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Suppose X and Y are n x 1 random vectors such that Z’X + f(Z) and Z’Y 
have the same marginal distribution for all n x 1 real vectors I and some real 
valued function f(Z), and the existence of expectations of X and Y is not 
necessary. Under these conditions it is proven that there exists a vector M such 
that f(r) = I’M and X + M and Y have the same joint distribution. This result 
is extended to Banach-space valued random vectors. 

1. INTRODUCTION AND SUMMARY 

Our main result, Theorem 3, may be stated as follows. Suppose X and Y 
are n x 1 random vectors such that t’X + f(t) and t’Y have the same distribu- 
tion for all 71 x 1 real vectors t and some real valued functionf(t), then there 
exists an n x 1 vector X,, such that f(t) = t’X,, and X + X,, and Y have the 
same distribution. Of course this is nontrivial only when E(X) does not exist. 
Theorem 3 is extended to random vectors taking values in a Banach space which 
is either separable or reflexive. To prove these we need some results on random 
vectors linear functions of which are symmetrically distributed. These auxiliiry 
results, which have some interest of their own, constitute Theorem 1 and 2. 
The last section contains a number of open problem. 

2. MAIN RESULTS 

We begin by stating 

THEOREM 1. Let X be an n x 1 random vector such that t’X is symmetrically 
distributed around f  (t) for all n x 1 real vectors t and some real valued function 
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f(t). Then X has a symmetrical distribution around M and f(t) = t’M, where 
M = (ill1 , lkl, ,..., M,,) and Mi is the point of symmetry of the marginal distribution 
OfX,. 

Note that Theorem 1 becomes trivial when E(Xi) is finite, i = 1,2,..., n. 
For then f(t) = E(t’X) = C t&(X,.) = C tiMi . To deal with the case of 
infinite expectations, we have been unable to use the method of truncating the 
random vector X. We have used instead a certain “wrapping up” technique 
below. We begin by proving a simple lemma. 

LEMMA 1. Under the hypotheses of Theorem 1, f(t) is a continuous homogeneous 
function oft. 

Proof. If t’X is symmetrical around f(t), then ct’X is symmetrical around 
cf (t) where c is a scalar. So f(ct) = cf(t) proving homogeneity. To prove 
continuity, let h -+ t. Then t,‘X -+ t’X everywhere, which implies t,‘X ---f t’X 
in law. Continuity off(t) is an easy consequence of this. 

We now explain the ‘wrapping up’ technique. Let a > 0. If b, c are two real 
numbers, then we say b = c (mod 2a) if b = c + 2am where m is an integer. 
Let R(b), the residue of b mod @a), be defined as a real number c such that 
-a<c<aandb=c(mod2a).Ifb is a real vector, then R(b) is the vector 
of residues of the components mod (2a). The wrapping up technique is to use 
the random vector R(X). 

We now prove Theorem 1. By convolution with a n-dimensional normal 
random vector if necessary, we may assume without any loss of generality that X 
has an absolutely continuous distribution so that for any real a, c: 

P(Xi = C + f?U) = 0 for m = 0, fl, f2,... (1) 

Take a > 0 and t to be an n x 1 vector of integers tl , t, ,..., ta . By hypothesis 
t’X -f(t) is symmetrical around zero. This and (1) imply that R(t’X -f(t)) 
is symmetrical around zero. Now, 

R(t’X - f(t)) = (R(t’X) - f(t)) mod (2a) 

= (t’R(X) -f(t)) mod (2a) 
(2) 

since t, , tz ,..., t, are integers. 
Since R(t’X -f(t)) is symmetrical around zero and has finite expectation, 

being bounded, 
E(R(t’X - f(t)) = 0. (3) 

By (2) and (3): 

WV(W) - f(Q) = 0 mod(2a). (4) 
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Without any loss of generality we can assume that M = 0, i.e., Xd is sym- 
metrical around zero. This and (1) imply that R(X,) is symmetrical around zero, 
and hence 

E(R(X,)) = 0. (5) 

BY (4) and (5)s 

f(t) = 0 mod(2a). (6) 

Since this is true for all a > 0, f(t) = 0 for all integral t. Then by homogeneity 
f(t) = 0 if t is rational. But f(t) is continuous, and hence, is zero for all t. 
Thus, f (t) = t’M, since M has been assumed to be zero. This proves the second 
part of the theorem. To prove the first part note that E(egtfx) is real since t’X is 
symmetrical around f (t) = 0, and hence 

E[exp(it’( -X))] = E[exp(it’X)] = E[exp(it’X)] 

which implies that -X and X have the same distribution. This completes the 
proof. 

We extend this result to random vectors taking values in a Banach space. 
Now suppose that X and Y take values in B, where B is a Banach space equipped 
with a u-algebra B. Let B* be the topological dual of B, i.e., the set of all 
continuous linear functionals on B. By the weak star topology of B* we mean 
as usual the weak topology induced by B [l, p. 4621. 

Let B, be the Bore1 u-algebra, i.e., B, is the smallest u-algebra containing 
all open sets of B. Let B, be the smallest u-algebra with respect to which all 
t( ), tEB*, are measurable. We shall always assume below that B = B, . 
It is well-known that if B is separable, then B, = B, , (see, e.g., [3]). We will 
say that X has a symmetric distribution around M if 

P(X-MEC) =P(-(X-M)EC) for all C E B, . 

PROPOSITION 1. If M E B is such that t(X) is symmetrically distributed about 
t(M) for all t E B*, then X is symmetrically distributed about M. 

Proof. By symmetry of t(X - M) about zero, 

E[exp(it(X - M))] = E[exp(-it(X - M))] 

i.e., X and -X have the same characteristic functional. The result now follows 
from [3, Property III, p. 2351 f or characteristic functionals. 

LEMMA 2. Let B be a separable Banach space and f ( ) be a linear functional 
on B*, the topological duel of B. Suppose that f( ) is sequentially continuous in 
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the weak star topology of B *. Then there exists M E B such that f(t) = t(M) 
for all t E B*. 

Proof. By [I, Theorem 1, p. 4261, the closed unit ball in B* is met&able. 
Hence, f is weak star-continuous when restricted to the closed unit-ball, and 
thus, f is continuous in the bounded B-topology of B* [I, p. 421. The result 
now follows from the proof of [l, Theorem 6, p. 4281. 

THEOREM 2. If f or ah t E B*, t(X) is symmetrical around f (t), then f is a 
sequentially continuous linear functional on B*, where B* is given its weak star 
topology. Furthermore, zf B is rejexive or separable, then there exists M E B such 
that f (t) = t(M) and X - M has a symmetric distribution. 

Proof. Let c, , ca be real numbers and t, , t, E B*. Let Yi = ti(X) for 
i = 1,2 and let Y’ = (Yi , YJ. By Theorem 1 applied to Y we get 

f ht, + %a = Cl f @I) + C2f @‘A) 

proving that f is a linear functional on B*. Let tt -+ t weakly, i.e., ti(X) -+ t(X) 
for all X E B. Then ti(X) + t(X) everywhere, which implies that f (tJ + f (t), 

i.e., f is weakly sequentially continuous. 
If B is reflexive, the existence of M follows from the fact that weak star 

sequential continuity implies that f is continuous when B* is given its strong 
topology. An application of Proposition 1 now shows that X is symmetrical 
around M. If B is separable, we first apply Lemma 2 to derive the existence of M 
and then apply Proposition 1. This completes the proof. 

Let B** be the strong dual of B*. Since weak star sequential continuity off 
imphes its strong continuity, there exists X** E B** such that f(t) = X**(t). 
Let B be embedded as a closed linear subspace of B** and suppose B** is a 
u-algebra such that B n B** = B, . Then X can be thought of as a random 
vector taking values in B** and (X - X**)(t) has a symmetric distribution 
about zero but in general .X** I# B, and so will not be symmetrical. 

Having established the necessary auxiliary results, we now come to the main 
results. 

THEOREM 3. Suppose X and Y are n x 1 random vectors such that t’Y has 
the same distribution as t’X + f(t) f or all la x 1 real vectors t. Then there exists 
an n x 1 vector M such that X + M and Y have the same distribution. 

Proof. Let Z have the same distribution as -X and be independent of both 
X and Y. Then X + Z is a random vector symmetric about zero. Hence, 
t’(X + Z) is symmetric around zero. On the other hand, by our hypothesis on 
X and Y, t’(X+ 2) + f (t) has same distribution as t’(X + 2). Hence, t’(X + Z) 

683/5/3-z 
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is symmetrical aroundf(t). By Theorem 1 there exists M such thatf(t) = t’M. 
Hence, 

E[exp(it’Y)] = E[exp(it’X + if(t))] = E[exp(it’X + it’M)] 

which proves Theorem 3. 
Using Theorem 2 instead of Theorem 1 we get the following: 

THEOREM 4. If X and Y are random vectors taking values in a Banach space B 
and for all t E B*, t(Y) has same distribution as t(X) + f (t), then f (t) is a linear 
functional on B* and sequentially continuous in the weak star topology. If B is 
separable or rejexive, then there exists M E B such that Y and X + M have the 
same distribution. 

3. SOME UNSOLVED PROBLEMS 

Suppose X and Y are n x 1 random vectors such that t’X and (t’Y) c(t) 
have the same distribution where c(t) > 0. In the spirit of the previous section 
one can ask if this implies that c(t) = c and that X and cY have the same 
distribution. The following example shows that in general the answer is no: 
Let n = 2. Let X have Cauchy density with independent components and let 
Y have a bivariate Cauchy density. Then calculation of the characteristic 
function shows that c(t) = (I tl 1 + / t, I)/(t12 + t22)1/2 [2, p. 4971. 

It would be interesting to characterize all random vectors X for which t’X 
has the same distribution as (t’Y) c(t) for a given random vector Y. Some 
other problems of the same type are discussed below. 

Suppose X is an n x 1 random vector such that the type of distribution of 
t’X does not depend on t, i.e., there exist f(t) and c(t) > 0 such that 

@‘X - f W/c@) h as same distribution as &‘X where t, is a fixed vector. Let 
us take t,‘X = X, , the first component of X. What can we say about the 
distribution of XI In the case where X has a finite dispersion matrix D, the 
answer is provided below: 

Without any loss of generality assume that D is positive definite. Let Y = PX 
where P is a nonsingular matrix. Then there exist f(t) and d(t) > 0 such that 
(t’Y - f (t))/d(t) has same distribution as Y1 - Ml . Choose P such that Y has 
dispersion matrix equal to the identity matrix. Clearly f(t) = t’M where 
M’ = (MI , M, ,..., M,), Mi = E(Y,) and d(t) = (var(t’Y))1/2 = (t12 + t22 + 
-1. + t,2)1/2. Then 

E[exp(it’(Y - M))] = E[exp(i(YI - MI)(t12 + t22 + ... + tfi2)li2)] 

=f(tl” + t,2 + ... + t,“). 
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Hence Y - M has a spherically symmetric distribution. Conversely if Y = PX 
has a spherically symmetric distribution, then t’X and X1 have the same type 
of distribution. 

We now give an example where X does not possess a finite dispersion matrix. 
Take X to be a vector of 7t independent stable random variables X, , X2 ,..., X, 
of the same type. The bivariate Cauchy considered earlier is another example. 
Can we get examples where X is neither stable nor has finite dispersion matrix ? 

Generalizing this problem suppose m is fixed and 1 < m < n. Can one find X 
such that for all m x n matrices L of rank m the distribution of LX is of the 
same type as that of (X1, X2 ,..., Xm) ? We conjecture that the answer is no. 
It is easy to prove this when X has finite dispersion matrix. 

We propose another problem: Suppose X and Y are identically distributed 
random vectors such that for any pair of m x n matrices L, , L, of rank m, there 
exist an m x n matrix L, of rank m such that the distributions of L,X + L,Y 
and L& are of the same type. Can one characterize the distribution of X ? 
For m = n, Parthasarathy [4] has shown that X must be multivariate normal. 
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