, S)|§12
+ |V pGup(V, ) - Ge(V)] 2. (4.14)
To continue we need to estimate |Gyp(s, V)| and |V pGup(s, V) - Go(V)| 12

Estimates for Gup(V,s): We recall from Appendix A that G, = Ay + By + Sy, with
Ay, B, and S, being defined in (A.17), (A.23), (A.25) and (A.26). To estimate

Gp(s, V) = /OS Gu(s, V) ds,

we shall need to bound terms of the forms:

sof; 1
e**Pj
L)) = , 4.15
() =— 5 (4.15)
Lol eSbrnb) _ " 0 416
,[) = —————— where f§; — f,#0, .
D= b= (4.16)
eSBiroftafi)

o i+ wofy + sy’

In these expressions, the as can take on the values of +i and the f’s are real and not
less than 1 [cf. (3.11)].

We now obtain bounds for the denominators in (4.16) and (4.17). It turns out that,
provided that the Burgers number N does not lic in a certain set of measure zero,
o B; + oy + o3P #0. Similarly, it can also be shown (cf. Appendix B.2) that, when
N lies outside a small set, the denominators can be bounded from below.

I,(j) is easily estimated:

2(1 —cos sp;)
= <2. (4.18)
B

e — 1
of g

L)) =

To estimate 1(j,/), B;# B, we distinguish two cases:
(i) For oy = oy, we obtain |L(j,1)| = 2/|B; + Bi| < 1.
(ii) For a; = —ay, we need a bound for 2/|f; — B;|. We assume without loss of
generality that f8;> f;; writing N" = N2(L3/L1)2 we find,
2 2(B;+ B1) 2(B; + B1) _ 2 B;+ B 2p

0.l = = == = oA/
Br=Bi B =B NG/ —N(/E? NGE =R
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2 . 2 . , ;
< B+ ﬁz)]§1§<ﬁ<\/1 +N'(ji/j3)’ + \/1 + N (11/13)2>J§l§
< (NP1

To estimate I3(j, k,/) we also consider two cases:
(i) All o; have the same sign, which immediately leads to |I5]<2/3.

(i1) a; = ap = —a3, for which we compute
Bl<
NS
\B; + B — Bl

2/(B; + B+ Bi) (=B + B+ Bi) (=B + B; + Br)
|(B; + B+ Bi)(B; + By — Bi)(=B; + B+ Bi)(B; — B + Byl
1]
<

Al

where
Jv=2(B; + B+ B) (=B + B+ B) (=B, + B; + B3k,
Jy = 3j31kS + 2N (T 5k35 + [Ej3kG + kikajs )
+ N2 (AAREEKS + ki kG + 2B Bl kajs — jilsks — Ljsks — kij3E).
Setting
o1 = 2GR + 2k 1 + 2R Bk — ik — ks — kUL,
oy = 2(j1 k35 + LK + kikajsha),
o3 = 341,

we need to estimate 1/|N?¢| 4+ N'c, + a3|. For this we recall from [19]:?

For any 6 >0 and for almost all ve R, there exists a constant K depending on v and o
such that

[6%q + op + | > K (v,6) (gl + lpl + ) "), Vp,g.reZ. (4.19)

For the convenience of the reader, we provide in Appendix B.l1 an elementary
proof of a weaker result in which the power 2 + ¢ is replaced by 3 + 0.

Choosing N’ such that (4.19) holds (almost all real numbers satisfy this property),
we estimate I3 as:

BISTK N, 0) (1| + o] + a3 S K(N', )| j| 271021k 2. (4.20)

2Pointed out to us by Yann Bugeaud (personal communication).



M. Petcu et al. | J. Differential Equations 208 (2005) 215-257 239

We note that this result implies that the denominator oy f; + 02f; + 38 in (4.17) is
never zero for almost all N'eR.

We are now ready to estimate |Gy (s, V)| ,2: Taking into account (A.14), (A.16)
and (A.17), we see that /Inp(l_/, s) only contains terms of type /; and we have

1/2
[Anp(s, Pz < | D (L (k)| K Pl ) (1 + |k’|2)21

k

1/2
AN CAGINN |uk|+ﬁk)>2(1+|k/|2)21

k
< | Pl ppe. (4.21)

Next, we estimate Enp (s, V). From (A.23) and (A.25), the most problematic terms
(imposing the highest regularity on ¥) are those which, after integration, are of type
I3. We only estimate the typical term M ;> (see the appendix for details on M| ),
which we bound using (4.20):

‘—éZ LULLK) (= 10) Xa j(7) X s (P)¢ k'r+k’~>( 1 )

a3 #0 —%4

H?

12

ok 13 S S S/ _ _ _

<c(N',0) [Z 71PN 2 (| + (g (] + (7)) (1 + |k/2)2]
J3l3 #0

SC(NI, 5)|qf|H14+4o- < C(N’, 5)‘(]1 |i]14+4§ SC(N/, 5)| VI%.127+857

where ¢ =3 |/ 1B (| + |my|)e¥H52) | and we set X, 1 (V) = ity — aiig; we have
used |1 — (71 /)| <|/| |']. The sums 3" and 3" are defined in the Appendix, after
(A.5) and (A.7).

We can now write

|Bop (V,8) g2 <(N', 0)| V] 727:56. (4.22)

Finally, noting that,
Sl 2 <[l
we obtain the following estimate:
|Gop (5, D)2 <1 (N, 8)| P s + 2(N',0) | Pl fgaress + e3(N', 8)[ S e, (423)

valid, as (4.19) tells us, for almost every N’ eR.
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Estimates for |V pGyp (s, V) - G¢(V)|;2: We consider the bilinear form

whose Fourier components are:
For k3 = 0, Bnpk(s V, Vi =0, Bnpk(s, V, V%) =0, and

52 = ik’ ok R _ L -
Buls V1) =D W)Xy (D)1 i

J3l3#0
lk’l ok . _ a7 N
+— Z I2(]al)a2Xal,_/(V)Xaz,l(V )d)l Pk,
J3lz #0
o B+ #0
For k3 #0:
. _ Mk, (s, V,V*
Bnp-k(sv V7 V#) ( lkznp( % :z))a
M3np(s7 V,V)
where
_ I ak . 1
M5, 72 79) =g S B LA = 5 P XV ()
J3l#0 —oq
i k . _ - 1
D BRI — By Xoy (V)i -7
4 £ —oy
J3l#0
o1 Bty #0
i ,k _ 5 S 1
IS LGk - l5>a1a3xxz,<V>Xm,z<Vﬁ>¢k-4»( )
8 4 —
J3l#0
i K . .o o 1
+3 Z“ Iz(J»k)lialez,j(V)n%k'¢1<_a1>7
=0
0!1/”/030!2/”/#0
and

Oék
Moy (s, 7, V7) =3 Z DXy (D)1 T

i . o e
i) Z (1 = BN () Xy f(7)miT1 - T
J3l#0
I ok . — 2 o
+ ST LD — B3 ea Xy, (V) Xy s (V)i - T
Sl #0
O(][f/-!-o(z[f/?&o
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Since Gup(s, V) = Aup(s, V) + Bup(s, V) + Sup, we have
ViGup(V,5) - Ge(V) :VV/Inp(VvS) -Gy (V) + VVgnp(Vvs) Gi(V)

:/IHP(Gr(V)’ S) + EHP(V7 GF(V) ) + Bnp(G (V)a Vﬁ S)'
Using the same type of argument as before, we have the estimates:

|Aup (G (7). 9)| 2 <l Ge(V)

Bapl(7, Gu(7),5)] 12 S K(N',0) P s Go P s
|E ( (r/) S)|L2 <K(N,, 5)‘ I_/|Hz7+xzs Gr(V)|Hz7+sa.
We bound G,(V) = —A4,(V) — B.(V, V) + S; using

Sl <181z

|B:(V, V)| g < el

Hm+2

|4:(7)

o C| VlH’”“’
for all me N. Finally, we find:

IV 5 Gup(V,5) - Ge(P)| 2 SK(N', 8, | V] gy | S] oress)- (4.24)
Putting the estimates we have just derived into (4.14), we have
|R5|Lz SK(N,7 (37 | V‘szxd, |S~|H27+xa‘)- (425)
Using Theorem 3.7, we can write this in terms of the initial conditions:
[Rel 2 SK(N', 0, [Vol gooess, 1S gsess). (4.26)

Estimates for W(s): Note that V' (s) = e[ (s) + £Gup (s, 7(s))] has been bounded
by (4.23),

|V1(S)|H2 <K(N/,5,|I7|H27+35,|§‘H2), VS>O, (427)
or, using Theorem 3.7 again,

V() e SK (N, 6, | Vol grarsss, | ppassss ), Vs >0. (4.28)
Putting this into (4.10), we have

d
v W13, + eci| W3 <& (4.29)

where x| and K; are constants depending on N’, &, | Vo| 2045 and | S| jz6:55. The desired
bound on W(s) follows from this using the classical Gronwall lemma:

|W ()% <& K;esm Vs=0. (4.30)
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Taking 6 = 1/8 and collecting the results in this section, we have the following:

Theorem 4.1. For any L, and Ls, and for almost all Burgers numbers N eR,
given Voe(HX (M) AV, and Se(H® (M)} AV, the difference between the

per per
solution V of the original system (3.20) and the approximate solution V'
given by (4.1) satisfies

V(1) — V(0)];.<2Ke, V=0, (4.31)

where k' and K" are constants depending on N, L, Ly, Vy and S.

Remark 4.2. We can redo the above estimates, using the bounds on /53 given in
Appendix 3 instead, to arrive at the following:

Theorem 4.3. Let u>0, L, and L3 be fixed. Take Vye(H.(.4)) AV and

per

Se(HY (1)) " V. Then there exists a set O%5(L1, L3) having a Lebesque measure

per

mes @4 (L, L3) <p such that, for all Burgers numbers N ¢ ©%(L,, Ls), the difference
between the solution V of the original system (3.20) and the approximate solution V'
given by (4.1) satisfies,

Vi) — V()P <8k, Vi=0, 4.32
L

where k' and " are constants depending on N, Ly, L3, u, Vo and S.
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Appendix A. Derivation of the renormalized equation

Following the algorithm briefly explained in Section 2.2, we start by solving the
linear system obtained from (3.20) by dropping all order-¢ terms (zeroth order

approximation).
For k3 = 0 we find

U0 =0, my, 0 =0, (A.1)

and nék“O) = 0 which implies that ng, g)(s) = n(, 0)(0).
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For k3#0 we find, as we already saw, the system (3.15):
T/l;c - ﬁk”k = 07
n, + P =0,

mj, = 0. (A.2)

Setting Vi = (ug, ng,my), this system of ordinary differential equations can be
written as

0 —B 0
Vi+LiVi=0, where Ly= |8 0 0]. (A.3)
0 0 0

Its solution is Vi (s) = et 1/, (0); with

- LS~ oof g 1 —a
P 2 e R ,  where R, = ( )
0 1 o 1

and o = +1i, we have explicitly,

322" e (uge(0) — angc(0))
Vi(s) = %Z“ ae™Pi (1 (0) — any (0)) |- (A4)
nmy 0)

Denoting X, x (V) = uyx — ony, (A.4) reads

1 a
u(s) = EZ e‘“ﬁanﬁk(Vo),

1
ne(s) =5 > ae P X (Vo).

my(s) = my(0). (A.5)

Here and throughout this paper, " always range over « = +; similarly for ;.
For the ((¢) approximation, we need to separate the r.h.s. G(s, V) into its
resonant and non-resonant parts,

G(s, V) = eLG(e™LV) = Go(V) + Ga(s, V), (A.6)

and then compute the primitive Gy, of Gyn. As usual, we analyse separately the cases
k3 =0 and k3 #0
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The case k3 = 0: In this case, the equations of motion (3.3) read
Uy = 0,
5 . k . N N
e = —evolk' Py — &i» " Kyug(mi§; + mipr) - dic + eSn,

mj = 0, (A7)

where the superscript & in Zk means that it is taken over j+ / = k with k fixed. Since
here the fast linear operator vanishes, L~<kl_,0) =0, we have

oSy = 8,
{efedet} = A = Aus,
{eB By, ty)} = Bo(e by e t). (A8)
The u and m components of By vanish, so we only need to compute
! :izk K (migs + mdy) - i
=ik Z [fm V1+2Z Xona(Vo 0626”2[}’(1)1} i B B Xm.,j(Vo)em'ﬁf}

(A9)
The resonant part (i.e. the s-independent part) of this expression obtains when o ; +
af; = 0, which only happens when o) = —a, and f; = f;; this gives us
0 ( k’ - -
BV > X () Xas (V)1 b
]zlz #0
Bi=h
ik & -
==t Z (muj — njug) oy - . (A.10)
J3l3#0
Bi=b
The non-resonant part of E,i") is

lk/ (Zk . o
Bl V.v) ==t 7 e hma, (V)i - b
J3l#0

ik, & -

+Tl S et X (V) X i (V)G bk (AN
J3#0
1B+ #0
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The case k3 #0: We begin with the linear operator Ay [cf. (3.20)],

|k’|2vvuk
AVie = | K von + (v, — vo) K (NSw/ Bi) (i, i) - b | (A.12)
K Pyom + 1K' (v, — vo) (1) Be) (mic, i) - i

which we split into its diagonal and off-diagonal parts,

Ay Vie = wlK [ Vi,

0
Ao Vi = | 1K (v = vo) (NS /Bi) (e me) - i | (A.13)
K17 (vp = vo) (1/Bi) (m, mic) - ic

Since A 1k 1s diagonal, it is completely resonant. To find the resonant part of /Iz_yk, we
compute, using Vj = e’ 1,

0
~ 1 & 580 -
Ay Vi = (5 2y eo R ?) k' (vp — vo) (NOk/ Bi) (M, i) - i
K[> (v = vo) (1/Bi) (i, me) - i
. ; S K PN B (s i) - e

Vp — Vo o T sofy
- 92 S KNS/ Bie) (mey mi) - dree™Pe |- (A.14)

K17 (vy = vo) (1/Be) (e, mi) - i

Continuing the computations for eSLNk/Iz’k Vi, we obtain

1 N,
ﬁk 2[31(
Vo = Vo o /2N75k i N75k %2 S0Py | osor P

S WP [mk<o> LA et et |, (A3
)1 [ 1 Noy
— M (0)—+ ==
A AT

Vp — Vo Zal o |k/ 2 N_ék WZk(O)
2 B

2“2 O‘2Xocz.k< Vo)emzﬁk] 1B

(vp — vo)|K| S X i Vo>€“”"']

where (A.5) has been used for the last equation. Using the fact that " X, (Vo) =
2up(0) and > aX, . (Vo) = 2n,(0), we obtain from the last expression the
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resonant part of Ay:
v, — Wy
S (Now/ Br)
{42V} = %W(Nak /B e |- (A.16)
(vo — Vv)|kl|2(l/ﬁk)2mk
The non-resonant part of A4, is then

Ay = Ay — Ay, (A.17)

Next, we treat the bilinear from B:

ISR, 0
0 1

k
_ (M : (A.18)
M

where we denoted by Mfz the u and n components of the resulting column and by

esik Ek(€7d: V07 e*Si VO) _ ( > . gk(€7XL~ V(), efsi VO)

MY the m component. We have

I o k 1
M{(Q :52 emﬁk Z (li — lgéj)uju] < —(x>
N~ ko oo (]
+§Z oePe Z (I = 16, wi(miyr + miepy) - i ( —oz)’ (A.19)
or, using (A.5),

i O(,k s(o o o 1
Mfz o Z S fitoaft 3[?/)(1; — lgéj)Xaz,j(Vo)Xm,/(Vo)< )

Jals #0 —0o
i ok oy o f I 1
* D SCPERE (I — 160 X (Vo) (0)7 - ¢k(_ )
J3l3 #0 o
i K o o fi+a e e 1
+§ Zoc S Betenf+ 3/31)([1 — Igéj)a1a3Xaz.,j(VO)X9<3,I(V0)¢/( . ¢1(_a1 )
J3l3 #0
i K v - 1
+Z Zoc k es(%llik+“2ﬁ1)lga1X“2-j(VU)”(II,O)(O)(ﬁ[ P < u )
L=0

The resonant part of this expression obtains when o + aff; = 0 (implying that
o = —op and B = f;), or when oy + 0af}; + a3, = 0. As shown in Section 4, the
latter scenario does not happen if the Burgers number N lies outside a set of measure
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zero. Assuming the generic situation, the resonant part of M¥, is

i ok -, 1
Mi,, =1 ST = By j(Vymy W(—a)

J3l#0
.Bk :ﬁ/

ok - - 1
+- z/:o HoX_y ( )nl¢k'¢/<_a)-
)

After some elementary computations we obtain

i k - — i k - —
M, = — 3 > (= Bopmmdy 71— 3 > By - i,
Sl #0 =

B :ﬁ/ ﬁA»:ﬁj

& i k k -
My, =5 Z (I = B3 wmiic - 71 +2 Z Luni - ¢;.
J3l#0 =0
ﬁk:ﬂ/ ﬁk:ﬁj

Similarly, the non-resonant part of M¥, is

] 1
M{izjn :é Zot,k S(dlﬂk+d2ﬁ/+fx3ﬁl (l 115 ) " j(V)Xa3,/(V)< 1 )

J3l#0

. . . 1
+£ 2:&, S Biteafy) ([ 1/5)061Xa,](V)ml¢k’§l< )
4 - —
J3ili#0
o1 Bt #0

_|_i Za,k (o1 Bty +3) (I — 18)) 00103 X, j(V)Xx_;‘l(V)(i;k ) $l(
J3l#0
i ok ) - - 1
+ Z Z es(alﬂk‘i’azﬁj)l;alXij(V)nld)k . ¢l ( o ) .
L=0

o1 frtoaf; #0

We turn now to the m component of M,

ME =i 3" (1~ 8o midy + i) - 7
;3#0
i =tk .
-2 S e, J(Vo)m(0)és - i
=0

i k o4
5 S I 10) X, (Vo)mi(O)F1 - i
J3#0
I ok

+Z v(oqﬁ +oa ) ([ — ]’5 )szXa (VO) o, I(VO)(T)I : ')_;k
J3l3 #0

247

(A.20)

(A21)

(A.22)
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where we have use (A.S) for the last equality. Its resonant part is

I k -
M, =23 (= B0aX s () Xas V)1 T
Jals #0
B=h,

== Z ll 1/ ujng I’lju])(%] 77k7 (A.24)
13127&0
Bi=b,

while its non-resonant part is

k 7 o
M§n_2 Zx ML Xy, J(Vng 0 @1 T
L=0

i o,k oS RN
5 > I = 1) Xy, (Vi T
J3l3#0
o N by (1~ 15) X,y (V) X s(V)r Tk (AL25)

Jah#0
O(Iﬂj‘HXzﬁ/#O

Finally, we compute
Suk
.o 1 “eé‘“ﬁkR_a 0 ’
(18, = (2 Sui
0 1
Sm,k

%Z% 5*Br (Sux + oSuk)
_ _ % Z“ emﬂka(su‘k + OCSn‘k) ’

Sm,/c
whence we find
0 17 e P (Sux + aSu)
Se=1 0 | and Sup=| —13% e Fa(Sus +aSus) |- (A26)
Sm,k 0

The renormalized system: We have now computed all the terms in the renormalized
system,

‘Z—I:JF/LVJF B.(V,V)=S§,, (A.27)
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written here in the slow time ¢. Explicitly, we have in Fourier modes for
k= (kl,O)I

duk
RK_0
dt ’
dmk
K0
dt ’
dnk ) i k e e
7 = —V,,(k/) (kl 0) — 5 Z kll (n;uj — nle])(Isl . ¢k + Sn,k- (A.ZS)
J3l3#0
ﬁ/:ﬁl
For k3 #0, we have
du v,, N2§? i k L7
g = vl P = S KPS 5 ST (= By i
lin Jh£0
Bi=b;
+= Z Ly - b1,
/3/( /3
dnk "2 Vo 2 N25]2( i k ’
i — vl g — 7 \ ﬁ/zc k=5 Z (h = By )”1m1¢k 7
J3l#0

I}k:l}j
ZZ humdi - i,

ﬁk ﬁ,
dmk 2 2 1
- = Vol K ["mg — (v, — )| K| ﬁ—imk
i k -
-5 Z (I, = 15,0,) (wing — mjur) by - ¥ic + S
J3l#0
ﬂj:l}/

Properties of the renormalized system: As mentioned in the Introduction, the
renormalized linear operator A, and bilinear operator B; in (A.27) enjoy some
properties of their original counterparts, as we now show:

dr(V, V) = </IrV7 V>f//f/

=ve DS Pl v 3K Pl

Vv klzN 5k| — Vu |k,2
3 S

+ v Zlk'| el + ( Z K Imkl

Nék
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After some elementary computations we have

~ . 2 2 2
a(V, V) zmin(ve, vp)([[ul|” + [[n||” + |Im]]"),

thus proving the coercivity of a, in V.
We turn now to the trilinear form bNr(V7 Vo VE = (B(V, V), V) i s

~ 1l C - —
be(V,V°, V¥ = — Z Ky (nju; — win)ni s - b
J3#0,k3=0
Bi=h
i -
=5 > (= 1S uinm] b - 7,
Jalsks #0
ﬁj:/}k

i -
2 > S hmniuidr - i
J3#0,5=0
Bi=Px
1 —
50 > (= 1S umini i -5
J3l3ks #0
ﬁj:/}k

i T b G
) > S humini$i - i
J3#0,5=0
Bi=Px

i Lo
50 Y (0 = B3 wn] — ujn)miFy - . (A.29)
Jalks #0
5/':51

Interchanging k with / and using the elementary relation
B+ ky = (ks + B) (A /75) = =it +75(0 /75) = 0 (since j+ 1+ k = 0),
we now compute

~ 1 C - —
be(V,V°, V") = — 3 Z Iy (nu; — uln)n) gy - g
J3#0,5=0
Bi=Px
1 ¢ ’ ! b b= 7
-5 Z (1) = B30;)ugmym[ 7y, - P
J3lik3 #0
Bi=P
1 c - -
=3 > hnuni¢r- i
J3#0,5=0
Bi=Px
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i c

+= Z (I — L3 )umin gy - 7
J3lak3 #0
Bj:ﬁk

i S S

T3 Z Lungni g - P
J3#0,3=0
Bi=Bx«

C 7 —
5 Y (=B (fu — mu)ymi s - i
J3lik3 #0
Bj:BI

_ ¢ N (l/ K _l/j_i_k,j_’l>
- 1 1 3y 3y
2 o /3 /3
Bi=DBx

x (upn; — wn} )miy - 7 = 0. (A.30)

We have thus proved that the orthogonality of »(V, V*, V?) is preserved in the
renormalized system.

Lemma A.l. There exists a constant ¢;>0 such that for all V= (u,n,m), V° =
(W, n°,m®), V¥ = (0%, n*,m*), with V¥eV and V, V° eV, we have

~ 1/2 1/2 1/2 1/2
6.V, V2 VA< el VAV VL2 VeV

F oV AV 2 VA (A31)

(V. V2 VA<V (A.32)

Proof. We need to estimate each term of b.(V, V?, V'¥). In order to facilitate the
computations we write:

D D e P RN U

j=Cir.js) e Z? j=(j,J3)e??

and similarly for n and m. We estimate |[{ — /5(/;//5)| taking into account the
summation conditions f; = B < |ji/j5| = |ki/k;|: When ji/j3 = ki /k};, we have
from j+ [+ k = 0 that |} — I5(,//5)| = 0. When j} /5 = —k} /k}, we write j; = —sk/,
J4 = ski, and using j+ / + k = 0 again we have |/] — lg(]l/]3)| = 2|k <21/ + |7'))-
We also have |k — k5(j1/73)] = 2[ki | <2(] /' + |'])-
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We can now proceed and estimate |b.(V, V°, V¥)|:

i c b boNE T2
b Z Ky (nju; — ”1”])”(/(1,0)4’1 '
J3#0,k3=0
B=p

c .
<c > (wl 7] [af]+ il [u] | 1mgD( 7T+ 171)
J3 #0,k3=0
ﬂj:ﬂ/

<c/ wn’nt dil + c/ Wnont di + c/ wning di + c/ wynin d.
M Vi Vi M

# b b 5
<C|”2|L4<//)|”1 |L4(,//Z)|nl |L2(J/) + clug |L4<//)|n2|L4(,//z)|”1 |L2(J{)
b ¥ b ¥
+ C|”2|L4(,z/>|”1 |L4(U<z1)|”1|L2(U//) + C|”2|L4(,///)|n1 |L4(U</1)|”1|L2(J/)-

Using the fact that |u|;.( ,) <c[u|sp(,) in space dimension two, we find

i S b boNE 77
5 E kl(nluj_ulni)n(k|.0)¢l‘¢k
J3#0,k3=0

ﬁj:ﬁ[

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
< VI"HAVEZIV VNP IVE o+ VLIV P A 2 VA .

All the other terms can be estimated in the same manner, giving us (A.31). The proof
of (A.32) follows using the same type of argument. [

Appendix B. Auxiliary results
B.1. A result in number theory

In this section we prove for interested readers a (weaker) analogue of the small
denominator estimate (4.19) used in Section 4.

Lemma B.1. For any >3 and for almost every £€(0, R), where R is an arbitrarily
natural number, there exists a constant y>0 such that |p + q& + r&|>y|p* + ¢* +

rz\fé/z for all (p,q,r)eZ\{0}.
Proof. We need to show that the set
Q = {£€(0,R): ¥p>03(p,q,r) e Z°\{0} with |p + q& + rE|<ylp? + ¢ + |77}

has measure zero.
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We first split Z°\{0} into Z; + Z, + Z3 + Z4, where

Zy ={(p.q,r): r& + q¢ + p = 0 has no solution in R},
Zy = {(p,q,r): & + q¢ 4+ p =0 has a double root |¢,|<2R},

Zy = {(p,q.r): & +qé+p =0 has two simple roots},

and Z4 covers the other cases which do not concern us. Noting that

Q= ﬂUQ(Pq,

P.q,r

we fix y and (p, ¢,r), and compute the measure of the set

Q,(p,q,r) = {€€(0,R): |p + q& +rE|<olp” + ¢ + 7). (B.1)

We now consider Z;, Z, and Z3 in turn.
(p,q,r)eZi: mes Q,(p,q,r) =0 for y<1/4, because

lq* — 4pr|

>olp? 4 g2 + 2!
p o™+ g + 17|

min [r& + &+ p| =
¢eR

and |¢> — 4pr|>1 in this case.
(p,q,r)€Z,: in this case |r|>1 and ¢*> — 4pr = 0, which implies pr>0. We then
have,

mes @, (p,¢.r) <o/ Irllp* + ¢ + 7|, (B.2)

Since the root |&,|<2R, ¢*<8r* and (using 4pr = ¢*) also p*><4r*R*. Therefore
VIl=CR)p? +¢* +r2|* and

mes Q,(p, q,7) <7C(R)|p* + ¢ + 2|/ (B.3)

Since ¢*> = 4pr, this is equivalent to (allowing us to sum over 22\{0} in (B.6) below)

mes 2, (p, ¢.1) < \FC(R)|p + 12| CHD/, (B4)

(p,q,r)€Z;5: as before, we assume that r>1; the case r< — 1 is similar, and the
“linear” case r = 0 is easy. We denote 5 = yp?> + ¢* + 2| %, A=q* —4pr, A_ =
¢ —4p(r—n) and 4, = ¢*> — 4p(r + ). Considering the neighborhood of a root,
and noting that 4_ >0 whenever y<1/4, we have

VAL —VA- 8 81 g
SN Y f "

mes{&: [r& + qé + p|<n}<
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Regardless of where the roots lie, we thus have
Q,(p,q.r)<167p” + ¢* + 7| 2. (B.5)
Putting together the results of the three cases, we have

mes Q, < 16;;217,{]." P+ ¢+ P + JFC(R) Zm |p? + 2D/ (B.6)

where the first sum is taken over Z°\{0} and the second over Z*\{0}. Both sums
converge when >3, giving us

mes Q,<./yC(,R), (B.7)

valid for y<1/4, whence it follows that mes @ =0. O

B.2. Another estimate for small denominators

In this section, following an alternate approach due to Babin et al. [3], we present
another way of estimating the three-wave resonances. In a sense the method is an
improvement of that used in Section 4 because we require less regularity on the initial
data. On the other hand, it is weaker because it is valid only for Burgers numbers
belonging to a certain quasi-resonant set.

Recall that 8, =1 +N2(k’1/k’3)2]1/2. As in Section 4, we need to estimate
the term

SBnptap) _ |

I = )
’ a fi + 02f; + o3 fy

(B.8)

where o f8; + o + o3 #0, o1, 00, 03 = £iand j+ 1+ k=0.

The problem is non-trivial only when the «; are not of the same sign; with no loss
of generality, we suppose that oy = oy = —a3. In estimating |8, + f; — ﬁk|_l, we have
two cases:

Case 1: If |B; — | <PB;/2, then [B; + f; — Bl <2/p;<2 and we are done.
Case 2: If |B; — Pi| = B;/2, some work is needed. We estimate

2
\B; + Br — Bl
21(B; + B+ Bi) (=B + B+ Bi) (=B + B, + Br)l
|(B; + B+ Bi)(B; + Br — Bi)(=B; + B + Bi)(B; — B + By
=:21[. (B.9)

|13 <
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Denoting 2 = N? and y, = (k| /k})*, we have

|(B; + B1 + Bi) (=B + B+ Bi) (=B + B; + Bi)

’_
b= P(3)] ’

(B.10)

where
P(A) =20+ 15 + 11 — 2y — 20 — 2) — 22 + 0+ ) — 3. (B.11)
The discriminant of this quadratic polynomial is
A =2[(x; — )+ =)+ (- Xj)z] =>0. (B.12)

Since P(1) = 0 has no more than two solutions for each fixed (,/), the set of Burgers
numbers N for which §; 4+ f; — ;. = 0 is at most countable. We denote the solutions
of P(2) =0 by A4 (j,1).

We define the three-wave quasi-resonant set @4 (L, L3):

Given p>0 and a sequence of positive numbers {¢(; )} with 35 ;) & <1, we
define the three-wave quasi-resonant set @5(L;, L3) as:

O4(Li,Ly) = |J {N:2IN=N*(j, [, L1, Ls)|<pén}s (B.13)
(j,hez?

where N* (j,1, Ly, Ls) = \/A+(J,1, Ly, L3). It is obvious that the Lebesque measure
mes @4 (L, L3)<u for all L, and Ls.

For j, [, Ly and Ls given, the set {N: 2|N — N*(j,[,Li,Ls)|<ué ;)} can be
defined approximately by |P(1)| <. For § small, we have

d. |

o~ %(0) 14(6) = 2+ (j, 1, L1, Ls)|
. . di, |
:2Ni(]alel;L3>|N_Ni(]al7L17L3)|%(O) ) (B14)
where
dA 1 1
—(0)’=—= (B.15)
‘d& \Z \/2[(}51' — )+ =)+ (e — Xj)z]
or, using f; — B = N*(y; — 1),
dA N? N?
—(0)’ - <—. (B.16)
""5 V2B = B+ (8 - 87 + (B - B3] 2V2
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Since B, <max(1, N?)|K'|, for N ¢ ©%(L;, L;), we have, using (B.14) that

1 ’ ! 1\3
S I (S ER Vi RaVi)
1B + Br — Bl |P(2)]
/ o 3
< C(N7L17L3)(|k|+ I+ 1) (B.17)
HE ()
We now choose ¢ For any >0 we can take
Eiay = el J 707, (B.18)

-1
where ¢() = (Ej,/ezz |j’|_2_”|l’|_2_") . Substituting this into (B.17), we obtain the

following bound:

1 (K + 111D ey 2
<C(N, Ly, Ls, PP 7P N¢@Y(Ly, Ly).
BB = (N, Li,Ls,n) " [Ava 3(L1, Ls)

We can now conclude with the following result:

Lemma B.2. Let >0 and p>0; then for every L, Lye R and N ¢ ©%(L,, L3) we have
B;+ B — Bi#0 for all j, I, k with j+ 1+ k =0, and

/ -/ 13

—— <max| 2,C(N, Ly, Ls,n
R
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