
Journal of Immunological Methods 397 (2013) 8–17

Contents lists available at ScienceDirect

Journal of Immunological Methods

j ourna l homepage: www.e lsev ie r .com/ locate / j im
Probability state modeling of memory CD8+ T-cell differentiation
Margaret S. Inokuma a,⁎, Vernon C. Maino a, C. Bruce Bagwell b

a BD Biosciences, 2350 Qume Drive, San Jose, CA 95131, USA
b Verity Software House, P.O. Box 247, Topsham, ME 04086-0247, USA
a r t i c l e i n f o
Abbreviations: CDP, control definition point; C
EF, terminal effector; EM, effector memory; EP, expr
peripheral blood mononuclear cells; PCA, principal com
probability state modeling; SPLOM, scatterplot matrix; SS

⁎ Corresponding author.
E-mail addresses: Margaret_Inokuma@bd.com (M.

Vernon_Maino@bd.com (V.C. Maino), cbb@vsh.com (C

0022-1759 © 2013 The Authors. Published by Elsevie
http://dx.doi.org/10.1016/j.jim.2013.08.003
a b s t r a c t
Article history:
Received 22 April 2013
Received in revised form 29 July 2013
Accepted 4 August 2013
Available online 14 August 2013
Flow cytometric analysis enables the simultaneous single-cell interrogation of multiple
biomarkers for phenotypic and functional identification of heterogeneous populations.
Analysis of polychromatic data has become increasingly complex with more measured
parameters. Furthermore, manual gating of multiple populations using standard analysis
techniques can lead to errors in data interpretation and difficulties in the standardization of
analyses. To characterize high-dimensional cytometric data, we demonstrate the use of
probability state modeling (PSM) to visualize the differentiation of effector/memory CD8+ T
cells. With this model, four major CD8+ T-cell subsets can be easily identified using the
combination of three markers, CD45RA, CCR7 (CD197), and CD28, with the selection markers
CD3, CD4, CD8, and side scatter (SSC). PSM enables the translation of complexmulticolor flow
cytometric data to pathway-specific cell subtypes, the capability of developing averaged
models of healthy donor populations, and the analysis of phenotypic heterogeneity. In this
report, we also illustrate the heterogeneity in memory T-cell subpopulations as branched
differentiation markers that include CD127, CD62L, CD27, and CD57.
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1. Introduction

In recent years, much effort has been applied to under-
standing the differentiation pathways from naïve CD8+ T cells
to memory and effector subsets (Appay et al., 2008; Arens and
Schoenberger, 2010; Obar and Lefrancois, 2010). Early descrip-
tions of CD8+ T-cell differentiation states identify populations
based on surface and functional markers expressed by T cells in
response to various antigens. As an example, naïve T cells have
high-proliferative capacity but do not express effector cyto-
kines such as IFN-γ (Geginat et al., 2003). Although cell surface
M, central memory;
ession profile; PBMCs,
ponents analysis; PSM,
C, side scatter.
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marker phenotypes and functions have been assigned to
subsets within this differentiation pathway, a precise
discrimination of effector and memory CD8+ T cells has
proven to be complex and controversial due to the heteroge-
neity of the subsets (Bachmann et al., 2005; Hamann et al.,
1997; Stemberger et al., 2009; Tomiyama et al., 2002). These
definitions are further complicated by lack of consensus for
phenotypic markers that define CD8+ T-cell subsets. Sallusto
et al. (1999) first defined T-cell memory subsets with CD45RA,
CCR7, and CD62L. Others have identified long-term memory
subsets with CD127 and CD62L (Kaech et al., 2003). A recent
study by Appay et al. has defined five distinct CD8+ T-cell
subsets based on correlated single-cell measurements (Appay
et al., 2008).

Rapid advances in flow cytometry have resulted in the
ability to resolve up to 17 biomarkers associated with a
single cell (Chattopadhyay et al., 2006). This capability has
enabled the description of new cellular subsets and con-
sequent differentiation pathways. However, analysis of
high-dimensional data has proven challenging. Traditional
methods often involve the gating of populations in one- or
 license.
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Table 1
Monoclonal antibodies.

Antigen Clone Fluorophore Cat. No. Isotype

CD3 SP34-2 BD Horizon V450 560351 Ms IgG1

CD3 SK7 APC-H7 641397 Ms IgG1

CD3 SK7 FITC 340542 Ms IgG1

CD4 RPA-T4 BD Horizon™ V500 560768 Ms IgG1

CD4 SK3 PerCP-Cy™ 5.5 341654 Ms IgG1

CD4 RPA-T4 BV605 562658 Ms IgG1

CD8 SK1 APC-H7 641409 Ms IgG1

CD8 RPA-T8 BD Horizon™ V500 560775 Ms IgG1

CD8 SK1 PerCP-Cy™ 5.5 341051 Ms IgG1

CD27 L128 APC 655019 Ms IgG1

CD27 M-T271 Alexa Fluor® 700 560611 Ms IgG1

CD28 L293 PerCP-Cy™ 5.5 337181 Ms IgG1

CD28 CD28.2 APC 559770 Ms IgG1

CD45RA L48 PE-Cy7™ 337167 Ms IgG1

CD56 B159 Alexa Fluor® 700 561902 Ms IgG1

CD56 NCAM16.2 BV421 562751 Ms IgG2b

CD57 HNK-1 FITC 340706 Ms IgM
CD62L SK11 FITC 347443 Ms IgG2a

CD62L DREG-56 BD Horizon™ V450 560440 Ms IgG1

CD127 HIL-7R-M21 PE 557938 Ms IgG1

CCR7 150503 PE 560765 Ms IgG2a

CCR7 150503 PE-CF594 562381 Ms IgG2a

CCR7 150503 PerCP-Cy™ 5.5 561144 Ms IgG2a
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two-dimensional displays and manually selecting popu-
lations of interest. Such methods are highly subjective,
time consuming, not easily scalable to a high number of
dimensions, and inherently inaccurate because they do
not account for population overlap. Automated gating algo-
rithms can reduce the subjectivity of manual gating and
thereby improve reproducibility but are generally limited to
two-dimensional projections of the data and do not account for
overlapping populations. Neither of these methods addresses
the issue of visualizing the biology of complicated cellular
progressions defined by many correlated measurements in a
simple, objective format. The development of novel bioinfor-
matics tools is needed to interpret expression changes in a
wide variety of proteins for a number of cell subtypes.

Many groups have addressed these challenges with a
variety of approaches for data analysis (Aghaeepour et al.,
2012; Bashashati and Brinkman, 2009; Lugli et al., 2010).
A number of these approaches involve some variation of
clustering analysis, which can have considerable limitations.
For example, an important option in clustering is setting the
desired number of clusters and the cluster linkage thresh-
olds. If the selection of these setup options is not determined
automatically, then different operators are likely to get
different answers, resulting in lack of reproducibility. In
addition,many clustering analysis approaches are not optimized
to identify marker expression transitions between clusters.
These transitions are characteristic of the biological systems
they represent and therefore are equally as important, if not
more biologically relevant, than recognizing distinct clusters.
Another issue that has limited the practicality of clustering is
that many of the algorithms are not scalable to any number of
dimensions and events. An often overlooked limitation of these
methods is that many require the user to evaluate the identified
clusters with numerous two-dimensional dot plots, complicat-
ing the effective scalability of the method with an increased
number of correlated measurements.

Other approaches have been developed in addition to
clustering, including principal components analysis (PCA)
(Costa et al., 2010) and Bayesian inference (Sachs et al.,
2009). These and similar approaches (Zare et al., 2010) have
been evaluated through the FlowCAP initiative (http://
flowcap.flowsite.org/). One unique approach, an algorithm
called SPADE, utilizes down-sampling, clustering, minimum
spanning tree, and up-sampling algorithms to generate two-
dimensional branched visualizations (Qiu et al., 2011). The
branched-tree structure incorporates information from all
measurements in the data, partially addressing scalability
issues. However, SPADE has many of the same subjective
inputs as conventional clustering algorithms (e.g., number
of clusters) and also may have issues of reproducibility and
generation of non-biological branches.

In this study, we demonstrate the utility of probability
state modeling (PSM) (Bagwell, 2011, 2012, 2010, 2007) and
the visualization tools in GemStone™ software in the analysis
of multidimensional flow cytometry data. A probability state
model is a set of generalizedQ functions, one for each correlated
measurement, where the common cumulative probability axis
can be a surrogate for time or cellular progression. By exploiting
the unique characteristics of Q functions, PSM can model any
number of correlated measurements and present one compre-
hensive yet understandable view of the results. PSM is fully
described in the SupplementaryMaterials Section of this paper.
This model uses an unbiased approach for identification of cell
subpopulations, eliminating the subjectivity introduced with
manual gating.

Using this approach, we constructed a probability state
model for CD8+ T-cell antigen-dependent progression that can
automatically analyze cytometric list-mode data derived from
T-cell–specific panels of antibodies. We describe the design
of the model, demonstrate its reproducibility, and also show
how a group of normal donor samples can be represented by
a single probability state model, resulting in an automated
visualization of multidimensional data. In the seminal review
article by Appay et al. (2008), a graphical representation of
CD8+ T-cell pathway differentiation was deduced from multi-
ple files of manually gated data. PSM enables the correlated
visualization of multiple phenotypic biomarkers, allowing for
the characterization of T-cell differentiation. Using the technol-
ogy presented in this study, T-cell subsets and differentiation
can be phenotypically characterized for each patient sample. By
evaluating Pearson correlations between the model parame-
ters, we show that there are only four CD8+ T-cell stages
defined by CD3, CD8, CD4, CCR7 (CD197), CD28, and CD45RA,
not five as has been previously reported (Appay et al., 2008).
We also show using PSM in this analysis that some traditional
T-cell markers such as CD62L, CD27, CD57, and CD127 can
delineate branched pathways of CD8 T-cell differentiation.
2. Materials and Methods

2.1. Flow cytometry acquisition of human peripheral blood

Peripheral blood was collected after obtaining informed
consent from 36 healthy volunteers ranging in age from 30 to
65 years, with a median age of 47.5 years.

http://flowcap.flowsite.org/
http://flowcap.flowsite.org/
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Blood samples were collected into BD Vacutainer® CPT
tubes (BD Preanalytical Systems) and processed according to
product directions. Peripheral bloodmononuclear cells (PBMCs)
were washed in Stain Buffer (BSA, BD Biosciences, CA). Cells
were then incubated for 30 min in Stain Buffer with the
manufacturer's suggested dilutions of fluorescently labeled
primary monoclonal antibodies (Table 1). The supernatant
was aspirated, BD FACS™ lysing solution (BD Biosciences)
was added, and each tube was mixed and incubated for
10 min at room temperature. Cells were washed and the
supernatant aspirated. All data from samples was acquired
using a special order BD™ LSR II flow cytometer and BD
FACSDiva™ software (BD Biosciences, CA).
2.2. Probability state modeling (PSM)

PSM is a technique that allows high-dimensional modeling
and display of data produced by image and flow cytometers.
GemStone™ version 1.0.69 (Verity Software House, Topsham,
Maine, USA)was used for all PSM analyses. The Supplementary
Materials Section describes the theory behind this new
approach to data analysis.
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3.1. Probability state modeling (PSM)

In cytometry, correlated cellular markers are measured
on a per-cell basis. Typically, the correlations between the
markers are measured using dot plots. PSM enables flow
cytometry data to be visualized using a novel approach.
The use of parametric plots allows for the visualization of
transitional events and results in the ability to correlate
multiplemarkers. To illustrate the basic principles, a description
of how PSM summarizes the timing of two marker expression
transitions is shown in Fig. 1. This figure also describes how
the model can be used to stage a cellular progression in a
mathematically rigorous manner. The theoretical underpin-
nings of PSM are discussed more fully in the Supplementary
Materials Section.

Fig. 1A shows a dot plotwhere each gray dot represents 1 of
50,000 synthesized events for two correlated measurements,
features A and B. There are three observable clusters of events:
C1 (gray ellipse), C2 (red ellipse), and C3 (blue ellipse), with
transitional events between them. If it is known that features
A and B are part of a progression, and A has a low level of
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intensity early and high late (see the solid black arrow), then it
can be inferred that (1) feature B is also low early and high late
and (2) B is likely to be up-regulated after A (see the black
dashed arrow). Thus, features A and B can be used to form
a logical staging system for the progression. Stage 1 can be
defined as those cells that do not express either feature A or B,
Stage 2 is those cells that begin to express feature A but have
not yet up-regulated feature B, and Stage 3 is those cells that
express feature A and begin to show low levels of feature B
(see dotted red and blue lines for stage boundaries).

Fig. 1B shows this staging from the point of view of a
single cell. A C1 type of cell becomes a c2 when it begins
to express feature A, and the c2 cell becomes a c3 when it
begins to express feature B. Cytometrists have used this type
of logical inference about the timing ofmultiplemarkers, when
given some initial directionality information, to better under-
stand complex cellular progressions (Loken and Wells, 2000).

Utilizing this general information about the progression,
a probability state model can be created and fitted in a manner
that is consistent with the observed data. Fig. 1C shows the
modeled expression profiles (EPs) for features A and B as
defined by their fitted control definition points (CDPs, orange
diamonds). In PSM, the density of events is constant along the
x-axis, transforming this axis to cumulative percentage (see the
x-axis). The percent of events that are in clusters C1 (20%),
C2 (25%), andC3 (20%), aswell as Stages 1 (20%), 2 (40%), and 3
(40%), can be read directly from the x-axis. PSM accounts for
population overlap and requires no gating (for details, see the
Supplementary Materials Section). It also enables the visuali-
zation of measurement variability with 95% confidence limits
(CLs,see Fig. 1C), which are a function of measurement
uncertainty and biologic heterogeneity. The relative widths
of the expression profiles for features A and B show that the
CLs of B are twice that of A. Since PSM reduces complex
high-dimensional data into a relatively small number of
CDPs for eachmeasurement, an overlay or “progression plot”
can be created that summarizes all correlations and per-
centages in a progression (see Fig. 1D). The thicknesses of
the bands in the progression plot are proportional to the 95%
CLs. A probability state model can be projected onto any
bivariate as a surface plot, where stage colors are appropri-
ately blended and the projection direction is shown with
arrows (see Fig. 1E).

3.2. Addressing the dimensionality barrier

A single PSM progression plot can represent thousands of
dot plots with very high-dimensional data (Inokuma et al.,
2010), while unambiguously showing biological changes that
accompany complex cellular progressions. Fig. 2 demon-
strates this important characteristic of PSM using one of this
study's CD8+ T-cell samples. Fig. 2A shows the probability
state model progression plot derived from a list-mode file
containing the correlated measurements of CD3, SSC, CD8,
CD4, CCR7 (CD197), CD28, and CD45RA. The x-axis repre-
sents CD8+ T-cell memory and effector differentiation with
units of cumulative percent of events. The y-axis is the relative
dynamic range of the measurement intensities between 0
and 100. The end of the naïve stage (red) is defined as the
beginning of the down-regulation of CD45RA (see the first
black diamond). The end of the central memory (CM, green)
stage is defined by the down-regulation of CD28 (see the
black diamond), and the end of the effector memory stage
(EM, blue) and the beginning of the terminal effector cell
stage (EF, brown) are at the point where CD45RA ceases
to up-regulate (see the second black diamond). Each CDP
defines the shape of the expression profile. In an EP, the CDP
is shown as a white or black diamond.

Fig. 2B shows scatterplot matrix (SPLOM) plots of all
combinations of CD3, SSC, CD8, CD4, CCR7 (CD197), CD28,
and CD45RA (7 single and 21 two-parameter dot plots). The
plot surfaces are appropriately blended with the stage colors,
and the dots shown are events in the tails of the 95% confidence
limits of the probability state model EPs. All the information
represented in the 28 plots in Fig. 2B is shown in the one
progression plot in Fig. 2A, demonstrating how PSM circum-
vents the dimensionality barrier that accompanies typical
cytometric analysis systems.

3.3. Model averaging and reproducibility

Since PSM effectively reduces a list-mode file into a
relatively small set of model parameters known as CDPs, it is
possible to model a set of files and obtain statistics such as
means, standard deviations (SDs), and Pearson correlations
for all the CDPs modeled. These statistically determined CDPs
can then be used to construct a progression plot that represents
an average of all the files in a group. The variabilities from
this averaged model can be represented as box whiskers
(−range, −95% CL, mean, +95% CL, +range). The first use
of this averaging capability was to evaluate the reproduc-
ibility of the PSM system.

Stained PBMC samples from three healthy donors were
acquired in triplicate by the cytometer. All three replicates
per donor were modeled and averaged. The results are
summarized in Fig. 3A, B, and C. The x- and y-axes are defined
as described in Figs. 1 and 2. Each CDP in the progression plot
has a vertical box whisker for examining the variability of
measurement intensities and a horizontal box whisker for
examining the variability of cumulative percentages. Since the
variability of the CDPs are minimal, the data suggest that
there is reasonable reproducibility for staining, acquisition,
and modeling. Additionally, each donor appears to have
unique percentages for each stage, but the phenotypic patterns
formed from coordinated marker changes are similar for these
three donors, suggesting there is donor to donor variability in
the number of cells representing a given stage, but the stages
are defined in a biologically prescribed manner.

3.4. Average CD8+ T-cell antigen-dependent progression model

To better understand the coordinatedmarker changes and
CDP variabilities for this progression, an average CD8+ T-cell
model was created frommodeling 20 samples of PBMCs from
healthy donors with antibodies against CD3, CD4, CD8, CCR7
(CD197), CD28, and CD45RA (see Fig. 4A). The mean and SD
(in parentheses) of the stages were %naïve, 25 (13); %CM, 38
(16); %EM, 17 (17); and %EF, 21 (18), shown at the top of the
progression plot. The vertical box whiskers show that there is
quite a bit of variability in the measurement intensities. This
variability is presumably a function of not only donor-to-donor
variability, but also instrument setup variability. The horizontal
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Fig. 2. Typical PSM analysis of CD8+ T cells compared with dot plot surface projections. Panel A shows a probability state model progression plot of CD8+ T cells
defined by the correlated measurements CD3, SSC, CD8, CD4, CCR7 (CD197), CD28, and CD45RA. The x-axis represents CD8+ T-cell antigen-dependent
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of the naïve stage (red) is defined as the beginning of the down-regulation of CD45RA (see first black diamond). The end of the CM (green) stage is defined by
the down-regulation of CD28 (see black diamond), and the end of the EM stage (blue) and the beginning of the EF stage (brown) are the end of the
up-regulation of CD45RA (see second black diamond). Each CDP in an EP is shown as a white or black diamond. Panel B shows scatterplot matrix (SPLOM) plots
of all combinations of CD3, SSC, CD8, CD4, CCR7 (CD197), CD28, and CD45RA (7 single and 21 two-parameter dot plots). The plot surfaces are appropriately
blendedwith the stage colors, and the dots shown are events in the tails of the 95% CLs of the probability state model EPs. All the information represented in the
28 plots in Panel B is shown in the progression plot in Panel A, demonstrating how PSM circumvents the dimensionality barrier that normally accompanies
cytometric analysis systems.
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box whiskers show the variations of the CD8+ subset
percentages.

An interesting observation in Fig. 4A is that at the point
where T cells down-regulate CD45RA, the expression of CCR7
(CD197) is also down-regulated, suggesting that they may be
coordinated to define the end of the naïve stage. Supporting
this hypothesis are (1) the statistics of the locations where
CD45RA and CCR7 (CD197) down-regulate have a Pearson
correlation coefficient, r, of 0.85 (p b 0.00001), and (2) the
difference in locations (CCR7–CD45RA) was −0.51%, which
was found to be not significant using a paired t test. This
correlation data indicate that when CD45RA down-regulates
at the end of the naïve stage, CCR7 is indeed down-regulated,
while CD28 is minimally up-regulated (see Fig. 4B, blue
hatched arrows). Our data are not consistent with the
supposition that there is an extra stage as determined by
CD45RA−CCR7+CD28+ (Appay et al., 2002). Events with
this phenotype captured by a gating strategy are most likely
a mixture of naïve and CM events as defined by this analysis.

The CD8+ average model also supports the hypothesis
that when CD28 is down-regulated, CD45RA begins to be
up-regulated (red arrows, r = 0.56, p b 0.01 with a differ-
ence of 1.9 (NS)). The last EF stage, is defined as the point at
which the up-regulation of CD45RA has ended.
3.5. Heterogeneity of marker expression (branching)

During the developmental progression of memory and
effector T cells, a subset of cells may begin to preferentially
express markers that might not be expressed in the remaining
cells. In PSM, the heterogeneous expression of markers can be
visualized with branching expression profiles (see Fig. 5).
Fig. 5A shows a progression schematic similar to Fig. 1 but
includes a simple branch involving feature C. In this example,
when cells reach the checkpointwhere feature B is up-regulated,
70% of the cells also up-regulate feature C, while 30% do not.
Fig. 5B delineates the three probability state model EPs that
model this simple branch (top = feature A,middle = feature B,
and bottom = feature C). Fig. 5C summarizes this progression
in the probability state model progression plot, which includes
the branching of feature C (see the CB label). Fig. 5D shows the
associated probability statemodel surface dot plots for feature A
vs. B (top), feature A vs. C (middle), and feature B vs. C (bottom).
Note that branches are not always visible in dot plots, which is
why they have been traditionally difficult to detect.

Branches are relatively easy to determine with PSM since
non-branched EPs are incompatible with branched data,
resulting in a dramatic loss of classified events and poor
fitting. In this simple example, the branch point is at the end
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Fig. 3. Reproducibility of staining, acquisition, and modeling. Panels A, B, and C are average probability state model progression plots from three replicate samples
from three different healthy donors. The x- and y-axes are defined as described in Figs. 1 and 2. Each CDP in the progression plot has a vertical box whisker for
examining the variability of measurement intensities and a horizontal box whisker for examining the variability of associated cumulative percentages. Since most
of the CDP whiskers are very small, the data suggest that there is reasonable reproducibility for staining, acquisition, and modeling. Additionally, each donor
appears to have unique percentages for each stage, but the phenotypic patterns formed from coordinated marker changes are similar for these three donors.
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of Stage 2. However, when modeling T-cell branches, the
location might be elsewhere along the progression axis.

3.6. Average CD8+ T-cell model with branches

An averaged model featuring 22 samples from healthy
donors was used to identify branched markers. Each sample
was stained with antibodies against CD3, CD4, CD8, CD45RA,
CD28, CCR7 (CD197), CD27, CD62L, CD57, and CD127. Fig. 6
shows the stratification expression profiles of CD45RA, CCR7,
and CD28 aswell as four branched EPs for CD62L, CD27, CD127,
and CD57. Here, CD62L (L-selectin) has a 77% (9%) chance
of down-regulating slightly before the end of the naïve
stage and correlates best with the down-regulation of CCR7
(blue hatched arrows, r = 0.81, p b 0.00001, diff = −4.23, NS).
CD27 slightly down-regulates with CD45RA and CCR7 at the end
of the naïve stage and then has a 75% (17%) chance of fully
down-regulating in the middle of the CM stage.

Interestingly, CD27 correlated best with the beginning of
the second expression level for CD45RA (solid red arrows,
r = 0.90, p b 0.00001, diff = 6.00, p b 0.0008). CD127 is
slightly up-regulated at the end of the naïve stage and then
has a 79% (16%) chance of fully down-regulating in the middle
of the CM stage. It is highly correlated with the down-
regulation of CD28 (solid blue arrows, r = 0.86, p b 0.00001,
diff = −6.79, p b 0.02). CD57, an immunosenescence marker,
has a 77% (15%) chance of up-regulating at the end of
the CM stage. It is also best correlated with the down-
regulation of CD28 (solid green arrows, r = 0.97, p b 0.00001,
diff = −3.23, NS).

A detailed analysis of the branches (data not shown)
indicates that, for the most part, events that were in one
branchwere notmore likely to be in other branches, suggesting
that the mechanisms behind branching are largely indepen-
dent for these four markers. Fig. 5B summarizes the branch
data in terms of a series of probabilistic checkpoints. In the
naïve stage, the probability that CD62L down-regulates is
approximately 0.77. In the CM stage, the probabilities that
CD27 and CD127 down-regulate are 0.75 and 0.79, respec-
tively. In the beginning of the EM stage, the probability of
CD57 up-regulating is approximately 0.77. These check-
points have the potential of creating a diversity of pheno-
types involving CD62L, CD27, CD127, and CD57.
4. Discussion

Flow cytometry is recognized as a valuable tool for
dissecting cellular populations and for deciphering complex
cellular processes at the single-cell level. However, as the
number of measurable cellular parameters increases, the
analysis methods become limiting, time consuming, and not
easily reproducible. In this study, to better characterize high-
dimensional cytometric data, we demonstrated that PSM can
reproducibly and objectively model cytometric data, and that
multiple files can be combined to generate an averagedmodel.
We also determined that phenotypic patterns of surface
protein expression are similar between donors and that
changes in specific protein expression are correlated with
other proteins. By generating a progression of CD8+ T cells
based on actual data, we determined four major memory
and effector subsets (Fig. 4A). Additionally, branching markers
were identified, revealing minor subpopulations in the
effector/memory subsets (Fig. 6).



Fig. 4. Average probability state model for CD8+ T-cell Ag-dependent progression. Panel A shows an average probability state model progression plot derived
from 20 PBMC samples from healthy donors. The means and SDs (in parentheses) of the stage percentages are shown at the top. The vertical box whiskers show
that there was quite a bit of variability in the measurement intensities. This variability is presumably a function of not only donor-to-donor variability, but also
instrument setup variability. The horizontal box whiskers show the variations of the CD8+ subset percentages. Panel B shows some important CDP cumulative
percentage correlations. When CD45RA is down-regulated, CCR7 is also down-regulated (blue hatched arrows, r = 0.85, p b 0.00001). The average difference
between these two locations (diff = −0.51%) was found to be not statistically significant using a paired t test. These data are not consistent with the existence
of an extra stage as defined by CD45RA-CCR7 (CD197)+CD28+ for CD8+ cells. Also, at the point where CD45RA down-regulates, CD28 slightly up-regulates
(see blue hatched arrow). When CD28 then down-regulates, CD45RA begins to up-regulate (red solid arrows, r = 0.56, p b 0.01, diff = 1.9, NS).
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GemStone™ uses a mathematical modeling system to
divide progressions into individual states and searches for a
solution that makes these states equally probable for event
selection. For each measurement, or marker, a progression
probability-based variable is generated. Since all the mea-
surements relate to this same progression variable, a single
graphical progression plot shows all the measurement corre-
lations in high-dimensional data. The PSM approach can be
applied to many types of data and is a useful method for
revealing biological mechanisms and validating models of
subset differentiation underlying cellular ontogeny.

Another important element of PSM is the approach to
modeling data. The strategy is to begin by defining the simplest
EPs that are well characterized (e.g., CCR7) and work toward
themore complex EPs that are less characterized. Similar to the
need for biological knowledge necessary for the interpretation
of traditional gating analysis, the use of a biological reference
point gives context to analysis of the modeled data. In the
model, the events are distributed equally across the states
for each EP, whether it is considered alone or in concert with
other markers. Therefore, the analysis can be approached one
measurement at a time, allowing for a scalable analysismethod
to a high-dimensional set of measurements, including un-
known elements. Additionally, in traditional gating, overlaps in
populations require subjective gating decisions. Flow cytome-
try standardization studies have identified gating as the largest
component in variability of results between laboratories
(Jaimes et al., 2011; Maecker et al., 2005). In PSM, regions
defined along a progression axis can automatically account
for population overlaps.

Many studies have demonstrated the link between pheno-
typic expression markers on CD8+ T cells with functional
properties, including ex vivo effector function. (Appay et al.,
2008; Hamann et al., 1997; Lefrancois and Obar, 2010; Sallusto
et al., 1999). With these observations, much research has
focused on the classification of effector and memory T-cell
subpopulations and their respective functions. The phenotypic
heterogeneity in memory T-cell populations has confounded
the definition of an accepted model describing immunological
development of CD8+ T cells. To approach the classification of
memory/effector subpopulations from a new angle, PSM was
applied to healthy donors' PBMCs stained with CD8+ T-cell
markers. The progression plots show three major transitions
forming four stages based on CD45RA and CD28, where
changes in marker intensities presumably reflect the changes
in functional states. This analysis of CD8+ T-cell differentiation
is somewhat in contrast to a previous publications outlining
five subsets of effector and memory cells (Appay et al., 2008).
By averaging the files of multiple healthy donors, the correla-
tion of transitions in percent relative intensity of markers could
be determined. The averaged modeled data of 20 healthy
donors showed that down-regulation of CD45RA and CCR7 at
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Fig. 5. Branched EPs. Panel A shows a progression schematic similar to Fig. 1 but includes a simple branch involving feature C. In this example, when cells reach
the feature B up-regulation checkpoint, 70% of the cells also up-regulate feature C while 30% do not. Panel B delineates the three probability state model EPs that
model this simple branch (top = feature A, middle = feature B, and bottom = feature C). Panel C summarizes this progression in the probability state model
progression plot that includes the branching of feature C (see CB label). Panel D shows the PSM surface dot plots for feature A vs. B (top), feature A vs. C (middle),
and feature B vs. C (bottom). Note that branches are not always visible in dot plots, which is why they have traditionally been difficult to detect. Branches are
relatively easy to determine with PSM, since non-branched EPs are incompatible with branched data, resulting in a dramatic loss of classified events and poor
fitting. In this simple example, the branch point is at the end of Stage 2. However, when modeling T-cell branches, the location may be anywhere along the
progression axis.
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the end of the naïve stage is significantly correlated (Fig. 4).
These transitions in expression levels define the end of the
naïve stage and the beginning of the CM stage. There is no
evidence that later changes in CCR7 form an additional stage.
The indicator for the end of the CM stage and the beginning of
the EM stage is defined by the down-regulation of CD28 and the
up-regulation of CD45RA. The modeled data set described in
this analysis suggests that it might be inappropriate to add an
extra early CD8+T-cell stage defined by the phenotype CD45RA
−CCR7+CD28+, as previously published (Appay et al., 2008).

Additionally, modeling reduces the data complexity into
a relatively small set of model parameters. These model
parameters are amenable to group statistics and compari-
sons. These features could play an important role in the
better understanding of normal and pathologic changes in
cellular immunity. For example, they can be applied to better
understand how the distribution of subsets of memory T cells
can change with age (Koch et al., 2008), to analyze seasonal
variations (Khoo et al., 2012; van Rood et al., 1991), or to
determine the variability of cellular immunity in the healthy
donor (Maecker et al., 2012).

In PSM, the differential expression of a marker along a
developmental pathway is graphically visualized as branching
(see Fig. 6). Therefore, the heterogeneous expression of a
marker in PSM is viewed as a branch in an EP. Branches are
relatively easy to detect with PSM, since non-branched EPs are
incompatible with branched data, resulting in a dramatic loss
of classified events and poor fitting. By PSM analysis, CD62L,
CD57, CD27, and CD127 allwere identified and characterized as
branchingmarkers. Each of thesemarkers is commonly used in
the identification of CD8+ T-cell CM and EM populations
(Bannard et al., 2009; Stemberger et al., 2007; Wiesel et al.,
2009). CD62L (L-selectin) has been described as being cleaved
from the cell membrane following antigen activation (Yang

image of Fig.�5
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Fig. 6. Average CD8+ T-cell branched EPs. As shown in Panel A, CD62L (L-selectin) has a 77% (9%) chance of down-regulating slightly before the end of the naïve
stage and correlates best with the down-regulation of CCR7 (blue hatched arrows r = 0.81, p b 0.00001, diff = −4.23, NS). CD27 slightly down-regulates with
CD45RA and CCR7 at the end of the naïve stage and then has a 75% (17%) chance of fully down-regulating in the middle of the CM stage. Interestingly, CD27 is best
correlated with the beginning of the second level of expression for CD45RA (solid red arrows, r = 0.90, p b 0.00001, diff = 6.00, p b 0.0008). CD127 slightly
up-regulates at the end of the naïve stage and then has a 79% (16%) chance of fully down-regulating in the middle of the CM stage. It is highly correlated with the
down-regulation of CD28 (solid blue arrows, r = 0.86, p b 0.00001, diff = −6.79, p b 0.02). CD57 has a 77% (15%) chance of up-regulating at the end of the CM
stage. It is also best correlated with the down-regulation of CD28 (solid green arrows, r = 0.97, p b 0.00001, diff = −3.23, NS). Panel B summarizes the branch
data in terms of a series of probabilistic checkpoints. In the naïve stage, the probability that CD62L down-regulates is approximately 0.77. In the CM stage, the
probabilities that CD27 and CD127 down-regulate are 0.75 and 0.79, respectively. In the beginning of the EM stage, the probability of CD57 up-regulating is
approximately 0.77.
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et al., 2011). It is also well known that CD62L expression can
change dramatically during standard experimental procedures
(Stibenz and Buhrer, 1994). These observations indicate that
CD62L is not useful as a selective marker for the identification
of CM and EM subsets and are further supported by the
branching profile observed with GemStone™ analysis. CD127
and CD27 are also often used in the classification of memory
subsets by dot-plot analysis (Stemberger et al., 2007; Tomiyama
et al., 2002, 2004). The branching of CD127 andCD27 expression
in CD8+ T-cell CM and EM populations, which is not easily
identified in standard dot plot analysis, may result in
misidentification of CD8 memory subsets.

In a progression plot, it is evident that the markers
discussed previously branch into different subsets at different
stages and are not specific for the memory subsets. These
branches are not easily visualized in traditional dot plots.
Gated populations based on these markers can result in the
grouping of multiple populations, leading to conclusions
which may be misleading. The use of the branched markers
in identification of memory subsets could be one explanation
for the lack of consensus in the identification of T-cell
memory populations. A probability state model progression
plot is one approach to visualizing the phenotypic heteroge-
neity of the multiple fates in T-cell development. The findings
reported in this study concur with a recent study which
suggests that there is asymmetric cell division in re-challenged
memory T cells, resulting in phenotypically distinct popula-
tions of daughter cells (Ciocca et al., 2012).

In summary, using PSM, GemStone™ allows for a unique
visualization resulting in multiple phenotypic biomarker corre-
lationswithout the limitations of bivariate dot plots or subjective
gating. This results in the ability to examine the relative timing of
phenotypic changes during CD8 T-cell differentiation. Using
three markers, CD45RA, CD28, and CCR7, we identified four
major CD8+ T-cell subsets in PBMCs of healthy donors. CD57,
CD62L, CD27, and CD127 are frequently used in the identifica-
tion of T-cellmemory subsets but in this studywere identified as
branchingmarkers. The branching aspect is difficult to identify in
traditional methods of data analysis and may account for
inconsistencies in the definition of immunological memory.
Branched markers such as CD57, CD62L, CD27, and CD127
should not be used as primary staging markers. However, these
markers may be useful in identification of the heterogeneous
phenotypes in T-cell memory populations. Thus, subjective
gating may be replaced as more objective and automated
methods like PSM become more available.
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