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The complex Langevin method is extended to full QCD at non-zero chemical potential. The use of gauge
cooling stabilizes the simulations at small enough lattice spacings. At large fermion mass the results are
compared to the HQCD approach, in which the spatial hoppings of fermionic variables are neglected,
and good agreement is found. The method allows simulations also at high densities, all the way up to
saturation.
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The determination of the phase diagram of finite density QCD
is one of the great problems of theoretical physics today. One is
interested in averages defined with the Euclidean path integral

〈
f [U ]〉 = 1

Z

∫
DUe−S g [U ] det M(μ, U ) f [U ], (1)

where S g[U ] is the Yang–Mills action of the gauge fields and
M(μ, U ) is the Dirac-matrix of the quark fields. Naive lattice simu-
lations at μ �= 0 using importance sampling are made unfeasible by
the fact that the determinant of the fermion matrix is a complex
number in general. Various methods have been invented to cir-
cumvent the problem, but these are of limited use [1], mostly be-
ing applicable for μ/T � 1. An exception is the complex Langevin
method [2], which is not limited to small chemical potential. It
has been demonstrated that this method allows for the solution of
the sign problem in various systems [3–7], but in some cases also
non-physical results are delivered [8–12]. In this Letter I demon-
strate that the algorithm can be extended to full QCD with light
quark masses on lattices with sufficiently small lattice spacings.

The complex Langevin method is based on setting up a com-
plex Langevin equation (CLE) in an enlarged manifold, which is the
complexification of the original field space [2]. The original the-
ory is recovered by taking expectation values of the analytically
continued observables. For SU(N) gauge theories this complexifi-
cation is SL(N,C). This method can also be applied to other cases
where the action becomes complex, e.g. the case of real time
evolution, where the complexity of the action is much ‘larger’, us-
ing the Minkowskian formulation of the path integral [13–15], or
Yang–Mills theory with Θ-term [16]. In this work I am concerned
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with finite density physics, where the complexity of the action is
present at non-zero chemical potential. The analytic understanding
of the breakdowns and successes of the complex Langevin method
has improved in the last few years [17–21], one can gain an in-
sight whether the results are trustworthy using requirements such
as the fast decay of the distributions.

Recently an important breakthrough in this field was the de-
velopment of a ‘gauge cooling’ algorithm for the CLE method [7],
where the gauge symmetry of the system is used to ensure a well
localized distribution in the complexified field space, and thus con-
vergence to the correct results.

In this work the CLE method is applied to the lattice discretiza-
tion of full QCD, i.e. for the action

Seff [U ] = S g[U ] − N F

4
ln det M(μ, U ) (2)

where S g[U ] is the Wilson plaquette action for the SU(3) link
variables, and M(μ, U ) is the unimproved staggered fermion de-
terminant for N F fermion flavors

M(μ, U )xy = mδxy +
∑
ν

ην(x)

2a

[
eδν4μUν(x)δx+aν ,y

− e−δν4μU−1
ν (x − aν)δx−aν ,y

]
, (3)

where x and y indices represent spacetime coordinates, and ημ(x)
are the staggered sign functions. Periodic (antiperiodic) boundary
conditions are used in space (time) directions. The fermion matrix
fulfills the symmetry condition:

εxM(μ, U )xyεy = M†(−μ∗, U
)

yx (4)

with the “staggered γ5 matrix”, εx = (−1)x1+x2+x3+x4 . This symme-
try leads to det M(−μ∗, U ) = (det M(μ, U ))∗ . This means that the
determinant becomes complex for Reμ �= 0, making a simulation
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by

http://dx.doi.org/10.1016/j.physletb.2014.01.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
mailto:d.sexty@thphys.uni-heidelberg.de
http://dx.doi.org/10.1016/j.physletb.2014.01.019
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2014.01.019&domain=pdf


D. Sexty / Physics Letters B 729 (2014) 108–111 109
based on importance sampling impossible. Without rooting (i.e. us-
ing N F < 4 by taking a root of the fermion determinant in the path
integral), the staggered determinant describes 4 tastes of fermions.
In the Langevin dynamics (see below) the implementation of any
(not necessarily integer) number of flavors is trivial, N F appears as
a factor of a drift term. In this study I have chosen to use N F = 4
and N F = 2.

The Langevin equation for the link variables is set up using the
equation

Ux,ν (τ + ε) = Rx,ν(τ )Ux,ν (τ ), (5)

with

Rx,ν(τ ) = exp

[
i
∑

a

λa(εKaxν + √
εηaxν)

]
. (6)

Here λa are the generators of the gauge group, i.e. the Gell-Mann
matrices. The drift force is determined by

Kaxν = −Daxν Seff [U ] (7)

with the left derivative

Daxν f (U ) = ∂α f
(
eiαλa Ux,ν

)∣∣
α=0. (8)

The drift term for the action (2) is written as

Kaxν = −Daxν S g[U ] + N F

4
Tr

[
M−1(μ, U )Daxν M(μ, U )

]
. (9)

It has been suggested in [22] that the drift corresponding to the
action (2) might also include a term reflecting the branch cut of
the complex logarithm on the negative real axis. This yet unclari-
fied issue is the subject of ongoing research.

The drift term remains real only for μ = 0. Since the explicit
calculation of the inverse of the fermion matrix is quite costly, this
naive algorithm is feasible only for small lattice sizes. As a cost
effective alternative, the bilinear noise scheme [23,24], which is
related to pseudofermionic variables, is introduced as follows. The
drift of the link variables is calculated using

Kaxν = −Daxν S g[U ] + N F

4
η+M−1 Daxν Mη, (10)

where the η is a vector of Gaussian random numbers satisfying
〈η∗

xηy〉 = δxy . For the calculation of the drift term one has to solve
the linear system of equation M+ψ = η. In terms of the solution ψ

the drift term is written as

Kaxν = −Daxν S g[U ] + N F

4
ψ+Daxν Mη. (11)

This means that this algorithm uses the conjugate gradient (CG)
algorithm once for every timestep for the solution of the linear
system. In [24] it was also shown that with a higher order algo-
rithm one can get rid of part of the O (ε2) corrections from the
Fokker–Planck equation.

From previous studies of the complex Langevin equation one
learns the heuristic approach that a well localized distribution of
the variables in the complexified field space is desirable. A useful
measure of the size of the distribution in imaginary directions of a
link variable is the unitarity norm

Tr
((

U U+ − 1
)2) � 0, (12)

where the equality is reached only for SU(N) matrices. The en-
larged gauge symmetry of the system can be used to decrease the
unitary norm of the system, thus ensure convergence to the ex-
act results [15]. Recently, we developed and tested in HQCD (see
below) a procedure utilizing this freedom called gauge cooling [7]
Fig. 1. Unitarity norm as a function of Langevin time with and without cooling for
several values of the Langevin timestep ε .

(reminiscent of stochastic gauge fixing [25]). The idea is the fol-
lowing: one uses gauge transformations

Ux,ν → Ω(x)Ux,νΩ−1(x + aν) (13)

with Ω(x) ∈ SL(N,C) to decrease the unitarity norm of the system.
This can be accomplished by choosing the Ω(x) matrices in the di-
rection of the steepest descent of the unitarity norm. Advanced
versions of the algorithm ensuring faster decay of the unitarity
norm use adaptive stepsize and Fourier acceleration [26].

The consequence of using the bilinear noise scheme is that an
imaginary part of the drift term is generated already at zero μ,
as the drift is real only on the average. Using a smaller Langevin
step allows the system to better approximate the drift term within
a given Langevin time-window, therefore the resulting equilibrium
unitarity norm of the simulation should vanish in the zero ε limit,
see Fig. 1. Without gauge cooling the non-unitarities generated by
the noise term (or rounding errors in the case of the exact inverse
algorithm) would grow exponentially, breaking down the simula-
tion. Generally, we find also at μ �= 0, using sufficient cooling,
that the level of unitarity norm stabilizes and allows one to ob-
tain correct results (after ε → 0 extrapolation) for lattices with
fine enough lattice spacings. As one observes, at low β (below
β ≈ 5.0–5.3 for N F = 4) the cooling is not effective enough to pre-
vent the system from wandering off far from the SU(3) manifold,
and ‘skirted’ distributions develop (as also observed in [7]). Close
to the continuum limit, however, the algorithm seems to be sta-
ble irrespective of the physical phase, as observed using cheaper
HQCD simulations.

Observables are measured on ‘slices’ of the T , μ phase diagram
(meaning a scan using one variable while keeping the other fixed),
to gain insight in the behavior of the system. On Fig. 2 a horizontal
slice at high temperature is shown. The density of the fermions in
the system is measured, as defined by

〈n〉 = 1

Ω

∂ ln Z

∂μ
, (14)

with Ω the space–time volume, in units of the saturation density
(which is reached when all available fermionic states on the lattice
are filled). The density starts to increase right away, there is no
sign of the Silver–Blaze phenomenon [27] at this high temperature,
as expected. Around μ/T = 8 the saturation is reached.

To measure the importance of the fermionic contribution to the
weight of the system, we define the average sign of the determi-
nant as

〈
e2iϕ 〉 =

〈
det M(μ)

〉
. (15)
det M(−μ)
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Fig. 2. Average phase factor and density as a function of the chemical potential.

Fig. 3. The fermion density, the chiral condensate (defined by 〈∂ ln Z/∂m〉/Ω) and
the trace of the Polyakov loop and its inverse as a function of the chemical potential.

Since the calculation of the determinant is very costly, it is only
measured on small lattices, see Fig. 2. (For the Langevin dynamics
the calculation of the determinant is not needed.) One sees that
even on this small lattice the average sign is close to zero in a
big range of the physically interesting region, making reweighting
unfeasible. (The feasibility of the reweighting is controlled by the
sign average in the phasequenched system (where the determinant
in the measure is substituted with its absolute value), which be-
haves similarly to the sign average in the non-quenched system as
shown in Fig. 2.) In the saturation region the phase fluctuations of
the determinant vanish again, as the necessary energy to create a
hole in the sea of fermions requires more energy than is available
in the thermal bath, thus the fermions decouple from the system.

In Fig. 3 we show the fermionic observables as well as the
trace of the Polyakov loops (defined in (17)) and its inverse again
on a horizontal slice of the phase diagram. The expected physical
scenario is realized: the density of the fermions grows until sat-
uration, while the chiral condensate vanishes. The Polyakov loops
have a peak at some nonzero μ (with the inverse Polyakov loop
having a peak first), before they decay to zero, as the Z3 sym-
metry of the system is restored in the saturation region, where
fermions no longer have an influence. Note that the critical β of
the system (the value for which the system is at the transition be-
tween confined and deconfined phases) is around βc ≈ 5.5 for the
parameters used in Fig. 3, so the slice is slightly above the critical
temperature. To reach smaller temperatures, lattices using larger
temporal extent are needed.

A well known approximation to full QCD is heavy quark QCD
(HQCD), which is valid for heavy quarks and large chemical po-
tentials [28,29], see also [30,31]. In this approximation the spatial
Fig. 4. Comparison of the average densities measured in HQCD and in full QCD with
staggered fermions.

Fig. 5. Comparison of the average Polyakov loops measured in HQCD and in full QCD
with staggered fermions.

hoppings are dropped and the fermionic determinant simplifies
considerably:

det
(
M(μ, U )

) =
∏

x

det(1 + C P x)det
(
1 + C ′ P−1

x

)
(16)

with the Polyakov loop

P x =
NT −1∏
τ=0

U (τ ,x),4, (17)

and the parameters C = eμNT /(2m)NT and C ′ = e−μNT /(2m)NT

with the staggered mass m, and the temporal extent of the lat-
tice NT . Note that this is the ‘symmetrized’ form of the deter-
minant satisfying det M(−μ) = (det M(μ))∗ , otherwise the second
factor could be dropped in the heavy-dense limit. The correspond-
ing approximation for Wilson fermions was studied with the com-
plex Langevin method in an earlier publication [7]. The HQCD
approximation for one flavor of Wilson fermion amounts to sub-
stituting m = 1/(4κ) in Eq. (16), as well as taking the square of
the right hand side of (16).

Increasing the quark mass, the HQCD approach will become a
better and better approximation of full QCD. To test at which mass
scale will the HQCD become quantitatively accurate, and to vali-
date the algorithm for full QCD, I compared simulations of HQCD
(for details, see [7,26]) to full QCD with staggered fermions, using
the same mass parameter. In Fig. 4 the fermion density is com-
pared, in Fig. 5, the Polyakov loops are compared.

One observes good agreement at the high mass of am = 4, as
expected, since the HQCD expansion is based on the expansion of
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the fermion determinant using the small parameter 1/am. This of
course does not prove that the results are fully reliable, but in-
creases the confidence in the procedure, as the HQCD method was
validated with reweighting at small μ [7]. At smaller masses the
results are quantitatively different, but the qualitative behavior is
very similar, where the biggest effect on the density and on the
Polyakov loop seems to be a rescaling of the chemical potential.

In this Letter I have shown that finite density simulations of full
QCD using the CLE with gauge cooling all the way up to saturation
are feasible using small enough lattice spacings, where the cool-
ing is effective. This method avoids the sign and overlap problems,
direct simulation results in the high density region are presented
for the first time. The cost of the simulation depends on the vol-
ume similarly to a hybrid Monte Carlo simulation, as the inversion
of the fermion matrix is the main numerical cost. In particular the
cost increases polynomially with the volume, in contrast with the
exponentially costly reweighting approach.

The results correctly reproduce the saturation physics and are
found to agree with HQCD for large quark masses. To increase
the confidence in the reliability of the results, further checks are
needed in the regions where different approaches are available,
such as results at small chemical potentials [32], or the results
gained using strong coupling expansions.
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