Pontryagin–Thom construction for approximation of mappings by embeddings

Peter M. Akhmetiev

IZMIRAN, Troitsk, Moscow Region 142 092, Russia

Received 6 June 2002; received in revised form 19 December 2002

Dedicated to J. Keesling for his 60th birthday

Abstract

Let \(n \geq 3 \) and \(d < \frac{n-3}{2} \) be positive integers, \(f: S^n \to S^n \) be a \(C^0 \)-mapping, and \(J: S^n \subset \mathbb{R}^{2n-d} \) denote the standard embedding. As an application of the Pontryagin–Thom construction in the special case of the two-point configuration space, we construct complete algebraic obstructions \(O(f) \) and \(\bar{O}(f) \) to discrete and isotopic realizability (realizability as an embedding) of the mapping \(J \circ f \). The obstructions are described in terms of stable (equivariant) homotopy groups of neighborhoods of the singular set \(\Sigma(f) = \{(x, y) \in S^n \times S^n \mid f(x) = f(y), \ x \neq y \} \).

A standard method of solving problems in differential topology is to translate them into homotopy theory by means of bordism theory and Pontryagin–Thom construction. By this method we give a generalization of the van-Kampen–Skopenkov obstruction to discrete realizability of \(f \) and the van-Kampen–Melikhov obstruction to isotopic realizability of \(f \). The latter are complete only in the case \(d = 0 \) and are the images of our obstructions under a Hurewicz homomorphism.

We consider several examples of computation of the obstructions.

MSC: 55Q45; 54C25; 55Q25

Keywords: Embedding; Stable mapping; Bordism

© 2003 Published by Elsevier B.V.
1. Introduction

Let \(f : S^n \to \mathbb{R}^{2n-d} \) be an arbitrary continuous mapping. We assume that the mapping \(f \) is in the metastable range, i.e., \(0 \leq d \leq \frac{n-3}{2} \), and that \(n \geq 3 \) (the latter condition is to ensure codimension three).

Definition 1.1. We shall call a mapping \(f : S^n \to \mathbb{R}^{2n-d} \) discretely realizable if for arbitrary \(\varepsilon > 0 \) there exists an embedding \(g : S^n \to \mathbb{R}^{2n-d} \) such that \(\text{dist}_{C^0}(f, g) < \varepsilon \).

Definition 1.2. We shall call a mapping \(f : S^n \to \mathbb{R}^{2n-d} \) isotopically realizable if there exists a continuous homotopy \(F : S^n \times [0; 1] \to \mathbb{R}^{2n-d} \) such that the following conditions hold:

(i) \(f \) coincides with the restriction \(F|_{S^n \times \{0\}} : S^n \times \{0\} \to \mathbb{R}^{2n-d} \);
(ii) the restriction \(F|_{S^n \times (0; 1]} : S^n \times (0; 1] \to \mathbb{R}^{2n-d} \) is a smooth isotopy (in particular, \(F|_{S^n \times \{t\}} \) is a smooth embedding for \(0 < t \leq 1 \)).

The following result shows that discrete realizability does not imply isotopic realizability.

Theorem (Melikhov [17]; see also [6]). There exists a mapping \(f : S^3 \to \mathbb{R}^6 \) that is discretely realizable but not isotopically realizable.

In the present paper we describe algebraically a complete obstruction \(\tilde{O}(f) \) to discrete realizability and a complete obstruction \(O(f) \) to isotopic realizability of an arbitrary smooth mapping \(f \) in the metastable range, developing an approach of Skopenkov (see [22,6]). Our main results are stated in Section 3.

If \(f : S^n \to \mathbb{R}^{2n-d} \) is given, or assumed to lie in a given class of mappings, we call the question of discrete (isotopic) realizability of \(f \) the Discrete (Isotopic) Realization Problem. The solution of the Discrete Realization Problem is related to computation of stable homotopy groups of spheres, see [5]. Let us state the basic algebraic tasks and recall some results concerning these notions.

We introduce a non-negative integer valued function \(d(n) \) and an integer multivalued function \(N(d) \) as follows. Let us consider the space \(A(n,d) \) of mappings \(f : S^n \to \mathbb{R}^{2n-d} \) that factor into the composition of a continuous mapping \(g : S^n \to S^n \) and the standard embedding \(I_{n,d} : S^n \subset \mathbb{R}^{n+1} \subset \mathbb{R}^{2n-d} \).

Definition 1.3. Let \(d(n) \) denote the maximal integer such that an arbitrary mapping \(f \in A(n,d(n)) \) is discretely realizable.

Definition 1.4. Let \(N(d) \) denote the set of positive integers \(n \) such that an arbitrary mapping \(f \in A(n,d) \) is discretely realizable.
Problem 1.5 (Asymptotic Discrete Realization Problem). Find the set \(N(d) \) and the function \(d(n) \). In particular, compute the maximal \(d \) such that the complement to \(N(d) \) (in the set \(\mathbb{N} \) of nonnegative integers) is a finite set, and describe the set \(N(1) \).

Theorem 1.6 [5,3]. (i) \(N(0) \) contains all integers except 1, and possibly 2, 3, 7.\(^1\)
(ii) \(d(n) \) has no upper bound.

Remark. The proof of (ii) is not elementary and is based on the Cohen immersion theorem [10]: an arbitrary smooth \(m \)-manifold can be immersed in \(\mathbb{R}^{2n-\alpha(n)} \), where \(\alpha(n) \) is the number of units in the dyadic expansion of \(n \).

Definition 1.7. We say that a smooth mapping \(f : S^n \to S^n \) is generic if associated mapping \(f \times f : S^n \times S^n \to S^n \times S^n \) is transversal along the diagonal \(\Delta \subset S^n \times S^n \) and the singular set \(\Sigma_f \subset S^n \times S^n \setminus \Delta \) is homeomorphic to the interior of a smooth compact manifold with boundary. (Here \(\Delta \) denotes the diagonal \(\{(x,x) | x \in S^n\} \) and \(\Sigma_f = \{(x,y) | x \neq y, f(x) = f(y)\} \).

Remark 1.8. An arbitrary stable mapping \(f : S^n \to S^n \) is generic. (The mapping \(f \) is called stable if there exists an \(\varepsilon > 0 \) such that an arbitrary mapping \(g : S^n \to S^n \) with \(\text{dist}_{\mathcal{C}_\infty}(f,g) < \varepsilon \) is equivalent to \(g \) via some diffeomorphisms in the domain and the range. For the properties of stable \(\mathcal{C}_\infty \)-mappings see, e.g., [8].)

The following conjecture yields an affirmative (particular) answer to the problem in [4].

Conjecture 1.9. Suppose that \(d \leq \frac{n-3}{2} \), and let \(f \in A(n,d) \) be a discretely realizable generic smooth mapping. Then \(f \) can be arbitrarily \(C^1 \)-closely approximated by a smooth embedding. (That is, for arbitrary \(\varepsilon > 0 \) there exists a smooth embedding \(g : S^n \to \mathbb{R}^{2n-d} \) such that \(\text{dist}_{C_1}(f,g) < \varepsilon \) where \(\text{dist}_{C_1} \) denotes distance with respect to values and first partial derivatives.)

Moreover, the mapping \(f \) is a Prem-mapping, i.e., the embedding \(g \) can be taken “strictly above” \(f \) with respect to the projection \(\pi : \mathbb{R}^{2n-d} \setminus \{0\} \to I_{n,d}(S^n) \), more precisely, \(\pi \circ g = I_{n,d} \circ f \).

The following two conjectures can make the present paper interesting to the general audience.

Conjecture 1.10. There exists a generic immersion \(f : S^7 \to \mathbb{R}^{11} \) such that the composition of \(f \) with the inclusion \(\mathbb{R}^{11} \subset \mathbb{R}^{13} \) is discretely realizable but not \(C^1 \)-approximable by embedding.

\(^1\) In [2, Theorem 3] examples of mappings \(S^3 \to S^3, S^7 \to S^7 \) was constructed. The author claimed that the mappings are not discretely realizable in \(\mathbb{R}^6 \) and \(\mathbb{R}^{14} \). The proof of Lemma 27 contains a gap: the subgroups \(K_1 \) and \(K_2 \), generally speaking, are different.
Conjecture 1.11. There exists a mapping \(f : S^n \to \mathbb{R}^{2n-1}, \) \(n \) is sufficiently large, that is discretely but not isotopically realizable, although the first (cohomological) obstruction \(o(f) \) to isotopic realizability is trivial. (The obstruction \(o(f) \) was defined in [6] and is the image of \(O(f) \) under a Hurewicz homomorphism; see Section 3 for more details.)

This mapping is detected by the total obstruction \(O(f) \) as well as by the equivariant analog of the first-order functional operation \(Sq^2 \) in the Steenrod–Sitnikov cohomology group. (S.A. Melikhov has previously constructed a similar example \(S^9 \to \mathbb{R}^{13} \) using different arguments [18], but his technique fails to produce such an example \(S^n \to \mathbb{R}^{2n-d} \) with \(d < 5 \).

However, in general, the case \(f \in A(n, d) \) seems to be more important. This case could be considered as a dynamical system on the standard sphere. In particular, our results give a solution of the Daverman Problem and a particular solution of the Generalized Daverman Problem.

Definition 1.12. We say a metric compactum \(X \) is \(S^n \)-like if for any \(\varepsilon > 0 \) there is an \(\varepsilon \)-mapping \(f : X \to S^n \) of the compactum into the standard sphere of dimension \(n \).

Problem 1.13 (Daverman Problem, [11, Problem E16]). Is it true that an arbitrary \(S^n \)-like compactum can be embedded in the space \(\mathbb{R}^{2n} \)?

For the Generalized Daverman Problem see [3,5].

One can define analogous obstructions \(O(f), \tilde{O}(f) \) in the case of mapping \(f : T^n \to T^n \subset \mathbb{R}^{2n-d} \). By a result of Keessling and Wilson, the obstruction \(\tilde{O}(f) \) in the case \(f : T^n \to T^n \subset \mathbb{R}^{2n}, \ n = 3, 7 \) is trivial, see [15]. These considerations give rise to a new relationship between Topological Dynamics and Stable Homotopy Theory which is a subject of investigation in a further paper.

2. Preliminary constructions

This chapter is organized as follows. In Section 2.1 we recall a definition of the framed bordism group \(\Omega_m^{fr}(X, A) \), where \((X, A) \) is an arbitrary pair of CW-complexes. In fact, this framed bordism group is nothing but the \(m \)th stable homotopy group of the pair \((X, A) \). In Section 2.3 we introduce an equivariant analogue \(\Omega_m^{sf(k)}(X, A; G) \) of this group, where \(k \) is a positive integer and \(G \in [X; \mathbb{R}P^\infty] \) a given mod 2 cohomology class. The abbreviation \(sf \) stands for “skew framing” by means of \(k \) copies of the (possibly non-oriented) line bundle associated with \(g \). Next, for a finite dimensional compactum \(X \) we define the “Steenrod–Sitnikov skew-framed bordism group” \(\Omega_m^{sf(k)}(X; G) \) (Section 2.6), which is an extraordinary equivariant version of the usual Steenrod–Sitnikov homology group. (Since for \(X \) a CW-complex this coincides with the previous group, we use the same notation.)

We also consider the “Čech skew-framed bordism group” \(\tilde{\Omega}_m^{sf(k)}(X; G) \) (Section 2.8) and the derived limit associated with a sequence of neighborhoods of \(X \) (Section 2.9). These three groups \(\Omega_m^{sf(k)}(X; G), \tilde{\Omega}_m^{sf(k)}(X; G), \lim_{\to} \Omega_m^{sf(k)}(X_i; G) \) are related by a short exact
sequence. In addition, we have Hurewicz homomorphisms from these framed bordism groups to homology groups with local coefficients.

We assume all manifolds to be C^1-smooth and all mappings between manifolds to be C^1-smooth.

2.1. The framed bordism group $\Omega^fr_m(X, A)$

Let M^m be an oriented compact m-manifold (possibly not connected and with non-empty boundary ∂M). We denote by $\nu(M)$ the sable normal bundle over M, i.e., the bundle (up to the stable equivalence) determined by the regular neighbourhood of a smooth embedding $M \subset \mathbb{R}^k$, $k \gg m$. Let Σ be a framing of the stable normal bundle over M, i.e., an isomorphism $\Sigma : s \epsilon \cong \nu(M)$, where s is a positive integer, $s > m$, and ϵ denotes the trivial line bundle over M. (Clearly, existence of such an isomorphism implies that M is stably parallelizable. Also we assume that the isomorphism Σ corresponds with the orientation of the stable normal bundle and the canonical orientation of the framing.) We do not exclude the possibility $M = \emptyset$.

Let (X, A) be a pair of CW-complexes, let us consider the monoid $O^fr_m(X, A)$ formed by triples (M, ϕ, Σ), where M^m is as above, $\phi : (M, \partial M) \to (X, A)$ is a continuous mapping and Σ is a framing of M. The monoid operation is given by disjoint union. A triple (M, ϕ, Σ) is said to be null-bordant if there exist:

- an oriented compact manifold pair (W, V) such that $\partial W = M \cup_{\partial M} V$;
- a framing Ψ of the normal bundle of W such that $\Psi|_M = \Sigma$;
- a mapping $\chi : (W, V) \to (X, A)$ such that $\chi|_M = \phi$.

Two triples (M_0, ϕ_0, Σ_0) and (M_1, ϕ_1, Σ_1) are said to be bordant if the triple $(M_0 \cup (-M_1), \phi_0 \cup \phi_1, \Sigma_0 \cup \Sigma_1)$ is null-bordant, where $-M_1$ denotes M_1 with reversed orientation. The quotient of $O^fr_m(X, A)$ by the equivalence relation of bordism is an Abelian group, which we denote by $\Omega^fr_m(X, A)$. (The inverse element is determined by reversing of the orientation.)

By the Pontryagin–Thom construction we have $\Omega^fr_m(S^0, pt) = \Pi_m$, where $\Pi_m = \lim_{s \to \infty} \pi_{m+s}(S^s)$ is the mth stable homotopy group of spheres. This construction was presented in [20]. For the generalization of the Pontryagin–Thom construction in case of an arbitrary cobordism theory see [23]. We will use the special case of the construction in the next section. Moreover, $\Omega^fr_m(X, A) = \lim_{s \to \infty} \pi_{m+s}(E^s X, E^s A)$, where E^s is the standard s-suspension, see [9]. In the case where $A = pt \in X$, we have $\Omega^fr_m(X, pt) = \lim_{s \to \infty} \pi_{m+s}(E^s X, pt)$. The latter is the mth stable homotopy group of the pointed space X.

In the next section we introduce a local coefficient system which will be used later to generalize the group Ω^fr_m to an equivariant setting.

2.2. Homology and bordism with local coefficients

Given a CW-complex X and a cohomology class $G \in H^1(X; \mathbb{Z}/2)$, we define a left $\mathbb{Z}\pi$-module O_G, where $\pi = \pi_1(X)$, by the following action of π on the group \mathbb{Z}.
of integers: \(f \mapsto (-)^{G,h(f)} \) where \(f \in \pi \), the bracket denotes the canonical pairing between homology and cohomology, \(h \) denotes the Hurewicz homomorphism \(h: \pi = \pi_1(X) \to H_1(X; \mathbb{Z}) \to H_1(X; \mathbb{Z}/2) \), and \((-)^{}\) stands for the nontrivial automorphism of \(\mathbb{Z} \) (multiplication by \(-1\)).

This defines a local coefficient system \(\mathcal{O}_G \) on the space \(X \). We recall that there is a canonical bijection between \([X, \mathbb{R}P^\infty] \) and \(H^1(X; \mathbb{Z}/2) \), which is given by \([g] \mapsto g^*(G_{\mathbb{R}P^\infty})\), where \(g: X \to \mathbb{R}P^\infty = K(\mathbb{Z}/2, 1) \) is a mapping and \(G_{\mathbb{R}P^\infty} \) denotes the generator of \(H^1(\mathbb{R}P^\infty; \mathbb{Z}/2) = \mathbb{Z}/2 \). Therefore \(\mathcal{O}_G \) can be equivalently defined as the inverse image (in the sense of sheaf theory) \(g^*\mathcal{O}_{G_{\mathbb{R}P^\infty}} \) of the standard local coefficient system on \(\mathbb{R}P^\infty \), where \(g \) is any representative of the homotopy class corresponding to \(G \).

As usual, the chain complex of a pair \((X, A)\) of CW-complexes with coefficients in \(\mathcal{O}_G \) is defined by \(C_*(X, A; G) = C_*(X, A; \mathbb{Z}) \otimes_{\mathbb{Z}_G} \mathcal{O}_G \) where \((\tilde{X}, \tilde{A})\) denotes the universal cover. The homology groups of this chain complex are denoted by \(H_*(X, A; G) \). They are isomorphic to the equivariant homology groups \(H^*_G(X, A; \mathbb{Z}) \) where \((\tilde{X}, \tilde{A})\) is the 2-cover of \((X, A)\) associated with \(G \), and \(\mathbb{Z}/2 \) acts on \(\tilde{X} \) by exchanging the sheets and on the coefficients \(\mathbb{Z} \) by \(1 \leftrightarrow (-1) \). The cover \(\tilde{X} \to X \) is well defined by the following homomorphism \(G \circ h: \pi_1(X) \to H_1(X) \to \mathbb{Z}/2 \), where \(G \in \text{Hom}(H_1(X); \mathbb{Z}/2) \simeq H^1(X; \mathbb{Z}/2) \).

If \(X \) is a connected \(m \)-manifold with boundary \(\partial X = A \), we say that \(X \) is \(G \)-orientable if \(H_m(X, A; G) = \mathbb{Z} \), in which case a choice of generator of this group is called a \(G \)-orientation of \(X \). More generally, a manifold is called \(G \)-orientable if each connected component \(M \) is \(G|M \)-orientable, and a \(G \)-orientation consists of \(G|M \)-orientations of all connected components \(M \). In other words, a \(G \)-orientable manifold is a manifold where orientation is reversed along those and only those paths whose classes in \(\pi \) act nontrivially on the \(\mathbb{Z}_G \)-module \(G \).

Given a cohomology class \(G \in H^1(X; \mathbb{Z}/2) \), one may consider the (non-framed) bordism theory of pairs \((M, \varphi)\) where \(\varphi: (M, \partial M) \to (X, A) \) is a mapping of a \(\varphi^*(G) \)-orientable manifold \(M \). In the next section this equivariant bordism theory will be enriched by an equivariant framing.

2.3. Skew-framed bordism group \(\Omega^s_m(k) (X, A; G) \)

Let \(M \) be a compact \(m \)-manifold, possibly non-connected and with non-empty boundary, \(k \) a nonnegative integer, and \(\kappa \) the \(1 \)-dimensional vector bundle over \(M \) associated with a given cohomology class \(G \in H^1(M; \mathbb{Z}/2) \). (That is, \(\kappa = \tilde{g}^*\gamma \) where \(\gamma \) denotes the canonical line bundle over \(\mathbb{R}P^\infty \) and \(\tilde{g}: X \to \mathbb{R}P^\infty \) is any representative of \(G \).) We define a skew \(k \)-framing of \(M \) (with respect to \(G \)) to be a choice of \(kG \)-orientation of \(M \) together with a \(kG \)-orientation preserving isomorphism \(\xi: v(M) \simeq k\kappa \oplus s\varepsilon \) of the stable normal bundle \(v(M) \) with the Whitney sum of \(k \) copies of the line bundle \(\kappa \), up to \(s \) copies of the trivial line bundle \(\varepsilon \).

Let \((X, A)\) be a pair of CW-complexes, equipped with a cohomology class \(G \in H^1(X; \mathbb{Z}/2) \). We consider the monoid \(\Omega^s_m(k) (X, A; G) \) formed by triples \((M, \varphi, \xi)\), where \(M \) is as above, \(\varphi: (M^m, \partial M) \to (X, A) \) is a continuous mapping, and \(\xi \) is a skew \(k \)-framing of \(M \) with respect to \(G = \varphi^*(G) \). The monoid operation is given by disjoint union of mappings. We call a triple \((M, \varphi, \xi)\) null-bordant, if there exist:
– a compact manifold pair \((W, V)\) such that \(\partial W = M \cup_{\partial M = \partial V} V\);
– a mapping \(\chi : (W, V) \rightarrow (X, A)\) such that \(\chi|_M = \psi\);
– a skew \(k\)-framing \(\Psi\) of the normal bundle of \(W\) with respect to \(\chi^*(G)\) such that \(\Psi|_M = \Sigma\).

Two triples \((M_0, \psi_0, \Sigma_0)\) and \((M_1, \psi_1, \Sigma_1)\) are said to be bordant if the triple \((M_0 \sqcup M_1, \psi_0 \cup \psi_1, \Sigma_0 \sqcup (\Sigma_1))\) is null-bordant, where \(-\Sigma_1\) denotes \(\Sigma_1\) with reversed \(k\psi_1^*\)\((G)\)-orientation. The quotient of \(O^s_m(X; A; G)\) by the equivalence relation of bordism is an Abelian group, which we denote by \(\Omega^s_m(X; A; G)\). (The inverse element is determined by reversing of the \(k\psi^*(G)\)-orientation.) In the case \(A = \emptyset\) we define the absolute (non-reduced) skew-framed bordism group \(\Omega^s_m(X; G) := \Omega^s_m(X; \emptyset; G)\).

Clearly, if \(g\) is trivial, \(\Omega^s_m(X; A; G) = \Omega^s_m(X, A)\). In the case \(g \neq 0\) by the straightforward generalization we obtained the following construction. Let \(G_{\mathbb{R}P^\infty}\) denote the generator of \(H^1(\mathbb{R}P^\infty; \mathbb{Z}/2)\), then \(\Omega^s_m(\mathbb{R}P^\infty; G_{\mathbb{R}P^\infty}) = \lim_{s \rightarrow \infty} \pi_{m+s}((E^G\mathbb{R}P^\infty_{k-1})\).

where the truncated projective space \(\mathbb{R}P^\infty_{k-1}\) is defined to be \(\mathbb{R}P^\infty / \mathbb{R}P^{k-1}\). This group plays a similar role to the role played by the bordism group of a point in non-equivariant bordism theories. Moreover,

\[
\Omega^s_m(X; A; G) = \lim_{s \rightarrow \infty} \pi_{m+s}((E^G(\mathbb{R}P^\infty_{k-1} \times G X), E^G(\mathbb{R}P^\infty_{k-1} \times G|_A A))).
\]

Here \(\mathbb{R}P^\infty_{k-1} \times_G X\) denotes \(((S^\infty/\Sigma^{k-1}) \times \tilde{X})/T\) where \(\tilde{X}\) is the double cover of \(X\) corresponding to the kernel of \(\pi_1(X) \rightarrow H_1(X; \mathbb{Z}) \rightarrow H_1(X; \mathbb{Z}/2) \rightarrow \mathbb{Z}/2\) (evaluation of \(G\)), and \(T\) is the diagonal involution.

In particular, \(\Omega^s_m(E^G\mathbb{R}P^\infty_{k-1})\), because \(T(k\eta) = \mathbb{R}P^\infty_{k-1}\), where \(T(k\eta)\) is the Thom space of the \(k\)-dimensional bundle splitted into the direct sum of \(k\) isomorphic line bundles.

2.4. Equivariant Hurewicz homomorphism

It is well-known that the ordinary homology theory (with integral coefficients) of CW-complexes is isomorphic to the bordism theory of singular (non-framed) oriented pseudo-manifolds. We recall that an orientable \(m\)-pseudo-manifold \((P, \partial P)\) is a compact polyhedron that can be triangulated by a finite simplicial complex \((K, L)\) where each simplex is a face of some \(m\)-simplex, the union of the interiors of \(m\)-simplices and \((m-1)\)-simplices is connected, and the \(m\)-simplices of \(K\) can be oriented so that their algebraic sum is a \(\mathbb{Z}\)-cycle (with respect to the simplicial chain complex of the pair \((K, L)\)). An orientation of an orientable \(m\)-pseudo-manifold \((P, \partial P)\) is a choice of generator in \(H_m(P, \partial P; \mathbb{Z}) \simeq \mathbb{Z}\). Finally, a singular oriented \(m\)-pseudo-manifold, or geometric \(m\)-cycle (with integral coefficients) on a CW-complex \(X\) is a mapping \(\psi : (\sqcup P_i, \sqcup \partial P_i) \rightarrow (X, A)\) of disjoint union of a finite number of oriented \(m\)-pseudo-manifolds into \(X\). This description immediately yields the Hurewicz homomorphism

\[
\gamma : \Omega^s_m(X, A) \rightarrow H_m(X, A; \mathbb{Z})
\]

which factors through the ordinary (non-framed) bordism group.
We define an (oriented) geometric \(m \)-cycle with coefficients in a locally constant sheaf \(\mathcal{O} \) analogously, referring to \(\varphi^* \mathcal{O} \)-cycles instead of \(\mathbb{Z} \)-cycles. The corresponding bordism theory clearly yields the homology groups with coefficients in \(\mathcal{O} \). In particular, this leads to the equivariant Hurewicz homomorphism

\[
\gamma : \Omega^k_m(X, A; G) \to H_m(X, A; kG)
\]

where \(kG \in H^1(X; \mathbb{Z}/2) \) is trivial if \(k \) is even, and equals \(G \) if \(k \) is odd. This homomorphism factors through the non-framed equivariant bordism group discussed in the end of Section 2.2.

2.5. Reduced skew-framed bordism group \(\widetilde{\Omega}^k_m(X; G) \)

It turns out that the standard decomposition \(\Omega^k_m(X) \cong \Omega^k_m(pt) \oplus \Omega^k_m(X, pt) \) does not extend literally to the equivariant case, since a mapping \(g : X \to K(\mathbb{Z}/2, 1) \) does not factor through the point \(pt \) unless it is inessential. This leads to the following definition.

Let us consider the monoid \(\widetilde{\Omega}^k_m(X; G) \) formed by triples \((M, \varphi, \Xi)\) where \(\varphi : M \to X \) is a mapping of a closed \(m \)-manifold \(M \) with a skew \(k \)-framing \(\Xi \) with respect to \(\varphi^*(G) \), which is a skew \(k \)-framed boundary, i.e., we assume that there exists a compact manifold \(W^{m+1}, \partial W = M \), a class \(F \in H^1(W; \mathbb{Z}/2) \) such that \(F|_M = \varphi^*(G) \), and a skew \(k \)-framing \(\Psi \) of \(W \) with respect to \(F \) such that \(\Psi|_M = \Xi \). Defining bordism in the standard way, we arrive at the reduced skew-framed bordism group \(\widetilde{\Omega}^k_m(X; G) \), which is isomorphic to the kernel of \(g_* : \Omega^k_m(X, G) \to \Omega^k_m(\mathbb{RP}^\infty; G_{\mathbb{RP}^\infty}) \) where \(g : X \to \mathbb{RP}^\infty \) is a representative of \(G \).

Clearly, in the case of trivial \(G \), the groups \(\Omega^k_m(X, A) \) and \(\widetilde{\Omega}^k_m(X/A) \) are canonically isomorphic (using standard arguments of homotopy theory). In the case of non-trivial \(G \), this generalizes to a canonical isomorphism

\[
\Omega^k_m(X, A; G) \cong \widetilde{\Omega}^k_m(X \cup \text{cyl}(g|_A); [g \cup \pi])
\]

where \(g : X \to \mathbb{RP}^\infty \) is a representative of \(G \), and \(\pi : \text{cyl}(g|_A) \to \mathbb{RP}^\infty \) denotes the projection of the space \(\text{cyl}(g|_A) = A \times [0; 1] \cup g|_A \times \{0\} \subset \mathbb{RP}^\infty \). (Clearly, \(\mathbb{RP}^\infty \) can be replaced by \(\mathbb{RP}^{m+1} \).) This isomorphism can be defined by

\[
[(M, \varphi, \Xi)] \mapsto [(\partial(M \times I), \varphi|_{M \times 0} \cup \psi|_{\partial M \times I} \cup \psi|_{M \times 1} \times I|_{\partial M \times I})]
\]

where \(\psi \) denotes the obvious map

\[
\psi : \text{cyl}(\partial M \subset M) \to \text{cyl}(g|_A).
\]

In particular, if \(g|_A \) induces monomorphisms of homotopy groups up to dimension \(m + 1 \), there is a canonical isomorphism

\[
I : \Omega^k_m(X, A; G) \cong \widetilde{\Omega}^k_m(X; G).
\]

2.6. Steenrod–Sitnikov skew-framed bordism group

The applications of extraordinary Steenrod homology groups (at least in non-equivariant setting) have been considered long before, see [13] and references there. We will formulate the corresponded definition in terms of the Pontryagin–Thom construction.
Let \((X, A)\) be an arbitrary pair of finite dimensional compacta, \(g : X \to \mathbb{R}P^\infty\) be a mapping representing the given 1-dimensional mod 2 cohomology class \(G\). By Pontryagin–Nobeling theorem an arbitrary compactum \(X\) is embeddable into \(\mathbb{R}^{2n+1}\), see [21]. Without loss of generality (up to homotopy) we may assume that \(g\) factors as \(g = I \circ g'\); \(X \subset \mathbb{R}P^N \subset \mathbb{R}P^\infty\), where \(g'\) is an embedding, \(I : \mathbb{R}P^N \subset \mathbb{R}P^\infty\) is the standard inclusion and \(N \geq 2\dim X + 1\) is a fixed integer.

We introduce the group \(\Omega^m_{sf}(X, A; G)\) for arbitrary pair \((X, A)\) of finite dimensional compacta equipped with an embedding \(g : X \to \mathbb{R}P^\infty\) such that the image is contained in a finite dimensional projective subspace. Our definition will be independent from the choice of the embedding \(g\), since any two homotopic embeddings with images in a finite dimensional projective space are ambient isotopic in \(\mathbb{R}P^\infty\). If \((X, A)\) is homeomorphic to a pair of CW-complexes, this group coincides with the skew-framed bordism group defined in Section 2.3, and we will use the same notation for both groups.

Let us consider a triple \((M, \varphi, \Xi)\), where \(M\) is an \((m + 1)\)-manifold (possibly non-compact, non-connected and with boundary, which is possibly non-compact and non-connected), \(\varphi : M \to \mathbb{R}P^\infty \setminus g(X)\) is a continuous proper mapping such that the restriction \(\varphi|_{\partial M}\) is a proper mapping \(\partial M \to \mathbb{R}P^\infty \setminus g(A)\), and \(\Xi\) is a skew \(k\)-framing of \(M\) with respect to \([\varphi]\). Notice that in the case \(A = \emptyset\) the requirement on \(\varphi|_{\partial M}\) amounts to requiring that \(M\) have a compact boundary. These triples form a monoid with respect to disjoint union of mappings. Bordism of two triples \((M_\pm, \varphi_\pm, \Xi_\pm)\) is defined in the standard way (in particular, if \(A = \emptyset\) and \(\partial M_\pm = \emptyset\), a bordism \((W, \chi, \Psi)\) between these two triples may have \(\partial W = M_+ \cup M_- \cup N\) where \(N\) is an arbitrary compact manifold). The corresponding quotient of this monoid is denoted by \(\Omega^m_{sf}(X, A; G)\). Notice that any triple \((M, \varphi, \Xi)\) with compact \(M\) is null-bordant in the sense of this definition.

Thus, in particular, nontrivial elements of the absolute group \(\Omega^m_{sf}(X; \emptyset; G) := \Omega^m_{sf}(X, \emptyset; G)\) are represented by non-compact \((m + 1)\)-manifolds \(M\) with compact boundary, skew \(k\)-framed with respect to a proper mapping of \(M\) into \(\mathbb{R}P^\infty \setminus g(X)\). Bordism between such representatives is defined in the standard way, using an \((m + 2)\)-manifold \(W\) whose boundary consists of \(M_+\), \(M_-\) and a compact bordism between their boundaries.

It will be convenient to have the following reformulation of this definition. Let
\[
\mathbb{R}P^\infty = U_0 \subset U_1 \subset \cdots \subset \bigcap_{i=0}^{\infty} U_i = g(X)
\]
\[
\mathbb{R}P^\infty = V_0 \subset V_1 \subset \cdots \subset \bigcap_{i=0}^{\infty} V_i = g(A)
\]
be an infinite system of open neighborhoods of the pair \((g(X), g(A))\) in \(\mathbb{R}P^\infty\). We assume that each \((U_i, V_i), i > 0\) is homotopy equivalent to a finite CW-pair. Then every element of \(\Omega^m_{sf}(X, A; G)\) can be represented by a triple \((M, \varphi, \Xi)\) such that \(\varphi(M_i, M_i \cap \partial M) \subset (U_i, V_i)\) for each \(i\), where
\[
M = M_0 \supset M_1 \supset M_2 \supset \cdots \supset \bigcap_{i=0}^{\infty} M_i = \emptyset
\]
is a sequence of closed neighborhoods of infinity that are submanifolds of \(M\) (i.e., the \(M_i\)’s are closures of complements to compact submanifolds).
Thus we can assume that each element of $\Omega_{m}^{sf}(X, A; G)$ is represented by a triple $([M_1], \varphi, \Xi)$ where M_0 is a (possibly non-compact, non-connected and with boundary) $(m + 1)$-manifold, each M_{i+1} is a closed neighborhood of infinity that is a submanifold of M_i, $\varphi: M_0 \to \mathbb{RP}^\infty$ is a mapping such that $\varphi(M_i, M_i \cap \partial M_i) \subset (U_i, V_i)$ for each i (we do not require that $\varphi(M_0) \cap g(X) = \emptyset$ since this can be achieved by general position, using that $g(X)$ is contained in a finite dimensional subspace), and Ξ is a skew framing of M_0 with respect to $\varphi^*(G_{\mathbb{RP}^\infty})$. Bordism of two such triples is defined in the straightforward way.

The reduced subgroup $\tilde{\Omega}_{m}^{sf}(X; G)$ contains only those elements that can be represented by triples (M, φ, Ξ) with $\partial M = \emptyset$, and coincides with the kernel of the homomorphism $g_* : \Omega_{m}^{sf}(X; G) \to \Omega_{m}^{sf}(\mathbb{RP}^\infty; G_{\mathbb{RP}^\infty})$, which can be geometrically described as $[(M, \varphi, \Xi)] \mapsto [(\partial M, \varphi|_M, \Xi|_M)]$.

2.7. Čech skew-framed bordism group

Let (X, A) be a pair of finite dimensional compacta, $g : X \to \mathbb{RP}^\infty$ an embedding with image contained in a finite dimensional projective subspace, and assume that the complement $\mathbb{RP}^N \setminus g(X)$ of the compactum in the projective space is equipped with a stratification (1). The Čech skew-framed bordism group $\hat{\Omega}_{m}^{sf}(X, A; G)$, where $G = g^*(G_{\mathbb{RP}^\infty}) \in H^1(X; \mathbb{Z}/2)$, is defined to be the inverse limit

$$\hat{\Omega}_{m}^{sf}(X, A; G) := \lim_{\leftarrow} \Omega_{m}^{sf}(U_i, V_i; G_i)$$

where G_i denotes $G_{\mathbb{RP}^\infty}|_{U_i}$, and bonding maps are induced by the inclusions $(U_{i+1}, V_{i+1}) \subset (U_i, V_i)$.

The absolute group $\Omega_{m}^{sf}(X; G) := \Omega_{m}^{sf}(X, \emptyset; G)$ can be equivalently defined as $\lim_{\leftarrow} \Omega_{m}^{sf}(U_i; G_i)$. Let us give an explicit description of this group. We may consider an element of $\hat{\Omega}_{m}^{sf}(X; G)$ as the bordism class of a triple $([L_i], \varphi_i, \Xi_i)$, obtained from a triple $([M_i], \varphi, \Xi)$ considered in Section 2.6 (with compact ∂M_0) by setting $L_i = \partial M_i$, $\varphi_i = \varphi|_{L_i}$, and $\Xi_i = \Xi|_{L_i}$.

The reduced subgroup $\tilde{\Omega}_{m}^{sf}(X; G)$ contains only those elements of the inverse limit that are trivialized in the first group $\Omega_{m}^{sf}(U_0; G_0)$ of the inverse spectrum.

2.8. Derived limit $\tau_{m+1}^{sf}(X; G)$ and Milnor exact sequence

Let $\tau_{m+1}^{sf}(X; G)$ denote the derived limit $\lim_{\leftarrow} \Omega_{m+1}^{sf}(U_i; G_i)$ of the inverse spectrum considered in the previous section. Let us describe this group geometrically. Represent an element of the direct product of the groups $\Omega_{m+1}^{sf}(U_i; G_i)$ by a collection of triples $(M_i, \varphi_i, \Xi_i), i \in \mathbb{N}$. Two such collections $(M_i^\pm, \varphi_i^\pm, \Xi_i^\pm)$ represent the same element of the derived limit if and only if there exists a (possibly noncompact) manifold W with boundary

$$\partial W = N \cup \bigcup_{i=1}^{\infty} (M_i^+ \cup M_i^-),$$
where \(N \) is compact, a mapping \(\chi : W \to \mathbb{R}P^\infty \) that restricts to \(\varphi_i^\pm \) over each \(M_i^\pm \) and takes sufficiently small neighborhoods of infinity in \(W \) into arbitrary small neighborhoods of \(g(X) \), and a skew \(k \)-framing \(\Psi \) of \(W \) that restricts to \(\pm \Xi_i^\pm \) over each \(M_i^\pm \).

The three groups constructed above (for simplicity we assume \(A = \emptyset \)) fit into the short exact sequence

\[0 \to \Gamma_{m+1}^{d(k)}(X; G) \to \Omega_{m}^{d(k)}(X; G) \to \hat{\Omega}_{m}^{d(k)}(X; G) \to 0. \]

This follows directly from the definitions. The analogous sequences are well known for arbitrary (extraordinary) homology theory (see [14] and references in [17]). One can analogously define Steenrod–Sitnikov and Čech homology with coefficients in the local system \(O_G \), namely:

\[H_m(X; G) := H^{st}_{m}(C_*(U_i; G_i)); \quad \hat{H}_m(X; G) := \lim_{\leftarrow} H_m(U_i; G_i). \]

Then we arrive at the following commutative diagram with exact rows, see [14]:

\[
\begin{array}{cccccc}
0 & \to & \Gamma_{m+1}^{d(k)}(X; G) & \to & \Omega_{m}^{d(k)}(X; G) & \to & \hat{\Omega}_{m}^{d(k)}(X; G) & \to & 0 \\
0 & \to & \lim^{1} H_{m+1}(U_i; kG_i) & \to & H_{m}(X; kG) & \to & \hat{H}_{m}(X; kG) & \to & 0 \\
\end{array}
\]

2.9. The derived limit functor \(\lim^{1} \)

Let \(p_{i+1} : \Omega_{m+1}^{d(k)}(U_{i+1}; G_{i+1}) \to \Omega_{m+1}^{d(k)}(U_i; G_i) \) denote the homomorphism induced by the inclusion \(U_{i+1} \subset U_i \). We recall that an element \(\alpha \in \Gamma_{m+1}^{d(k)}(X; G) \), represented as a collection \(\{a_i, i \in \mathbb{N}\} \) of elements \(a_i \in \Omega_{m+1}^{d(k)}(U_i; G_i) \), is trivial if and only if the infinite sequence of equations

\[a_i = p_{i+1}(a_{i+1}) \]

where \(i \in \mathbb{N} \), has a solution \(a_i \in \Omega_{m+1}^{d(k)}(U_i; G_i), i \in \mathbb{N} \).

Example ([17]; see also [6]). Let us assume that \(\Omega_{m+1}^{d(k)}(U_i; G_i) = \mathbb{Z} \) and \(p_i : \mathbb{Z} \to \mathbb{Z} \) is multiplication by 3. Consider the element \(\alpha \in \Gamma_{m+1}^{d(k)}(X; G) \) given by the collection \(a_i = 1, i \in \mathbb{N} \). The equation \(x_1 = \frac{3^i - 1}{3} \pmod{3^k} \) cannot be satisfied for arbitrary \(k \). It follows that \(\alpha \neq 0 \).

Example [18]. In the previous example, put \(a_i = 2 \). Then a solution of the system (2) is given by the collection \(x_i = -1 \).

2.10. Example

Let \(X = \mathbb{R}P^5 \) and take \(G \) to be trivial, so that \(\Omega_{m}^{d(k)}(\mathbb{R}P^5; G) = \Omega_{m}^{ht}(\mathbb{R}P^5) \). Let us show that the Hurewicz image \(\gamma(\Omega_{2}^{ht}(\mathbb{R}P^5)) \subset H_5(\mathbb{R}P^5; \mathbb{Z}) = \mathbb{Z} \) is the subgroup of index 2. For
an arbitrary mapping \(\varphi : M \to \mathbb{R}P^5 \), where \(M \) is a stably parallelizable 5-manifold, we consider the submanifold \(N = \varphi^{-1}(\mathbb{R}P^2 \subset \mathbb{R}P^5) \) and the restriction \(f = \varphi|_N : N \to \mathbb{R}P^2 \).

Since \(v_N = f^*v_{\mathbb{R}P^2 \subset \mathbb{R}P^5} \) and \(\mathbb{R}P^5 \) is orientable, \(f^*w_1(\tau_{\mathbb{R}P^5}) = w_1(\tau_N) \). Therefore

\[
\langle w^2_1(\tau_N); [N]_{\text{mod } 2} \rangle = \langle w^2_1(\tau_{\mathbb{R}P^5}); f_*[N]_{\text{mod } 2} \rangle = \deg_{\text{mod } 2}(f) \equiv \deg(\varphi) \pmod{2}.
\]

For the total normal Stiefel–Whitney class we have

\[
w(v_N) = f^*w(v_{\mathbb{R}P^2 \subset \mathbb{R}P^5}) = f^*w(\tau_{\mathbb{R}P^5}) = f^*(1 + w_1(\tau_{\mathbb{R}P^5}))^3 = (1 + w_1(\tau_N))^3.
\]

On the other hand, since \(N \) is 2-dimensional, \(w_2(v_N) = 0 \). Consequently \(w^2_1(\tau_N) = w^2_1(v_N) = 0 \) which implies \(\deg(\varphi) \equiv 0 \pmod{2} \). Obviously the double cover \(S^3 \to \mathbb{R}P^5 \) represents the generator.

Now let us consider \(X = \lim_\leftarrow \{\mathbb{R}P^5, p_i\} \) where \(\deg(p_i) = 3 \) for each \(i \). From the previous examples we deduce that the Hurewicz homomorphism \(\gamma : \Gamma_s^5(X) \to \lim_\leftarrow H_5(\mathbb{R}P^5; \mathbb{Z}) \) is not surjective.

2.11. Homomorphisms \(r^k_{nm} \) and \(\rho^k_{nm} \)

We will consider an additional structure on the constructed bordism and homology groups. This structure is determined by a collection of homomorphisms

\[
\begin{align*}
\rho^k_{nm} &: \Omega^s(k-n)(X, A; G) \to \Omega^s_m(k-m)(X, A; G), \\
r^k_{nm} &: H_0(X, A; (k-n)G) \to H_m(X, A; (k-m)G).
\end{align*}
\]

We define the homomorphism \(\rho^k_{nm} \) (3) as follows. Consider a triple \((L, \varphi, \Sigma) \in \Omega^s_n(k-n)(X, A; G)\), where \(\varphi : (L^n, \partial L) \to (X, A) \) is a continuous mapping and \(\Sigma \) is a skew \((k-n)\)-framing of the stable normal bundle over \(L \) with respect to \(\varphi^*(G) \). Let us represent the homotopy class \(\tilde{G} = G \circ \varphi \in [L^n; \mathbb{R}P^\infty] \) by a mapping \(\tilde{g} : L^n \to \mathbb{R}P^p \). For any \(m < n \), let \((M^n, \partial M) \subset (L^n, \partial L)\) be the submanifold determined by \(M = \tilde{g}^{-1}(\mathbb{R}P^m) \).

Obviousely, the stable normal bundle over \(M \) is canonically isomorphic to the direct sum of \((k-n)+(n-m)\) copies of the line bundle \(\kappa \to M \subset L \), where \(\kappa \) is classified by the cohomology class \(G|_M \). This isomorphism determines a skew \((k-m)\)-framing \(\Sigma' \) of the normal bundle over \(M \). We set \(\rho^k_{nm}((L, \varphi, \Sigma)) = [(M, \varphi|_M, \Sigma')] \). The homomorphism \(r^k_{nm} \) is defined analogously: we take the cap product of a cycle \(\varphi \in C_*(X, A; (k-n)G) \) with the cocycle \(g^*([i]^*) \in H^{n-m}(X; (k-m)G) \), where \(g : X \to \mathbb{R}P^\infty \) is a representative of \(G \) and \([i]^* \) is the element of \(H^{n-m}(\mathbb{R}P^\infty; (k-m)G|_{\mathbb{R}P^\infty}) \) given by the duals to the fundamental classes of the projective subspaces \(\mathbb{R}P^{n-m}(n-m) \subset \mathbb{R}P^N \).

It is clear that \(\gamma \circ \rho^k_{nm} = r^k_{nm} \circ \gamma \). The homomorphisms \(r^k_{nm} \) and \(\rho^k_{nm} \) give rise to the analogous homomorphisms \(r^k_{nm} \) (respectively \(r^k_{nm} \)) and \(\rho^k_{nm} \) (respectively \(\rho^k_{nm} \)) for Čech (respectively Steenrod–Sitnikov) local homology and Čech (respectively Steenrod–Sitnikov) skew-framed bordism.
3. Complete obstructions $\bar{O}(f)$, $O(f)$ to discrete and isotopic realizability

Let us fix an arbitrary continuous mapping $f : S^n \to \mathbb{R}^{2n-d}$ where $0 \leq d \leq \frac{n+3}{2}$. It gives rise to $f^2 = f \times f : S^n \times S^n \to \mathbb{R}^{2n-d} \times \mathbb{R}^{2n-d}$, which is equivariant with respect to the factor exchanging involutions T and t. We use the following notation: $\Delta_X = \{(x, x) \in X \times X | x \in X\}$,

$$\hat{K} = S^n \setminus \Delta_{S^n}, \quad K = \hat{K} / T$$

and

$$\hat{\Sigma} = (f^2)^{-1}(\Delta_{\mathbb{R}^{2n-d}}) \setminus \Delta_{S^n}, \quad \Sigma = \hat{\Sigma} / T.$$

Let $f_t : S^n \to \mathbb{R}^{2n-d}$, $t \in (0, 1]$, be a generic smooth regular homotopy (i.e., a generic homotopy which is a smooth immersion) such that f_1 is the (standard) embedding and $f_t \to f$ as $t \to 0$, which exists by [2], Lemma 2, where it was called a local isotopic realization of f. We may assume that f_ϵ is ϵ-close to f (in the C^0 topology) for each $\epsilon > 0$. Then

$$\hat{\Sigma}_\epsilon = (f_\epsilon^2)^{-1}(\Delta_{\mathbb{R}^{2n-d}}) \setminus \Delta_{S^n} \quad \text{and} \quad \Sigma_\epsilon = \hat{\Sigma}_\epsilon / T$$

are smooth d-dimensional submanifolds of \hat{K} and K respectively, contained in the ϵ-neighborhood of $\hat{\Sigma} \cup \partial \hat{K}$ and $\Sigma \cup \partial K$ respectively, where $\epsilon = \epsilon(t) \to 0$ as $\epsilon \to 0$, and $\partial K = \partial \hat{K} / T$ where $\partial \hat{K}$ denotes the corona of the evident compactification $\hat{K} \cup \partial \hat{K}$ of the open manifold \hat{K}, which is homeomorphic to the complement of the interior of a regular neighborhood of Δ_{S^n}. Let

$$\Phi : S^n \times S^n \times (0, 1] \to \mathbb{R}^{2n-d} \times \mathbb{R}^{2n-d}$$

be the mapping defined by $\Phi(x, y, t) = (f_t(x), f_t(y))$, then

$$\hat{\Sigma}_{(0, 1]} = \Phi^{-1}(\Delta_{\mathbb{R}^{2n-d}}) \quad \text{and} \quad \Sigma_{(0, 1]} = \hat{\Sigma}_{(0, 1]} / T$$

are proper smooth submanifolds of $\hat{K} \times I \setminus \hat{\Sigma} \times 0$ and $K \times I \setminus \Sigma \times 0$, respectively.

Let us show that the manifold $\Sigma_{(0, 1]}$ is canonically equipped with a skew $(n-d)$-framing \mathcal{E} with respect to the class $G \in [\Sigma_{(0, 1)}; \mathbb{R}P^n]$ inducing the T-space. The canonical t-equivariant trivialization of the normal bundle of the diagonal $\Delta_{\mathbb{R}^{2n-d}}$ in the target space $\mathbb{R}^{2n-d} \times \mathbb{R}^{2n-d}$ induces a T-equivariant trivialization \mathcal{E} of the normal bundle of $\Sigma_{(0, 1)}$ inside $\hat{K} \times (0, 1]$. Therefore the normal bundle $\nu(\Sigma_{(0, 1]} \subset K \times (0, 1])$ is canonically decomposed into the Whitney sum of $2n-d$ copies of the line bundle κ, associated with G. By the following lemma, the normal bundle ν_K is canonically stably isomorphic to the bundle $(-n)\kappa$, which determines the required stable decomposition \mathcal{E} of the normal bundle of $\Sigma_{(0, 1]}$ into $n-d$ copies of κ.

Lemma 3.1. The tangent bundle τ_K is canonically stably isomorphic to $n\kappa$.

Proof. Let $\hat{\nu} = \{(x, -x) \in S^n \times S^n\}$ denote the anti-diagonal of S^n, then $\nu = \hat{\nu} / T$ is homeomorphic to $\mathbb{R}P^n$. Therefore, $\tau_{\nu} \oplus \epsilon \simeq (n+1)\kappa$, where ϵ denotes the trivial line bundle [19]. The normal bundle of ν inside K can be obtained from τ_{ν} by the twist of the fibers along the generator of $H_1(\nu)$. Hence $\nu(\nu \subset K) \oplus \kappa \simeq (n+1)\epsilon$. This determines a canonical stable isomorphism $\tau_K \simeq \tau_{\nu} \oplus \nu(\nu \subset K) \simeq (n+1)\kappa \oplus (-1)\kappa$. $\quad \Box$
Remark 3.2 (not used in the sequel). Let us give an alternative definition of the skew $(n-d)$-framing of $\Sigma_{(d)}$. By general position $(d \leq \frac{n-3}{2})$, the local isotopic realization $F: S^n \times (0, 1] \to \mathbb{R}^{2n-d} \times (0, 1]$, where $F(x, t) = (f_t(x), t)$, has no triple points, in particular, the double cover $\tilde{S}_{(d)}$ of F is a smooth submanifold of \mathbb{R}^{2n-d}. By the same reason, the projection onto the first factor of $S^n \times S^n$ yields a diffeomorphism between $\tilde{S}_{(d)}$ and the submanifold $\tilde{S}_{(d)} = \{ x \in S^n \times (0, 1] \mid \exists y \neq x: F(x) = F(y) \}$ of $S^n \times (0, 1]$. Finally, the double cover $\tilde{S}_{(d)} \to \Sigma_{(d)}$ has the same point inverses as the double cover $F: \tilde{S}_{(d)} \to S_{(d)}$ whence $S_{(d)}$ is diffeomorphic to $\Sigma_{(d)}$ by a level-preserving diffeomorphism. But $S_{(d)}$ is the self-intersection of the immersed manifold $F(S^n \times (0, 1])$, which can be canonically framed using the canonical framing of the standard embedding $F(S^n \times 1) = f_1(S^n)$, and it follows by a well-known argument (see for instance [7] or [18]) that $S_{(d)}$ (and therefore $\Sigma_{(d)}$) is canonically equipped with a skew $(n-d)$-framing Ξ with respect to the class $G \in [S_{(d)}; \mathbb{R}P^\infty]$ classifying the double cover $F: \tilde{S}_{(d)} \to S_{(d)}$. The proof of equivalence of the two definitions of Ξ is left to the reader.

Definition 3.3. The double cover $\tilde{K} \times I \to K \times I$ is classified by some $G' \in [K \times I; \mathbb{R}P^\infty]$, which can be represented by a smooth embedding $e: K \times I \to \mathbb{R}P^\infty$. By definition, the triple $(\Sigma_{(d)}, e|_{\Sigma_{(d)}}, \Xi)$ represents an element, which we denote by $O(f)$, of the reduced skew-framed Steenrod–Sitnikov bordism group $\overline{\Omega}^{s(n-d)}_d(\Sigma \cup \partial K)$. It is straightforward that $O(f)$ does not depend on the choice of local isotopic realization f_t, since any other one f'_t (with f'_t being an embedding) is level-preserving regularly homotopic to f_t through local isotopic realizations of f [2, proof of Lemma 2]. By the same reason, $O(f) = 0$ if f is isotopically realizable.

Similarly, the collection of triples $(\Sigma_{(d)}, e|_{\Sigma_{(d)}}, \Xi|_{\Sigma_{(d)}})$, where $\epsilon = 1, 2, 4, \ldots$, represents an element, which we denote by $\tilde{O}(f)$, of the reduced skew-framed Čech bordism group $\overline{\Omega}^{s(n-d)}_d(\Sigma \cup \partial K)$. Clearly (see also [2], proof of Lemma 2), it does not depend on the choice of immersions $f_1, f_1/2, f_1/4, \ldots$ and hence $\tilde{O}(f) = 0$ if f is discretely realizable.

The following fact provides an additional algebraic information (from stable homotopy groups if $f \in \mathcal{A}(n, d)$) on the obstructions $O(f)$ and $\tilde{O}(f)$.

Proposition 3.4. Suppose that $0 \leq d < c \leq \frac{n-3}{2}$.

(i) Let $f: S^n \to \mathbb{R}^{2n-c}$ be a mapping and $J: \mathbb{R}^{2n-c} \subset \mathbb{R}^{2n-d}$ the standard inclusion. Then

\[O(J \circ f) = \rho_{d}^{c}(O(f)) \quad \text{and} \quad \tilde{O}(J \circ f) = \tilde{\rho}^{c}_{d}(\tilde{O}(f)). \]

(For the definition of ρ and $\tilde{\rho}$ see Section 2.11.)

(ii) If $f \in \mathcal{A}(n, d)$, the obstruction $\tilde{O}(f)$ lies in the image of the composition

\[I \circ \tilde{\rho}_{0,d}^{c}: \overline{\Omega}^{s(n-d)}_d(\Sigma \cup \partial K, \partial K) \to \overline{\Omega}^{s(n-d)}_d(\Sigma \cup \partial K, \partial K; G) \to \overline{\Omega}^{s(n-d)}_d(\Sigma \cup \partial K; G). \]

Similarly for $O(f)$. (For the definition of I see Section 2.5.)
Proof. To prove (ii) let us construct an element $\tilde{O}_0(f)$ such that $\tilde{O}(f) = I \circ \tilde{O}_0(f)$. We approximate f by a generic smooth map $f_\epsilon \in A(n, d)$. As f_ϵ may be not an immersion, the manifold $\Sigma_\epsilon = \Sigma(f_\epsilon)$ is no longer compact in general. In this case we may assume that $\Sigma_\epsilon \subset K$ is a submanifold with boundary on ∂K. Since $\tilde{\Sigma}_\epsilon$ is a regular preimage of the diagonal $\Delta_{S^n} \subset S^n \times S^n$, the normal bundle $\nu(\tilde{\Sigma}_\epsilon) \subset \tilde{K}$ is canonically equivariantly stably trivial, hence $\nu(\Sigma_\epsilon) \subset K$ is canonically stably equivalent to nK. Thus by Lemma 3.1, Σ_ϵ admits a canonical stable trivialization \mathcal{Z} of the normal bundle. The collection of triples $(\Sigma_\epsilon, e|_{\Sigma_\epsilon}, \mathcal{Z})$ for $\epsilon = 1, \frac{1}{2}, \frac{1}{4}, \ldots$ represents an element $\tilde{O}_0(f)$ of the relative Čech bordism group $\Omega^R_n((\Sigma \cup \partial K, \partial K)$. Starting from a generic smooth homotopy f_ϵ, $f_0 = f$, $f_1 = f$, one analogously obtains an element $O_0(f) \in \Omega^R_n((\Sigma \cup \partial K, \partial K)$. To determine $\tilde{O}(f)$ we put the composition $I^2_{n,d} \circ f^2_\epsilon : K \rightarrow (S^d)^2 \rightarrow (\mathbb{R}^{2n-c})^2$ in general position by a small equivariant deformation $I^2_{n,d} \circ f^2_\epsilon \rightarrow g_\epsilon$. The singular set $\Sigma(g_\epsilon) \subset \Sigma_\epsilon$ coincides with the inverse image of the projective subspace $\mathbb{R}P^{n-(n-c)} \subset \mathbb{R}P^n$ with respect to the canonical cocycle G. Using the canonical isomorphism I (Section 2.5) we obtain the element $I \circ \rho^0_{0, d}(\tilde{O}_0(f))$. This element is defined geometrically as the obstruction $\tilde{O}(f)$ for discrete realization of f in \mathbb{R}^{2n-d}. This proves the equation $\tilde{O}(f) = I \circ \rho^0_{0, d}(\tilde{O}_0(f))$. The proof of the equation $O(f) = I \circ \rho^0_{0, d}(O_0(f))$ and the part (i) is analogous. \qed

Remark 3.5. The Hurewicz images

\[
\tilde{o}(f) := \gamma(\tilde{O}(f)) \in \tilde{H}_d(\Sigma \cup \partial K; (n-d)G) \quad \text{and} \quad o(f) := \gamma(O(f)) \in H_d(\Sigma \cup \partial K; (n-d)G)
\]

were studied in [22] and [6] respectively, where they were shown to be complete obstructions to discrete and isotopic realizability (respectively) in the case $d = 0$. The simplest calculation of the obstruction $o(f)$ for Melikhov’s example $f : S^3 \rightarrow \mathbb{R}^6$ is presented in [6] (see also [18] for further examples). We call $\tilde{o}(f)$ the van Kampen–Skopenkov obstruction and $o(f)$ the van-Kampen–Melikhov obstruction.

In view of the following result, completeness of $\tilde{o}(f)$ and $o(f)$ for $d = 0$ can be regarded as a corollary of bijectivity of $\gamma : \Omega^R_0(\Sigma; G) \rightarrow H_0(\Sigma; kG)$ and surjectivity of $\gamma : \Omega^R_1(\Sigma; G) \rightarrow H_1(\Sigma; kG)$ for CW-complexes.

Remark 3.6. Let M^n be a stable parallelized manifold, equipped with a cocycle $g \in H^1(M; \mathbb{Z}/2)$. By the J.F. Adams Theorem [1] the following class $h(M, g) = \langle w^n_0(g) ; [M] \rangle$ is trivial if $n \neq 1, 3, 7$. This class h is determined by the composition $\Omega^{s0}_n \rightarrow \Omega^{s1}_n \rightarrow \Pi_n \rightarrow \mathbb{Z}/2$, where $\Omega^{s1}_{n-1} \rightarrow \Pi_n$ is a Khan–Pridy homomorphism, $\Pi_n \rightarrow \mathbb{Z}/2$ is the Hopf invariant, see, e.g., [12] and the references there. Therefore the homomorphism

\[
\rho^{n}_{0,0} : \Omega^{s0}_n(X; G) \rightarrow \Omega^{s0}_0(X; G)
\]

is trivial if $n \neq 1, 3, 7$. This gives a new short proof of Theorem 1.6(i) as a consequence of the following theorem.

Main Theorem. Let $f : S^n \rightarrow \mathbb{R}^{2n-d}$ be an arbitrary continuous mapping, $n \geq 3$. Then
(i) f is discretely realizable iff \(\tilde{O}(f) = 0 \), provided that $d < \frac{2n-3}{2}$.

(ii) f is isotopically realizable iff $O(f) = 0$, provided that $d < \frac{2n-5}{2}$.

Proof. Let us prove (i). We will use the notation introduced in the beginning of this section. By the assumption there exists a function $\delta = \delta(\varepsilon) > 0$ such that the triple $(\Sigma_r, e|\Sigma_r, \Sigma|\Sigma_r)$ is null-bordant via some null-bordism (W, χ, Ψ) such that $\chi(W)$ lies in the δ-neighborhood of $e(\Sigma \times 0)$. By general position we may assume that $\chi(W) \subset e(K \times 0)$. It follows that $(\Sigma_r, \hat{\Sigma})$ is the boundary of some pair $(\hat{W}, \hat{\Psi})$ where \hat{W} is a smoothly embedded submanifold of \hat{K} with boundary $\partial \hat{W} = \Sigma_r$, and $\hat{\Psi}$ is a T-equivariant framing of $v(\hat{W} \subset \hat{K})$ such that $\hat{\Psi}|_{\partial \hat{W}} = \hat{\Sigma}$. By the equivariant version of a well-known folklore construction, $G_0 = f^2_n$ is equivariantly 2δ-homotopic to a mapping G_1 such that $G^{-1}(\Delta_{\mathbb{R}^{2n-d}}) = \Delta_{\mathbb{S}^n}$. (The bordism $(\hat{W}, \hat{\Psi})$ arises as the naturally framed submanifold $\bigcup \{G^{-1}(\Delta_{\mathbb{R}^{2n-d}}) \setminus \Delta_{\mathbb{S}^n} \}$, where $G_t: S^n \times S^n \to \mathbb{R}^{2n-d} \times \mathbb{R}^{2n-d}$ is the homotopy.)

We give more details here, following the approach of [16] for the E-H-P James–Whitehead exact sequence. Let us consider $U(\hat{W}, \partial \hat{W}) = \hat{\Sigma} \subset \hat{K} \times I$ an regular equivariant neighbourhood. The canonical equivariant mapping $G: U(\hat{W}) \to \mathbb{R}^{2n-d} \times \mathbb{R}^{2n-d}$, $\hat{W} = G^{-1}(\Delta_{\mathbb{R}^{2n-d}})$, $F|_{U(\partial \hat{W})} = f^2_n$ is well defined. We denote the projection of \hat{W} on the bottom of $\hat{K} \times I$ by $\pi \hat{W}$ and by $\hat{V} \subset \hat{K} \times \{0\}$ a regular neighbourhooed of $\pi \hat{W}$.

Obviously, the obstruction to equivariant extension G_1 of G to $\hat{V} \times I$, such that the restriction on the bottom coincides with f^2_n and the inverse image $G_1^{-1}(\Delta_{\mathbb{R}^{2n-d}}) = W$ is trivial by the dimension reason (the space $\mathbb{R}^{2n-d} \times \mathbb{R}^{2n-d} \setminus \Delta_{\mathbb{R}^{2n-d}} / T$ has trivial homotopy groups in dimensions $2, \ldots, d+1$). The required homotopy G_t is constructed by the standard extension of the homotopy G_1 from $\hat{V} \times I$ to $\hat{K} \times I$.

By Skopenkov’s Criterion for discrete realizability [22] (in the formulation of [17, Criterion 1.7a]) f is discretely realizable, which completes the proof of (i). The proof of (ii) is analogous, using [17, Criterion 1.7b]. \(\square\)

Acknowledgement

The author is grateful to M. Gromov for discussion and to S.A. Melikhov for remarks and discussion.

References

