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The small intestine consists of two histological compartments composed of the crypts and the
villi. The function of the adult small intestinal epithelium is mediated by four different types of
mature cells: enterocytes, goblet, enteroendocrine and Paneth. Undifferentiated cells reside in the
crypts and produce these four types of mature cells. The niche-related Wnt and Bmp signaling
pathways have been suggested to be involved in the regulation and maintenance of the stem cell
microenvironment. In our laboratory, we isolated the first normal human intestinal epithelial

crypt (HIEC) cell model from the human fetal intestine and in this study we investigated the
expression of a panel of intestinal stem cell markers in HIEC cells under normal culture
parameters as well as under conditions that mimic the stem cell microenvironment. The results
showed that short term stimulation of HIEC cells with R-spondin 1 and Wnt-3a7SB-216763, a
glycogen synthase kinase 3β (GSK3β) inhibitor, induced β-catenin/TCF activity and expression of
the WNT target genes, cyclin D2 and LGR5. Treatment of HIEC cells with noggin, an antagonist of
BMP signaling, abolished SMAD2/5/8 phosphorylation. Inducing a switch from inactive WNT/
active BMP toward active WNT/inactive BMP pathways was sufficient to trigger a robust intestinal
primordial stem-like cell signature with predominant LGR5, PHLDA1, PROM1, SMOC2 and OLFM4
expression. These findings demonstrate that even fully established cultures of intestinal cells can
be prompted toward a CBC stem cell-like phenotype. This model should be useful for studying the

regulation of human intestinal stem cell self-renewal and differentiation.
& 2014 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-ND license.
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Introduction

The small intestinal epithelium is characterized by rapid and
constant renewal; this very dynamic system involves cell genera-
tion and migration from the crypt cell population located at the
bottom of the crypt to extrusion of senescent cells at the tip of the
villus [1–4]. The intestinal crypt is a highly hierarchized structure.
Its lower third contains the slow growing stem cell population as
well as Paneth cells [1,2,5–9]. The middle third contains the
rapidly growing transit cells, which are committed toward
secretory or absorptive lineages, while remaining poorly differ-
entiated [1,9] being under the influence of repressive mechanisms
[10,11]. Except for Paneth cell precursors which down-migrate to
complete their differentiation in the crypt base, terminal differ-
entiation of the other epithelial cell types occurs in the upper
third of the crypt so that all cells reaching the base of the villi are
fully functional [3,12–14].
Characterization of the crypt cell microenvironment [15] has

provided key information on molecular components of the intest-
inal stem cell niche in which the Wnt and Bmp signaling pathways
play a major role [2,4–6]. The Wnt pathway is a main regulator of
cell proliferation. As reviewed recently [16], this signaling pathway
is based on autocrine and paracrine interactions of secreted Wnts, a
family of cysteine-rich glycoproteins, with their receptor Frizzled
and co-receptor lipoprotein related protein. Activation of the
canonical pathway leads to stabilization and nuclear translocation
of β-catenin, which interacts with the T-cell factor/lymphoid
enhancer factor (Tcf/Lef) transcription factors, inducing the expres-
sion of a series of downstream target genes such as c-Myc and
cyclin D [5]. In the absence of binding of Wnt to its receptor, free
cytosolic β-catenin is targeted to the destruction complex, consist-
ing of scaffolding proteins such as axin and adenomatous polyposis
coli as well as kinases such as casein kinase1 and glycogen
synthase kinase 3β (GSK3β), which phosphorylate β-catenin for
its ubiquitination leading to proteosomal degradation [16]. Ligands
responsible for canonical Wnt signaling, e.g. Wnt-3a, are expressed
only by epithelial crypt cells [17] including Paneth cells [18].
Epithelial crypt cells also express the corresponding Wnt receptor
frizzled and co-receptor Lrp as well as Wnt inhibitors such as Dkk1
[19]. Members of the R-spondin family of proteins have arisen as
major regulators of Wnt signaling. R-spondins enhance Wnt
signaling in the presence of canonical Wnt ligands [20]. Bmp
signaling, on the other hand, is a negative regulator of crypt cell
proliferation [21]. In the intestine, Bmps such as Bmp4 are mainly
expressed by stromal cells although some appear to be of epithelial
origin [21–23]. They bind type I and type II Bmp receptors in villus
and crypt epithelial cells which leads to the phosphorylation of the
Smads [21,22]. Once activated, Smads translocate to the nucleus
where, in cooperation with other transcription factors, they
activate the expression of Bmp-specific genes [22]. Interestingly,
the potent Bmp antagonist, noggin, is expressed by intestinal
myofibroblasts at the crypt base [22].
Over the years, two populations of stem cells have been recognized

in the small intestine. The so-called crypt base columnar (CBC) cells
that were identified between the Paneth cells at the bottom of the
crypts by Cheng and Leblond four decades ago [1,24] and the DNA-
label-retaining cells (LRC) identified just above the Paneth cells [7].
The identification of the CBC cell specific marker leucine-rich-repeat-
containing G-protein-coupled receptor-5 (Lgr5), a Wnt downstream
target, and its monitoring in lineage-tracing experiments provided
evidence that CBC-Lgr5 positive cells represent the primordial stem
cells [25]. Interestingly, recent studies have shown that LRCs are quite
distinct from CBCs and appear to represent a quiescent reserve stem
cell population that can regenerate the primordial stem cell popula-
tion in case of injury [26–28]. Additional candidate markers for CBC
cells have been identified through gene expression profiling of LGR5þ
cells, with validation of OLFM4 (olfactomedin-4) in the small and
large intestine [29]. Lineage-tracing studies of the transmembrane
glycoprotein prominin-1 (PROM1) also known as CD133 have shown
that a proportion of Prom1-positive cells located at the base of the
intestinal crypts also express Lgr5 and have the potential to generate
the entire intestinal epithelium, and thus appear to be CBC cells as
well [30,31]. PHLDA1 (Pleckstrin homology-like domain family mem-
ber 1) has also been identified as a putative epithelial stem cell
marker in the human small and large intestine [32]. Finally, SMOC2
has recently been identified as a specific CBC stem cell marker [33].

Despite substantial advances in investigating stemness and
cellular hierarchy in the mouse, limited progress has been made
regarding the human intestinal crypt due to limited access to
valid human intestinal cell models. In our laboratory, we isolated
the first normal non-transformed non-immortalized human
intestinal epithelial crypt (HIEC) cell model from the immature
intestine [34]. The epithelial origin of the HIEC has been con-
firmed by identification of the intestinal keratins 8, 18, 19, and
20/21 [34]. These cells retain the ability to express the crypt cell-
specific marker MIM-1/39, the integrins α6β4, α8β1 and α9β1 and
an intestine specific truncated crypt-form of the integrin β4
subunit [13,34–37], as well as detectable levels of progenitor
crypt cell markers such as Musashi-1, BMI1, DCAMKL1, EpCAM
and CD44 [10,38]. Under standard culture conditions, HIEC cells
hold their characteristics up to 30 passages. Analysis of the
expression of intestinal functional markers has confirmed the
undifferentiated nature of HIEC cells by demonstrating basal
levels of expression of the brush border hydrolases aminopepti-
dase N and dipeptidylpeptidase IV, but not sucrase-isomaltase
[34]. The lack of sucrase-isomaltase at both protein and transcript
levels is indicative of the non-committed nature of these crypt-
like cells [13,39,40]. HIEC cells have been proven useful in study-
ing human crypt cell functions [13,40] such as proliferation
[35,41], apoptosis [42–44], cell–matrix interactions [35,36,45],
metabolism [46] and the inflammatory response [42,43]. Inter-
estingly, ectopic expression of pro-differentiation transcription
factors such as CDX2 and HNF-1α has been found to trigger the
enterocytic differentiation program in HIEC cells including
sucrase-isomaltase expression [38] while abolition of PRC2 epi-
genetic regulation further promoted terminal differentiation [10]
indicating that cultured HIEC cells maintain the capacity to
undertake an intestinal cell differentiation program.

In the present study, considering the undifferentiated/non-
committed nature of HIEC cells and their expression of progeni-
tor/stem cell markers such as Musashi-1, BMI1 and DCAMKL1 [38]
as well as EpCAM and CD44 [10], we sought to evaluate their
stemness potential. Our data revealed that HIEC cells exhibit,
consistent with their low level of LGR5 expression [38], weak
WNT/β-catenin activity. However, switching the activation sta-
tuses of the WNT/BMP pathways with a combination of Wnt-3a,
R-spondin 1 and noggin triggered a conversion of HIEC cells
toward a robust CBC-like cell signature including predominant
LGR5, PHLDA1, PROM1, SMOC2 and OLFM4 expression.
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Materials and methods

Cell culture

The human intestinal epithelial crypt-like (HIEC) cells were
generated and grown as described previously [34,40]. HIEC cells
exhibit all the morphological and functional characteristics of
normal human proliferative crypt cells and are considered to be
undifferentiated crypt-like progenitor cells [13,39,41,47].

The colorectal cancer cell lines Caco-2/15, HT-29, HCT-116 and
SW480, obtained and cultured as previously described [47–50]
were used as positive controls for luciferase assays and qPCR
expression studies.

Antibodies, mediators and inhibitors

The mouse primary antibodies used in this study were anti-β-
actin (Millipore, MAB1501) and anti-active-β-catenin (Millipore,
05–665). The rabbit primary antibodies used in this study were
anti-LGR5 (Origene, TA301323), anti-cyclin D2 (Santa Cruz Bio-
technology, sc-181), anti-PHLDA1/TDAG51 (Santa Cruz Biotech-
nology, sc-23866) and anti pSMAD2/5/8 (Cell Signaling, 9511).
Secondary antibodies were AlexaFluor 488 or 594 goat anti-
mouse (Molecular Probes, A11017, A11020) and AlexaFluor 488
or 594 goat-anti rabbit (Molecular Probes, A11070, A11072). The
human recombinant molecules Wnt-3a (5 ng/ml; 5036-WN), R-
spondin 1 (10 ng/ml; 4645-RS/CF) and noggin (100 ng/ml; 3344-
NG) were purchased from R&D Systems and the GSK3β inhibitor,
SB-216763, was from Sigma-Aldrich (20 mM, S3442).

Western blot analysis

Western blot analyses were performed on SDS-PAGE gels under
denaturing conditions as previously described [41]. Total protein
(50 mg/ml) preparations were separated on 12% or 15% gels and
electrotransferred onto nitrocellulose membranes (BioRad, 162-0115).
Nonspecific protein binding was blocked using 10% Blotto–0.1%
Tween followed by incubation with primary antibodies diluted in
the blocking solution, overnight at 4 1C. After washing with PBS,
membranes were incubated with horseradish peroxidase-conjugated
secondary antibodies (anti-mouse, NA931V and anti-rabbit, NA934V,
Amersham) and developed using the Immobilon Western Kit (Milli-
pore, WBKLS0100).

Transfection and luciferase assay measurement

Equal numbers of HIEC cells were seeded in 12-well plates (BD
Biosciences, 353043) and grown to 40–60% confluence before
being transiently transfected in serum-free medium using Effec-
tene Transfection Reagent (Qiagen, 301425). Cells were treated
with R-spondin 1/Wnt-3a7SB-216763 for 48 h. All transfections
were performed as co-transfections using a renilla luciferase
expression plasmid to establish an internal control for transfec-
tion efficiency thus allowing for normalization of cell number and
viability. The β-catenin/TCF4 responsive luciferase reporter plas-
mid used was TOPflash (Millipore, 21–170). Firefly and renilla
luciferase activities were measured using the Dual-Luciferases

Reporter Assay System (Promega, PRE1980) as described pre-
viously [51].
Cell proliferation and BrdU incorporation assays

HIEC cells were seeded in 35-mm dishes at 2 � 105 cells/dish in
OptiMEM medium. A first 24 h resting period was allowed before
starting the treatment. Twenty four and forty eight hours after
treatment, three plates of each cell line were washed with PBS
and counted with a BioRad TC10 Automated Cell Counter.
BrdU incorporation and staining was performed according to

the manufacturer's (Roche, 11 810 740 001) instructions. Cells
were prepared as above. At 20 and 44 h post-treatment, cells
were incubated for 4 h with normal medium containing BrdU
then immediately subjected to anti-BrdU and DAPI staining as
described previously [37].
RNA extraction and quantitative polymerase chain reaction

RNA extraction, reverse transcription and quantitative polymerase
chain reaction (qPCR) assays were performed as described pre-
viously [49]. Human LGR5 and RPLPO were evaluated by qPCR as
previously described [38]. For Phlda1, the forward 50-CCTCCAA-
CTCTGCCTGAAAG-30 and reverse 50-TTCCTGCATCGTGATGAAAA-30

primers, for SMOC2, the forward 50–CAGCCGAAATGTGACAACAC-30

and reverse 50-GTTCTGAGAGCCTGCCTGAC-30 primers, for PROM1,
the forward 50-TTTGGTGCAAATGTGGAAAA-30 and reverse
50-TTGAAGCTGTTCTGCAGGTG-30 primers, for OLFM4, the forward
50-CCAGCTGGAGGTGGAGATAA-30 and reverse 50-GCTGATGTTCACC
ACACCAC-30 primers and for cyclin D2, the forward
50-TGGGGAAGTTGAAGTGGAAC-30 and reverse 50-ATCATCGAC
GGTGGGTACAT-30 primers were used. For quantitative RT-PCR,
the threshold cycle values were converted into relative expression
values compared with a QPCR Human Reference Total RNA
standard (Stratagene, 750500) before normalization of gene
expression against the normalizing gene RPLPO as described
previously [49]. The annealing temperature of the reactions was
55 1C and the amplification efficiencies of the reactions were
between 96% and 112% as determined by standard curve analysis.
Indirect immunofluorescence staining

Cells were seeded onto glass cover slips. Confluent cells (40–60%)
were treated or not with the R-spondin 1/Wnt-3a/SB-216763/
noggin cocktail for 48 h. Cells were fixed with MeOH for 20 min at
�20 1C and processed as described previously [34] for the
immunodetection of LGR5. Slides were viewed with a DMRXA
microscope (Leica, Concord, ON) equipped for epifluorescence and
digital imaging (RTE/CCD Y/Hz-1300 cooled camera). Images were
acquired using MetaMorph software (Universal Imaging Corpora-
tion) under identical conditions and exposure time.
Statistical analysis

All experiments were performed in at least triplicate. Student's
unpaired t-test and ANOVA using Bonferroni’s Multiple Compar-
ison Test were used to analyze the results. Data were considered
to be significantly relevant at po0.05 and are presented respec-
tively as, mean7SD and mean7SEM. Statistical calculations were
performed using Prism 3.0 software (GraphPad Software).



Fig. 1 – The WNT pathway is inactive but inducible in HIEC cells. (A) HIEC cells and CRC cell lines (Caco-2/15, T84, HCT-116) were
transiently co-transfected with TOPflash or FOPflash plasmid and pRL-TK renilla luciferase plasmid DNA. Activity of the WNT/β-
catenin signaling pathway was quantified by measuring relative firefly luciferase activity units (RLUs) normalized to renilla
luciferase. (B) HIEC cells were transiently transfected with the β-catenin responsive luciferase plasmid, TOPflash or inactive
FOPflash, and stimulated with R-spondin 1/Wnt-3a / SB-216763 for 48 h (n¼ 3, nnnpo0.0001). (C) Quantitative PCR of cyclin D1 and
D2 expression in HIEC control and treated with R-spondin 1/Wnt-3a/SB-216763 for 48 h. Unstimulated HIEC cells were used as
control. Results were normalized to the RPLP0 housekeeping gene (n¼ 3, nnpo0.01, nnnpo0.001). (D) Representative western blot
analysis of HIEC cell lysates for the detection of cyclin D1/D2, active β-catenin and actin in control and cells treated with R-spondin
1/Wnt-3a/SB-216763 for 48 h and corresponding densitometries for both cyclin D1 and D2 bands (mean7SEM, nnpr0.01, n¼3, one
way ANOVA test).
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Fig. 2 – The BMP pathway is active in HIEC cells. (A)
Representative western blot showing the expression levels of
pSMAD2/5/8 protein in control and treated HIEC cells with the
BMP pathway inhibitor, noggin, for 48 h. Actin was used as
loading control. (B) Representative graph showing relative
amounts of pSMAD2/5/8 determined by optical densitometry.
Data were normalized with actin. Mean7SEM, nnnpr0.001,
n¼3, paired t-test.
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Results and discussion

The WNT pathway is inactive but inducible in HIEC cells

Characterization of the crypt cell microenvironment has provided
key information on molecular components of the intestinal stem
cell niche [15]. Considering its central role on the regulation of the
intestinal stem cell system, we first verified the status of activa-
tion of the WNT pathway in HIEC cell lines using the TOPflash/
FOPflash luciferase assay to evaluate WNT downstream β-catenin/
TCF transactivation activity. As positive controls for the normal
HIEC cells, the human colorectal cancer cell lines Caco-2/15, T84
and HCT-116 were also tested. As expected [52], Caco-2/15 and
T84 cells, both possessing a mutated APC, displayed moderate β-
catenin activity while HCT-116 which has a mutated β-catenin
that is constitutively active, displayed high β-catenin activity
(Fig. 1A). In comparison with the colorectal cancer cell lines, β-
catenin/TCF transactivation activity in HIEC was found to be very
low (Fig. 1A).

To test whether the WNT pathway was nevertheless functional,
HIEC cells were stimulated with activators of the WNT canonical
pathway. We first tested R-spondin 1 and Wnt-3a. R spondin 1
alone (10 ng/ml) did not activate WNT signaling by itself (not
shown), and its activity on HIEC cells was found to depend on the
presence of Wnt-3a (5 ng/ml). Indeed in combination, a statisti-
cally significant 5 times increase in β-catenin/TCF activity was
observed (Fig. 1B). The synergistic effect of R-spondin 1 and Wnt-
3a on β-catenin/TCF activation has been previously described [20],
a complex phenomenon that appears to involve the participation
of specific R-spondin 1 receptors [53–55]. The effect of the
selective GSK3β inhibitor SB-216763 was also investigated on
normal human HIEC cells. This GSK3β inhibitor has been com-
monly used to mimic the action of Wnt molecules to activate β-
catenin/TCF signaling [56]. Used alone, SB-216763 induced a
significant increase in β-catenin/TCF transactivation activity (not
shown) but its additive effect when used in combination with R-
spondin 1 and Wnt-3a was found to be negligible (Fig. 1B).

As a classical downstream effector of WNT signaling [5], cyclin
D expression was then evaluated to confirm the previous obser-
vations with TOP/FOPflash activity. Using qPCR and western blot
analyses, a significant increase in both cyclin D1 and D2 expres-
sion was observed at both transcript (Fig. 1C) and protein levels
(Fig. 1D). Co-treatment of R-spondin 1/Wnt-3a and SB-216763
also significantly increased active β-catenin levels (Fig. 1D). Taken
together, these results indicate that the WNT canonical pathway is
inactive in normal HIEC cells but remains fully functional.

The BMP pathway is active in HIEC cells

The BMP signaling pathway is a well characterized negative
regulator of intestinal cell proliferation. BMPs can be secreted by
both subepithelial stromal and epithelial cells [21–23] while the
expression of noggin, an antagonist of BMP signaling, is expressed
by intestinal myofibroblasts at the crypt base [21,22]. The BMP
pathway appears to be active in normal HIEC cells as noted by the
significant levels of phosphorylation of SMAD2/5/8 as evaluated by
western blot (Fig. 2). Treatment of HIEC cells with 100 ng/ml of
noggin for 48 h abolished SMAD2/5/8 phosphorylation (Fig. 2)
confirming that BMP signaling can be efficiently inhibited in HIEC.
Switching the activation status of the WNT/BMP pathways
triggers conversion of crypt cells toward a CBC-like cell
phenotype

Consistent with their typical non-CBC cell-like signature (inactive
WNT/active BMP pathways) as shown above, wild-type HIEC cells
have been previously shown to express low levels of the specific
CBC stem cell marker LGR5 although other progenitor crypt cell
markers such as Musashi-1, BMI1 and DCAMKL1 were detected
[38]. To test the hypothesis that inducing a switch from inactive
WNT/active BMP toward active WNT/inactive BMP may be
sufficient to trigger a CBC-like cell signature, HIEC cells were
treated with various combinations of R spondin 1/Wnt-3a, SB-
216763 and noggin for 48 h and analyzed for the expression of
CBC cell specific markers. As positive control for expression of
stem cell markers, we used a pool of Caco-2/15, HT-29, HCT-116
and SW480 colorectal cancer (CRC) cell lines since recent studies
have reported the presence of cancer stem cells within CRC cell
line populations [57,58]. Untreated HIEC cells were used as
control cells.
The CBC cell-specific markers LGR5 [25] and PHLDA1 [32] were

both detectable in control cells at transcript and protein levels
(Fig. 3) consistent with the fact that the detection of these
markers in non-CBC crypt cells was recently reported in the
intact intestine [29,33]. Stimulation of HIEC cells with R-spondin
1/Wnt-3a with or without SB-216763 as well as noggin alone had
no significant effect on LGR5 or PHLDA1 expression while a sharp
increase in the expression of the two transcripts was observed in
the presence of R-spondin 1/Wnt-3a7SB-216763 with noggin
(Fig. 3A). Similarly at the protein level, a significant induction of



Fig. 3 – Altering the activation status of the BMP and WNT pathways affects the expression profile of the CBC cell markers PHLDA1
and LGR5. HIEC cells were treated with R-spondin 1/Wnt-3a7SB-216763 with and without noggin for 48 h. Gene and protein
expression were determined by quantitative PCR and western blotting, respectively. (A) Levels of mRNAs for LGR5 and PHLDA1
were analyzed by qPCR. The data are expressed relative to untreated control HIEC cells. A pool of CRC cell lines was used as positive
control for expression of stem cell markers. Mean7SEM, nnnpr0.001, n¼3, one way ANOVA test. (B) Representative western blot
analyses of LGR5 and PHLDA1 expression in HIEC cells treated with R-spondin 1/Wnt-3a7SB-2167637noggin. (C) Graph showing
relative amounts of LGR5 and PHLDA1 as determined by optical densitometry of western blot membranes. Data were normalized
relative to actin. Mean7SEM, nnnpr0.001, n¼3, paired t-test. (D) Representative images of indirect immunofluorescence for the
detection of LGR5 on control and treated HIEC cells with the R-spondin 1/Wnt-3a/SB-216763/noggin cocktail for 48 h. Scale
bar¼50 lm.
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LGR5 and PHLDA1 was observed after 48 h in the presence of the
R-spondin 1/Wnt-3a, SB-216763 and noggin combination (Fig. 3B,
C) confirming a good agreement between mRNA and protein
induction even after only 48 h induction. The synergistic effect of
these factors on LGR5 and PHLDA1 expression is consistent with
the concept that CBC cells exhibit a WNT/on BMP/off signature
[2,6]. Furthermore, immunodetection of the CBC cell marker LGR5
confirmed that the increased expression occurred in a majority of
the cells treated with the R-spondin 1/Wnt-3a/SB-216763/noggin
cocktail (Fig. 3D). Taken together, the current study represents a
clear demonstration that the CBC-like cell phenotype requires
both an active WNT pathway and an inhibited BMP pathway for
its triggering.

Because LGR5 is a direct WNT-target gene [59] and PHLDA1
expression is also related to this pathway although not a direct
WNT-target gene [32], we investigated the expression of the 3
additional CBC-like cell markers PROM1 [30,31], SMOC2 [33] and
OLFM4 [29], including at least one, OLFM4, which is not under the
Fig. 4 – (A) Altering the activation status of the BMP and WNT pat
PROM1, SMOC2 and OLFM4. HIEC cells were treated with R-spondin
of PROM1, SMOC2 and OLFM4 transcripts were evaluated by qPCR. T
A pool of CRC cell lines was used as positive control for expression
ANOVA test.

ig. 5 – Activation of the WNT pathway does not affect cell-cycle pr
reated with a cocktail of R-spondin 1/Wnt-3a, SB-216763 and noggin
ell proliferation was also evaluated by assessing BrdU incorporatio
NOVA test).
control of WNT [60]. In control HIEC cells, PROM1, SMOC2 and
OLFM4 expressions were detectable although at approximately
10% of the levels detected in the colorectal cancer cell pool (Fig. 4).
Stimulation with the R-spondin 1/Wnt-3aþnoggin7SB-216763
combination resulted in a 15–40 times increase while no sig-
nificant effect was observed in the presence of the factors tested
individually (Fig. 4) confirming the synergistic effect of a dual
WNT pathway activation/BMP pathway inhibition for CBC cell
marker expression. The comparable pattern of OLFM4 expression
with the other four CBC cell markers supports the occurrence of
an overall conversion of HIEC cells to CBC-like cells.
It is noteworthy that the gene products of both SMOC2 and

OLFM4 gene families have been reported to act as potential
antagonists of the BMP signaling pathway [61,62] suggesting
the existence of an autocrine way of inhibiting BMP signaling in
the stem cell niche. In the context in which another specific CBC-
cell marker, LGR5, can serve as a R-spondin 1 receptor, coopera-
tive signaling appears to be a landmark of CBC cell homeostasis
hways affects the expression profile of the CBC cell markers
1/Wnt-3a7SB-216763 with and without noggin for 48 h. Levels
he data were expressed relative to control untreated HIEC cells.
of stem cell markers. Mean7SEM, nnnpr0.001, n¼3, one way

ogression. (A) Subconfluent HIEC cells untreated (control) or
were counted after 24 and 48 h. (B) Control and treated HIEC
n. Mean7SEM, nnpr0.01, nnnpr0.001, n¼3, one way
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and reinforces the notion that Wnt signaling and intestinal stem
cell biology are closely linked [54,55]. The lack of significant
modulation of other crypt cell markers such as SMOC1, DCKL1 and
MSI1 by HIEC cell stimulation with the R-spondin 1/Wnt-3a/SB-
216763/noggin cocktail (data not shown) confirmed the specificity
of WNT pathway activation/BMP pathway inhibition for the
induction of the CBC cell-like phenotype.
Conversion of HIEC cells toward a CBC-like cell phenotype
modulates cell-cycle progression

Considering that both the WNT and BMP pathways can regulate
cell-cycle progression and considering our observations showing
an increase in active β-catenin and cyclin D levels in R-spondin
1/Wnt-3a/SB-216763/noggin stimulated cells, we assessed the
proliferation rate of HIEC control and treated cells by BrdU
incorporation experiments. Treatment of HIEC cells with the
R-spondin 1/Wnt-3a/SB-216763/noggin cocktail exerted a statis-
tically significant effect on proliferation over a 48 h period (Fig. 5).
HIEC cells are normal human proliferative/crypt stem cells, and it
is known that in normal cells, the cell cycle is subject to very
complex mechanisms of regulation to avoid excessive prolifera-
tion of cells. Interestingly, as mentioned above, even if cycling
Lgr5þ stem cells at the bottom of the crypts are in a rich Wnt
microenvironment, the average cycling time of CBC cells is
relatively long (in the order of 24 h) in comparison with TA cells
that cycle every 12 h under a Wnt-independent environment
[6,9,14]. The data presented herein showing a statistically sig-
nificant �20% increase in cell proliferation after 48 h of treatment
is consistent with the existence of an intrinsic mechanism of
regulation. Although highly controlled in normal CBC cells, the
deregulation of the Wnt/β-catenin signaling pathway by genetic
alterations of β-catenin or APC results in a strong increase in the
rate of intestinal epithelial cell proliferation leading to colorectal
cancer [63]. Therefore, while Wnt/β-catenin signaling supports
proliferation and self-renewal of CBC cells in the normal intestinal
epithelium, its alteration can result in cancer formation [64].
Conclusions

In cellulo models should allow for a more direct approach to the
investigation of cellular and molecular mechanisms controlling
stem cell maintenance and deregulation, which are difficult
aspects to approach in vivo [1,12,65–69]. Recent efforts in this
direction have shown that single LGR5 positive cells can grow
in vitro in a laminin-containing substrate supplemented with EGF,
R-spondin 1 and the BMP inhibitor noggin [70]. Differentiation of
pluripotent stem cells into intestinal tissue in vitro using laminin
gel, Wnt-3a and FGF4 has also recently been achieved [71]. Efforts
have also targeted the isolation of intestinal stem cell populations
[72–74]. In this context, the present finding demonstrating that
fully established cultures of normal human intestinal epithelial
crypt cells can be prompted toward a CBC stem cell-like pheno-
type as evaluated by LGR5, PHLDA1, PROM1, SMOC2 and OLFM4
expression and maintenance of cell proliferation dynamics is very
promising as a relatively straightforward tool to further investi-
gate human intestinal crypt cell self-renewal and differentiation.
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