Characterisation of 11β-hydroxysteroid dehydrogenases in feline kidney and liver

L. Schipper, B. Spee, J. Rotuizen, F. Woutersen-van Nijnanten, J. Fink-Gremmels

Department of Veterinary Pharmacy, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University Utrecht, P.O. Box 80.152, 3508 TD Utrecht, The Netherlands

Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, University Utrecht, P.O. Box 80.154, 3508 TD Utrecht, The Netherlands

Received 3 June 2003; received in revised form 27 October 2003; accepted 3 November 2003

Abstract

11β-Hydroxysteroid dehydrogenases type 1 and 2 (11β-HSD1 and 11β-HSD2) are microsomal enzymes responsible for the interconversion of cortisol into the inactive form cortisone and vice versa. 11β-HSD1 is mainly present in the liver, and has predominantly reductase activity although its function has not yet been elucidated. 11β-HSD2, present in mineralocorticoid target tissues such as the kidney, converts cortisol into cortisone. Reduced activity due to inhibition or mutations of 11β-HSD2 leads to hypertension and hypokalemia resulting in the Apparent Mineralocorticoid Excess Syndrome (AMES). Like humans, cats are highly susceptible for hypertension. As large species differences exist with respect to the kinetic parameters (Km and Vmax) and amino acid sequences of both enzymes, we determined these characteristics in the cat. Both enzyme types were found in the kidneys. 11β-HSD1 in the feline kidney showed bidirectional activity with predominantly dehydrogenase activity (dehydrogenase: Km 1959 ± 797 nM, Vmax 766 ± 88 pmol/mg*min; reductase: Km 778 ± 136 nM, Vmax 112 ± 4 pmol/mg*min). 11β-HSD2 represents a unidirectional dehydrogenase with a higher substrate affinity (Km 184 ± 24 nM, Vmax 74 ± 3 pmol/mg*min). In the liver, only 11β-HSD1 is detected exerting reductase activity (Km 10462 nM, Vmax 840 pmol/mg*min). Sequence analysis of conserved parts of 11β-HSD1 and 11β-HSD2 revealed the highest homology of the feline enzymes with the correspondent enzymes found in man. This suggests that the cat may serve as a suitable model species for studies directed to the pathogenesis and treatment of human diseases like AMES and hypertension.

© 2003 Elsevier B.V. All rights reserved.

Keywords: 11β-Hydroxysteroid dehydrogenase; Enzyme kinetics; Sequence; Cat; Apparent mineralocorticoid excess syndrome; Hypertension

1. Introduction

The microsomal 11β-hydroxysteroid dehydrogenases (11β-HSDs) convert bioactive glucocorticosteroids (cortisol and corticosterone) into their inactive keto-metabolites (cortisone and dehydrocorticosterone) and vice versa. Therefore, 11β-HSDs play an important role in the regulation of local levels of bioactive glucocorticoids, resulting in different physiological effects. Two distinct types of 11β-HSD have been characterised extensively. They not only differ in kinetic characteristics, such as prevailing reaction direction, Michaelis–Menten constant (Km), maximum enzyme velocity (Vmax) and co-substrate dependency, but also in molecular weight and amino acid sequence [1].

The first described type (11β-HSD1) is mainly present in the liver but also found in many other tissues [2,3] and although this enzyme is bidirectional, reductase activity dominates. This enzyme requires NADP(H) as cofactor [4–9]. Another feature is the relatively low substrate affinity (Michaelis–Menten constant in the micromolar range) in comparison to 11β-HSD2. The molecular weight of 11β-HSD1 is approximately 34 kDa [2]. The cofactor binding pocket and the active site are highly conserved sites of the enzyme [10]. The exact function of 11β-HSD1 is not yet fully elucidated; besides the conversion of glucocorticosteroids, this enzyme might also play a role in detoxification processes [11], inflammation [12], insulin sensitivity [13] and obesity [14].

In contrast to 11β-HSD1, 11β-HSD2 is a unidirectional dehydrogenase as it converts the biologically active glu-
corticosteroid cortisol into its biologically inactive form cortisone. For this conversion, NAD is required [15]. The K_m is in the nanomolar range, indicating a higher substrate affinity than 11β-HSD1. The molecular weight is approximately 44 kDa [16,17] although also a molecular weight is described of 41 kDa [18,19] and 48 kDa [17]. The enzyme consists of five conserved regions (A–E), with the cofactor binding site (A) and the active site (D) as the most important [20]. Sequence analysis of human 11β-HSD2 showed only 18% homology with human 11β-HSD1. 11β-HSD2 is mainly present in mineralocorticoid target tissues such as the kidney, salivary gland and distal colon, but has also been found in the placenta. In the kidney, it co-localises with the mineralocorticoid receptor, which has equal affinity for aldosterone and the bioactive glucocorticoid cortisol. In this way, 11β-HSD2 preserves aldosterone specificity on the nonselective mineralocorticoid receptor by inactivating glucocorticoids locally [21]. Partial or complete inhibition of 11β-HSD2 activity in mineralocorticoid target tissues results in hypertension and hypokalemia due to overstimulation of the mineralocorticoid receptor by cortisol which circulates in much higher levels than aldosterone [22]. In the placenta, 11β-HSD2 protects the foetus against high circulating levels of maternal glucocorticoids [23]. Decreased activity in the placenta is associated with low birth weight and development of hypertension later in life [24]. In humans, several point mutations in the gene encoding for 11β-HSD2 are described. Each of these is responsible for mild to severe abnormalities in cortisol metabolism and hypertension [25]. Moreover, experimental gene deletion of 11β-HSD2 in mice resulted in severe hypertension in this species [26].

It is well known that remarkable species differences exist with respect to tissue distribution of the 11β-HSD types: in human kidney predominantly 11β-HSD2 is present [19,20,27], while in the kidney of the rat [28–31], guinea pig [5,6] and mouse [32,33] 11β-HSD1 and 11β-HSD2 have been demonstrated by both activity studies and RT-PCR. 11β-HSD1 is present in liver tissue of rat [7,28,29,34], mouse [32] [35], man [27,36] and guinea pig [5,6], while in koala liver this enzyme is absent [37].

Another feature that differs between the species is the predominant activity of 11β-HSD1. In guinea pig [6], mouse [35], sheep and human liver microsomes [27], 11β-HSD1 has bidirectional activity, but reductase activity prevails. In rats, large interstrain differences have been found. In Wistar–Kyoto rats bidirectional activity was established [28] whereas in Sprague–Dawley rats [7] only dehydrogenase activity has been detected.

The enzyme kinetics of 11β-HSD2 show more constancy in the different species investigated. The main activity of this NAD-dependent enzyme is dehydrogenation, and the substrate affinity is higher than the substrate affinity of 11β-HSD1.

Since 11β-HSD2 is known as the NAD-dependent form of 11β-HSD, controversial findings have been reported in mouse [35], rat [28] and guinea pig [5,6], as besides the NADP(H)-dependent form (11β-HSD1), also a bidirectional NAD(H)-dependent enzyme has been found in the liver. As even Northern blot analysis did not confirm the presence of 11β-HSD2 in the liver of these species [5,33,38], it was suggested that other forms of 11β-HSD might exist.

In contrast to other animal species, cats are susceptible for hypertension as known from clinical studies [39]. However, in hypertension research, most often rats [40,41] and mice [42] are used. These animals have corticosterone as physiological glucocorticoid, while humans and cats have cortisol. Although both glucocorticosteroids are converted by 11β-HSD, the affinity of the glucocorticosteroids for the enzyme differs considerably [35,43].

As impaired cortisol metabolism, due to inhibition or mutation of 11β-HSD2, plays a role in the pathogenesis of hypertension in man and probably explains the high susceptibility of cats for hypertension, we characterised both 11β-HSDs by assessing enzyme kinetic parameters in feline kidney- and liver microsome fractions. For confirmation of distinct 11β-HSD1 and 11β-HSD2 enzymes, cDNA derived from cat liver and kidney was sequenced.

2. Materials and methods

[1,2,6,7-3H] cortisol (60.0 Ci/mmol) was purchased from Amersham Pharmacia Biotech (Arlington Height, IL, USA) and [1,2-3H] cortisone (50 Ci/mmol) was obtained from American Radiolabeled Chemicals (St. Louis, MO, USA). Nonradioactive steroids and the cofactors (NAD, NADH, NADP, NADPH) were obtained form Sigma Chemical Co. (St. Louis, MO, USA). TLC-plates (silica gel 60 F254, 20 × 20 cm) and ethyl acetate were from Merck (Darmstadt, Germany). The scintillation fluid was Ultima Gold from Packard Bioscience (USA). All other chemicals were of analytical grade. Fresh kidney and liver tissue were obtained from three clinical healthy male cats (Felis catus). No abnormalities were found neither during serum analysis (urea, creatinine, bile acids, ALAT, calcium, total protein, albumin) nor in hematocrit values and leukocyte counts.

For sequence analyses, RNA of both tissues was isolated using Qiagen RNeasy Mini Kit. The Dnase was purchased from Qiagen Rnase-free Dnase kit. The poly(dT) primers were incubated in the Reverse Transcription System from Promega (Leiden, the Netherlands). Platinum Taq polymerase was purchased from Invitrogen (The Netherlands). To purify the PCR product, QIAquick Gel Extraction Kit (Qiagen) was used. The sequencing was performed with ABI PRISM Big Dye Terminator Cycle Sequencing Kit. The fragments were analysed with an automatic sequencer ABI PRISM model 3100 (Applied Biosystems) (The Netherlands).
2.1. Isolation of feline liver and kidney microsomes

After removal of the renal capsule and the pelvis, the kidneys were put in liquid nitrogen and stored at −70 °C until further preparation. From the livers, representative cross sections were taken and stored in the same way. Microsomes were prepared by a standard procedure as described previously [44]. In short, all tissues were homogenised with a Potter S (B. Braun Biotech International, Melsungen, Germany) in 2 volumes of ice-cold potassium chloride (1.15%) containing 0.1 mM EDTA. All subsequent steps were performed at 0–4 °C. The tissue homogenate was centrifuged at 10,000 × g for 25 min. The supernatant was decanted and centrifuged at 100,000 × g for 75 min. The pellet was suspended in KCI/EDTA solution, homogenised with a Utra-turrax T25 (Janke and Kunkel, Germany) and again centrifuged at 100,000 × g for 75 min. Finally the pellet was homogenised again with the Ultra-turrax and resuspended in 100,000×g for 75 min. The supernatant was decanted and centrifuged at 100,000 × g for 75 min. The pellet was suspended in KCl/EDTA solution, homogenised with a Utra-turrax T25 (Janke and Kunkel, Germany) and again centrifuged at 100,000 × g for 75 min. Finally the pellet was homogenised again with the Ultra-turrax and resuspended in phosphate buffer (pH 7.4). The reaction was started by adding the cofactor (NAD+, NADP+), [3H]-cortisol (0.5 μCi per incubation) and unlabeled cortisol (30 nM–1500 nM in the NAD-dependent experiments) and 420–25,000 nM in the NADP-dependent experiments) and 0.05M phosphate buffer (pH 7.4, 1.5 mM MgCl2·6H2O, 0.1 mM EDTA) containing 20% glycerol, frozen in liquid nitrogen and stored at −70 °C until use. Protein quantification was performed with the method described by Lowry [45].

2.2. Assay of 11β-dehydrogenase activity

Liver and kidney microsomes were pooled from three male cats. Incubations were carried out in 2-ml Eppendorf micro-test tubes in a 37 °C water bath for 15 min. The total incubation volume was 250 μl, containing 4 mM cofactor (NAD+, NADP+), [3H]-cortisol (0.5 μCi per incubation) and unlabeled cortisol (30 nM–1500 nM in the NAD-dependent experiments, 420–25,000 nM in the NADP-dependent experiments) and 0.05M phosphate buffer (pH 7.4). The reaction was started by adding the microsome fraction. After 15 min, the reaction was arrested by addition of 1.5 ml ethyl acetate and putting the samples on ice. The ethyl acetate fraction was transferred to a tube containing 50 μl (1.1 mM) unlabeled cortisol and 50 μl (1.1 mM) cortisone to mark the position of [3H]-labelled steroids on TLC plates later on. After evaporation of the ethyl acetate under nitrogen, the residue was dissolved in chloroform/methanol (50:50 v/v) and separated by TLC using chloroform/methanol (9:1, v/v) as a mobile phase. The spots containing cortisol and cortisone were detected by UV illumination, cut out and transferred into separate vials containing 12 ml scintillation liquid. To elute the labelled steroids from the TLC matrix, the vials were shaken for 2 h. To avoid loss of accuracy by air bubbles, the radioactivity was measured 48 h later using a 4700 PW liquid scintillation counter. In initial studies, the protein concentration in each reaction was adjusted to ensure the linearity of product formation over the incubation time. To keep the conversion rates between 5% and 40%, the amount of protein per incubation was optimised for every cofactor-dependent experiment (0.020 and 0.016 mg in the experiments in the kidney with NAD and NADP, respectively). All values were corrected with blank incubations, in which all assay components were present, except the microsomes.

2.3. Assay of 11-reductase activity

11-Reductase activity was determined similar to the 11β-dehydrogenase assay except that [3H]-cortisone (0.5 μCi per incubation) and cortisone (420–25,000 nM) were used as substrates and NADH/NADPH as cofactors. Optimised conditions for the kidney experiments were 0.041 mg protein and an incubation time of 15 min, and in the liver 0.058 mg protein and 30 min incubation time.

2.4. Analysis of enzyme kinetic data

The enzyme velocity was determined by calculating of the conversion rate of cortisol into cortisone or the backward conversion. Data are expressed in picomoles per milligram of protein per minute (pmol/mg min). All data reported represent means of three to five independent incubations. Kinetic analyses were performed with EZ-FIT [46]. Significance of the effects of cofactors on Km and Vmax was evaluated using a two-sided unpaired Student’s t test.

2.5. RT-PCR

Total cellular RNA was isolated from frozen feline tissues by using Qiagen RNeasy Mini Kit according to the manufacturer’s instructions. Total RNA (1 μg) was incubated with poly(dT) primers using the Reverse Transcription System at 42 °C for 15 min, followed by inactivation at 95 °C for 5 min. Putative feline 11β-HSD1 primers (set 11β-HSD1: sense, 5’-TTCAGACCAGAGATGCTCC-3’; antisense, 5’-CCCTTTGAAGTCTCT- CAGGGC-3’), were designed from the conserved regions of human (AY044083), sheep (AF414124), and rat 11β- HSD1 (NM_0127080) cDNAs. Putative feline 11β-HSD2 primers (set 11β-HSD2: sense, 5’-CCGGCTGTAGCTCCTGGTTTG-3’; antisense, 5’-CATGCAACTGCTCGTAGTC-3’) were designed from the conserved regions of human (U27317), sheep (AF414125), and rat 11β-HSD2 (NM_017081) cDNAs. The PCR reaction mixture contained 2.5 units of Platinum Taq polymerase, 20 pmol each of sense and anti-sense primer, 200 μM dNTPs, 50 mM KCl, 15 mM Tris–HCl, and 0.5 mM MgCl2. cDNA was amplified for 40 cycles under the following conditions: denaturation at 94 °C for 1 min, annealing at 50 °C for 11β-HSD1 and at 55 °C for 11β-HSD2 (1 min), and extension at 72 °C (1 min). PCR products were separated by electrophoresis on an ethidium bromide-stained agarose gel (1.5%) using...
0.5 × Tris–borate EDTA buffer and were visualised on an ultraviolet transilluminator. The PCR products (11β-HSD1: 664 bp and 11β-HSD2: 652 bp) were cut out of the agarose-gel and purified using the QIAquick Gel Extraction Kit.

Sequences of both strands were obtained using Standard sequencing procedures (ABI PRISM 3100 Genetic Analyser, Applied Biosystems, Foster City, CA, USA).

3. Results

3.1. Kinetic parameters of 11β-HSD in feline kidney

In feline kidney a high affinity unidirectional NAD-dependent dehydrogenase was found. These characteristics are typical for 11β-HSD2. Moreover, a bidirectional NADP(H)-dependent enzyme was found, with equal low affinity for cortisol and cortisone, but with a higher V_{max} for dehydrogenation of cortisol into cortisone (766 ± 88 pmol/mg*min) than for the reduction of cortisone into cortisol (112 ± 4 pmol/mg*min). The conversion of cortisol into cortisone and the reverse reaction follow Michaelis–Menten kinetics as the Lineweaver–Burk plot shows linearity (for example see Fig. 1). The enzyme kinetics of the conversion of cortisol and cortisone are listed in Table 1.

3.2. Kinetic parameters of 11β-HSD in feline liver

Liver microsomes of cat showed unidirectional NADPH-dependent reductase activity. No dehydrogenation could be detected. The mean K_m of this reductase reaction was 10,462 nM and the mean V_{max} was 182 pmol/mg min. The NADPH-regenerating system did not elevate the reaction velocity (data not shown). Enzyme kinetics of 11β-HSD in the liver are summarised in Table 2.

3.3. RT-PCR of 11β-HSD1

The primers for 11β-HSD1 were based on conserved regions of 11β-HSD1 in three species (human, sheep, rat) with the primers as described in Materials and methods. In feline liver and kidney a 581-bp fragment was detected (see Fig. 2).

The sequence of the fragment found with 11β-HSD1 primers in the liver and the kidney was: AAGTGATTGT-CACAGGGCCAGCAAGGGATTTGGAAGACAGATGTTATTCATCTGTGCGAAGATTGAGGAGGCC-CATGTGTTGAGCAAGCGGCTTCTAACGTAAGAAAATCTAAGGAAGATAGGATCCATTGCATGGAGACCTTGAGCAGCCCTACGCACACTAATTGCGTCGACCACTGAGAATATGACCTCTTGCACAGCAGCAATTGGTGTC-CAAAAAGCTGAAAGCTCATGAGGGGAGCTAGACATGTATTATTCTCAACCCACATCAACACTTTCTA-
GAATCTGTTTAGTGGTGATATCCACATCGTGCGCA-
GAAGCATGGAAGTCAACTTCCTCAGTTATGTGGTC-
CTGAGTGCTACTGCCTTGCCTATGCTGAAGCAGAG-
CAATGGAAGCATTGTTGTCGTGTCCTC-
GAAGGCTGGGAAAATGGCTAGTCCACT-
TATTGCGCCCTATTCTGCAAGCAAGTTTGCCCTG-
GATGGGTTTTTCTCCTCCATCAGGATGGAACATT-
CAGTGGCCAAGATTAATGTATCGATCAGCTCTCTG-
TATCCTCGGCCTCATAAACACAGACACAGCCAT-
GAATGCCATTTCTGGA.

The amino acid sequence of this RT-PCR fragment is homologous to 11\(\alpha\)-HSD1 in various species. Highest homology (83.4\%) was found with 11\(\alpha\)-HSD1 from humans (Homo sapiens, see Table 3). This confirms the presence of 11\(\alpha\)-HSD1 in the feline liver and kidney. Details on the homology of feline 11\(\alpha\)-HSD1 with other species are listed in Fig. 3.

The cofactor binding pocket of 11\(\alpha\)-HSD1 in the cat has a unique sequence, which differs in two amino acids from the other species (amino acids 48 and 49). The active site of 11\(\alpha\)-HSD1 (amino acids 183–200) shows highly conserved parts. Amino acid 199 varies between the species, including the cat. Amino acid 197 is isoleucine in man, mouse, rat and cat, whereas in sheep, cow and guinea pig, leucine is at position 197.

3.4. RT-PCR of 11\(\beta\)-HSD2

The primers for 11\(\beta\)-HSD2 were based on conserved regions of 11\(\beta\)-HSD2 in three species (human, sheep, rat) and tested in feline kidney and liver. Only in the kidney, a corresponding fragment was found (see Fig. 2). The sequence of this 666-bp fragment was: TTTTGCGCCCCTCCGCG-
CTTCTGGTGCGCGACTCGCGGTCTCAT-
CACCGCGCTGTGACTCTGGTTTTGGGAG-
GACGGAAAAGAATGACAGCTATGCGCTT-
CACCGGTCGCTGCAACCGTTGGAAGTGGCC-
CCTGGTGCCTAGAGCTGCTGGCCTAGAGCTGCTG-
TCGCCTAAGGGCCTGATGGGACATT-
CAATGGAAGCATTGTTGTCGTGTCCTC-
GAAGGCTGGGAAAATGGCTAGTCCACT-
TATTGCGCCCTATTCTGCAAGCAAGTTTGCCCTG-
GATGGGTTTTTCTCCTCCATCAGGATGGAACATT-
CAGTGGCCAAGATTAATGTATCGATCAGCTCTCTG-
TATCCTCGGCCTCATAAACACAGACACAGCCAT-
GAATGCCATTTCTGGA.

The amino acid sequence of this RT-PCR fragment is homologous to 11\(\beta\)-HSD2 in various species. The highest homology (89.6\%) was found with humans (Table 4).
Details on the homology of feline 11β-HSD2 with other species are listed in Fig. 4.

4. Discussion

In the kidney of the cat, the presence of two 11β-HSD types could be established. One of the enzymes was a unidirectional NAD-dependent dehydrogenase with a K_m in the nanomolar range. These characteristics are indicative for 11β-HSD2 [15]. The other type found in the kidney

![Amino acid sequence of a part of feline 11β-HSD1 in comparison with other species. The underlined amino acids indicate the cofactor binding pocket (34–63), highly conserved consensus sites for N-glycosylation (162 and 217), and the active site of the enzyme (183–200).](image)

Table 4

Homology between feline 11β-HSD2 and other species, based on a 220-amino-acid fragment

<table>
<thead>
<tr>
<th>Per cent identity</th>
<th>Feline cattus</th>
<th>Homo sapiens</th>
<th>Cavia porcellus</th>
<th>Bos taurus</th>
<th>Mus musculus</th>
<th>Rattus norvegicus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>89.6</td>
<td>82.4</td>
<td>82.0</td>
<td>84.7</td>
<td>87.4</td>
<td>86.5</td>
</tr>
<tr>
<td>2</td>
<td>11.2</td>
<td>80.3</td>
<td>83.4</td>
<td>86.5</td>
<td>86.5</td>
<td>86.5</td>
</tr>
<tr>
<td>3</td>
<td>20.1</td>
<td>22.5</td>
<td>77.7</td>
<td>80.3</td>
<td>81.1</td>
<td>81.1</td>
</tr>
<tr>
<td>4</td>
<td>20.7</td>
<td>18.8</td>
<td>25.8</td>
<td>81.8</td>
<td>80.8</td>
<td>80.8</td>
</tr>
<tr>
<td>5</td>
<td>17.2</td>
<td>14.3</td>
<td>20.1</td>
<td>21.5</td>
<td>14.8</td>
<td>84.8</td>
</tr>
<tr>
<td>6</td>
<td>13.8</td>
<td>15.2</td>
<td>21.5</td>
<td>21.8</td>
<td>5.1</td>
<td>5.1</td>
</tr>
</tbody>
</table>

![Details on the homology of feline 11β-HSD2 with other species are listed in Fig. 4.](image)
compares to the characteristics of 11\(\beta\)-HSD1. It is an NADP(H)-dependent enzyme with bidirectional activity. The affinity for cortisol and cortisone was equal for both the dehydrogenase and reductase activity. The enzyme velocity of the dehydrogenase reaction is higher than the reductase reaction over the entire substrate concentration range as illustrated in Fig. 1. This indicates predominant dehydrogenase activity of this enzyme in the kidney, enabling the feline kidney effectively to convert cortisol into cortisone over a large substrate concentration range.

The presence of 11\(\beta\)-HSD1 and 11\(\beta\)-HSD2 in the feline kidney was confirmed by RT-PCR. In the kidney of the rat [28], mouse [32] and guinea pig [6], activities of both 11\(\beta\)-HSDs are clearly established. In contrast, in humans only...
activity of 11β-HSD2 has been found [19,20,27,47]. However, in these experiments, only kidney cortex and not medulla was used. In the medulla of the human kidney, low mRNA expression and activity of 11β-HSD1 was found by Whorwood [36]. By selectively cutting out kidney cortex, this feature is missed in many experiments. We detected mRNA of 11β-HSD1 and -2 in the feline kidney cortex and in the medulla. In these experiments, cortex and medulla were separated visually. Preliminary activity studies in microsomes of kidney medulla did not show any activity, whereas in the kidney cortex we could clearly establish activity of both 11β-HSD1 and 11β-HSD2 (data not shown). This suggests that both 11β-HSD types are expressed in the feline kidney, but in particular the cortex constitutes high enough expression to establish measurable enzyme activity.

In the feline liver, an NADPH-dependent reductase was found, with a K_m in the micromolar range indicating 11β-HSD1 [48,49]. Corresponding with the results of the enzyme kinetic data, RT-PCR confirmed the identity as 11β-HSD1. In most species, 11β-HSD1 has bidirectional enzyme activity with predominantly reductase activity in the liver. However, our data could only demonstrate unidirectional reduction. Because of slow reaction velocity together with the extreme low substrate affinity, no dehydrogenase activity was detectable. According to previous data, we found bidirectional activity of this enzyme in the kidney [6,28,32]. Hence the enzyme kinetic parameters of 11β-HSD1 in the liver and kidney show remarkable differences. The K_m of 11β-HSD1 was smaller in the kidney than in the liver (see Tables 1 and 2). Variance in the K_m values of 11β-HSD in different organs has also been described in guinea pig [6] and rat [50] indicating tissue-specific features. As the cDNA fragment in the liver was 100% homologous with the 11β-HSD1 fragment found in the kidney, this strongly suggests that the NADP(H)-dependent form in the kidney is based on the same gene product as the NADP(H)-dependent form in the liver.

Sequence analysis of the fragments confirmed highly conserved parts. For each enzyme, the active site and the cofactor binding pocket are considered to be the best conserved regions [20]. Comparison of the cofactor binding pocket of feline 11β-HSD2 with that of other species showed the highest homology with humans. Only one amino acid (alanine 104) was different from the human enzyme (serine 104), whereas in the other species alanine or threonine was found at this site. Besides this specific amino acid locus, all other species differ in two to five amino acids from the binding pocket of human 11β-HSD2, indicating the cat to be the most closely related species to man.

A very important amino acid near the cofactor binding pocket in humans is glutamate115 because deletion of this locus in humans is associated with signs of Apparent Mineralocorticoid Excess Syndrome (AMES) and hypertension [51]. At this position glutamate is also found in the cat, while in the other species aspartate115 is found. Other frequent mutation sites described causing AMES in humans are substitution of R187C, R208C, R213C, R279C, D244N, L250R, L251S, R186C, P227L, R337C and R208H [25,51,52]. Another important finding is that cats share with humans the non-mutated amino acids at all these sites. Thus, for the diagnosis of AMES and related hypertension, all these amino acids are of pivotal interest.

At the active site of 11β-HSD2 considerable species differences exist at position 239 (valine in man, methionine in cats, leucine in cows, isoleucine in guinea pigs, mice and rats). This is remarkable because this locus is considered to be highly conserved in the SCAD superfamily, thus suggesting this amino acid to be the same within one enzyme [20]. Besides this difference, the cat has one other distinct amino acid (serine 234), but this locus is not within the highly conserved part of the SCAD superfamily. As at the cofactor binding pocket, the guinea pig has again the highest diversity at the active site. Besides the cofactor binding pocket (region A) and the active site (region D), there are tree other regions (B, C and E) highly conserved in the SCAD superfamily. Their physiological function, however, remains to be elucidated. The cat showed 100% homology with humans in these three regions. Region B is identical in the species described, in region C the guinea pigs and cows have the exceptional amino acids in highly conserved parts, and region E showed differences with humans in all described species except cats.

In the other enzyme, 11β-HSD1, the cofactor binding pocket of the cat exhibits a 100% homology to humans, although we were unable to determine the first three amino acids. At the active site, the cat showed the highest homology with man. The other species differ in one ore more amino acids from the cats and humans [5,29,32,53,54]. At the active site of 11β-HSD1, cats and cows have methionine at position 199, while in man and rats this is lysine, in mice and sheep this is threonine, and in guinea pig this is serine, indicating a number of possible variations at this site. The two absolute conserved consensus sites for N-glycosylation are present in the cat, and most other species, but not in the guinea pig and sheep where one of these two sites is absent [5,52].

In conclusion, in the kidney of the cat, the predominant activity of 11β-HSD is the conversion of cortisol into cortisone, emphasizing the high capacity of the kidney for inactivation of cortisol. Two types of 11β-HSD are commonly found in the kidney: 11β-HSD1 and 11β-HSD2. With regard to the pathogenesis of hypertension, 11β-HSD2 is the most important type. Feline 11β-HSD2 has similar enzyme kinetic parameters as human 11β-HSD2 and the amino acid sequence of the most important parts of this enzyme shares approximately 90% homology with human 11β-HSD2. Thus, out of all other species investigated as yet, the 11β-HSD enzymes in the cat resemble most closely the human form. By performing enzyme kinetic studies together with sequencing of the most important regions (and possible mutation sites) of the enzymes, we created the tools to investigate the presence...
of symptoms of AMES in cats with hypertension. This is of importance not only for feline patients, but it also implies that the cat may serve as a model species for studies directed to the pathogenesis and treatment of AMES and hypertension in humans.

Acknowledgements

I would like to thank Jaap van Hellemond for the interesting discussions, and Roel Maas for technical assistance.

References

