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Aims: Diabetes is known to cause alteration of the endothelin (ET) system. We have previously demonstrated
that ETs regulate augmented production of extracellular matrix proteins causing structural alterations in type
1 diabetes. Here we investigated the effects of macitentan, an orally-active, tissue-targeting dual ET receptor
antagonist on chronic complications in type 2 diabetes.
Main methods: db/db mice and their age- and sex-matched controls were examined after 2 and 4 months of
diabetes. Groups of diabetic animals were treated with oral macitentan (25 mg/kg/day). The animals were
monitored with respect to body weight and blood glucose. Urine analyses were performed for albumin. Car-
diac hemodynamic studies were carried out. Renal, cardiac and retinal tissues were analyzed for ET-1, trans-

forming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), fibronectin (FN), extradomain
B containing FN (EDB+FN) and collagen α-I (IV) mRNA. Cardiac atrial natriuretic peptide (ANP) and brain
natriuretic peptide (BNP) were measured. Protein expressions were measured by ELISA and Western blot.
Microscopic analyses were performed in the kidneys.
Key findings: Diabetic animals showed hyperglycemia, increased urinary albumin and augmented serum
creatinine levels. Diabetes caused increased renal, cardiac and retinal ET-1, TGF-β1, VEGF, FN, EDB+FN, col-
lagen α-I(IV) mRNA expression along with increased FN and collagen protein and NF-κB activation. Dia-
betic mice also demonstrated mesangial expansion, cardiac dysfunction and increased expression of ANP
and BNP. Treatment with macitentan attenuated such abnormalities.
Significance: These experiments confirmed that ET system plays a significant role in the pathogenesis of
chronic complications in type 2 diabetes. Such diabetes induced changes can be reduced macitentan
therapy.
© 2012 Elsevier Inc. Open access under CC BY-NC-ND license.
Introduction

Chronic diabetic complications involving the kidneys, retina, heart
and large blood vessels are major causes of mortality andmorbidity in
the diabetic population (Zimmet et al., 2001; UKPDS, 1998). Diabetes
is the leading cause of end stage renal failure in the western world
(UKPDS, 1998; Bell, 1995; Brownlee, 2001). Clinically patients devel-
op microalbuminuria, glomerular hyperfiltration followed by heavy
proteinuria and reduced glomerular filtration rate leading to renal
failure (Breyer et al., 1996). Pathological features of diabetic nephrop-
athy include thickening of glomerular capillary basement membrane
(BM), mesangial matrix expansion, and tubulointerstitial fibrosis. Di-
abetic retinopathy is one of the leading causes of blindness, which
causes retinal permeability alteration, macular edema and
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neovascularization (Cai and Boulton, 2002). In early retinal microan-
giopathy, increased production of extracellular matrix (ECM) protein
is a characteristic feature (Brownlee, 2001; Cai and Boulton, 2002;
Chen et al., 2003a). Similarly, patients with diabetic cardiomyopathy
show alterations of cardiac contractile functions. Structurally, focal
myocardial sclerosis and microvascular BM thickening due to in-
creased ECM protein production are characteristic features (Bell,
1995; Chen et al., 2003a).

Endothelin (ET) plays a key role in several chronic diabetic com-
plications by modulation of blood flow and ECM protein production.
ETs are produced by several cell types (Yanagisawa et al., 1988;
Levin, 1995; Houde et al., 2011; Gagliardini et al., 2011). The ET iso-
forms, ET-1, ET-2, and ET-3, are encoded by distinct genes. Several cy-
tokines have been shown to regulate ET expression (Yanagisawa et
al., 1988; Levin, 1995; Gagliardini et al., 2011; Malek et al., 1999;
Benatti et al., 1994; Emori et al., 1992; Kurihara et al., 1989; Kohno
et al., 1992). In chronic diabetic complications, regulatory interaction
of ETs with other vasoactive factors has been demonstrated (Khan
and Chakrabarti, 2003; Chen et al., 2000). In the diabetic rat
kidneys, increased ET-1 mRNA and renal ET-1 clearance has been
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demonstrated in association with proteinuria (Turner et al., 1997;
Chen et al., 2002; Rabelink and Kohan, 2011). Long-term conse-
quences of ET peptides involve cellular changes requiring differential
gene expression (Levin, 1995; Nakamura et al., 1995; Rubanyi and
Polokoff, 1994). It has been demonstrated that diabetes-induced in-
creased expression of ECM proteins and growth factors in the kidneys
can be prevented by treatment with an ETA receptor antagonist
(Nakamura et al., 1995). We have shown that diabetes leads to upre-
gulation of ET-dependent ECM protein synthesis in the kidneys, reti-
na and heart (Chen et al., 2000) and that ET-1 regulates ECM protein
fibronectin (FN) expression through NF-κB activation. We have fur-
ther showed that ET blockade prevents diabetes-induced increased
ECM matrix production, retinal capillary and glomerular BM thicken-
ing, mesangial expansion, and focal fibrosis in the heart (Chen et al.,
2003b; Evans et al., 2000). However, whether ET blockade is impor-
tant in preventing chronic diabetic complications in type 2 diabetes
needs exploration. Furthermore efficacy of newly developed com-
pound macitentan has not been investigated in this scenario.

Macitentan, also called Actelion-1 or ACT-064992[N-[5-(4-bromo-
phenyl)-6-(2-(5-bromopyrimidin-2-yloxy)ethoxy)-pyrimidin-4-yl]-N′-
propylaminosulfamide], is a tissue targeting dual ET receptor antagonist.
It has been demonstrated that macitentan and its metabolite antagonize
specific binding of ET-1 on the cell membranes over expressing either
ETA or ETB (Iglarz et al., 2008; Sidharta et al., 2011; Raja, 2010). Pharma-
cokinetic experiments have demonstrated that macitentan and its me-
tabolites have a long half-life and increased binding to receptors than
existing ET receptor antagonists (Iglarz et al., 2008; Kummer et al.,
2009).

Here, we investigated the preventive effects of macitentan on the
development of biochemical, functional and structural changes of di-
abetic nephropathy, retinopathy and cardiomyopathy in db/db mice,
a model of type 2 diabetes. db/db mice have a point mutation in the
cytoplasmic domain of the leptin receptor which is abundantly
expressed in the hypothalamus and develop features characteristic
of several chronic diabetic complications (Wang et al., 2011; Kanda
et al., 2009).

Materials and methods

Animals

All animals were cared for according to the Guiding Principle in
the Care and Use of Animals. All experiments were approved by the
University of Western Ontario council on animal care committee.

Male db/db (Leprdb, DBA/J) mice and age and sex-matched con-
trols (27–32 g) were purchased from Jackson Laboratories, USA. Ran-
domly selected diabetic animals were monitored for either 2 months
or for 4 months after onset of diabetes. Groups (n=7/group, based on
our previous studies) of the diabetic mice were subjected to oral
macitentan treatment for the same period (25 mg/kg/day, food
admix). The animals were monitored through assessment of body
weight and blood glucose (Glucometer, Free Style Freedom Lite Inc.).

The animals were sacrificed after the follow-up period. Retina,
portion of left ventricular myocardium and portion of renal cortical
tissues were snap-frozen. The remaining renal cortical tissues were
fixed in 10% neutral-buffered formalin for paraffin embedding and
subsequent histological analysis.

Cardiac functional studies

In vivo hemodynamic measurements were performed under anes-
thesia with sodium pentobarbital (40–50 mg/kg, ip) immediately be-
fore sacrifice, as previously described (Feng et al., 2001; Peng et al.,
2003; Radovits et al., 2009). Briefly, a catheter (3-Fr, Atom Medical)
connected to a pressure amplifier (7P1G, Grass Medical Instruments)
was inserted into the right carotid artery and advanced into the LV to
measure simultaneous changes in pressure. A catheter (PE-50, Clay
Adams) was also inserted into the femoral artery to measure systemic
blood pressure. The first derivative of LV pressure was simultaneously
monitored by using a Grass 7P20C differentiator amplifier. Heart rate
was obtained from the LV pressure recordings by using a Grass 7P44B
tachometer.

Measurement of renal parameters

Urinary albumin levels were measured after 2 and 4 months of
the onset of diabetes by ELISA using microalbumin estimation kit
(Albuwell, Philadelphia, USA) and expressed as μg/day excreted.
Serum creatinine level was estimated by standard alkaline picrate
method using the creatinine estimation kit (DetectX, Ann Arbor, MI,
USA) and expressed as mg/dl of serum.

RNA extraction and cDNA synthesis

RNA was isolated from mice tissues as previously described
(Nakamura et al., 1995; Malek, 1994). First-strand cDNA was made
using Superscript-II (Invitrogen, Burlington, ON, Canada) system.
The resulting products were stored at −20 °C.

Real time RT-PCR

Real time RT-PCR was performed in LightCycler™ (Roche Diagnos-
tics Canada, Laval, Quebec, Canada) to quantify the mRNA expression
of FN, extradomain B positive splice variant (EDB+FN), collagen
α-I(IV), vascular endothelial growth factor (VEGF), ET-1 and trans-
forming growth factor-β1 (TGF-β1) as described previously (Chen
et al., 2003a, 2003b). Primers were custom synthesized from Sigma-
Genosys. To optimize the amplification of the genes, melting curve
analysis (MCA) was used to determine the melting temperature
(Tm) of specific products and primer dimers. According to the Tm
value of specific products for respective genes, an additional step (sig-
nal acquisition step, 2–3 °C below Tm) was added after the elongation
phase of RT-PCR. mRNAs were quantified with the standard curve
method as previously described (Chen et al., 2003b). Standard curves
for all transcripts were constructed using different amounts of stan-
dard template. The cycle number at the crossing point (Cp), which
produced a significantly different fluorescence signal from baseline,
was used to compute the relative concentration of target genes
from the standard curves. The data were normalized to β-actin
mRNA or 18s rRNA to account for differences in reverse transcription
efficiencies and amount of template in the reaction mixtures and
expressed relative to control groups.

Protein extraction and ELISA

Tissues were washed with cold phosphate buffered saline (PBS),
homogenized and treated with lysis buffer (50 mmol/l HEPES, pH
7.6, 150 mmol/l NaCl, 50 μmol/l NaF, 2 mmol/l EDTA, 1 mmol/l sodi-
um vanadate, 1% NP-40, and 2 mmol/l phenylmethylsulfonyl fluo-
ride). The total protein concentration was measured using BCA™
protein assay kit (Pierce, Rockford, IL, USA) according to the manufac-
turer's instructions. The concentrations of all samples were adjusted
to 500 ng/μl before performing ELISA. We performed FN (Kamiya Bio-
medicals, WA, USA) and VEGF (Invitrogen, Canada) protein measure-
ment by ELISA following the manufacturer's protocols. FN and VEGF
protein levels in the cell lysates are expressed as ng/500 ng of total
protein and pg/μg of total protein respectively.

Western blotting

Twenty micrograms per lane of cellular proteins was resolved by
6–10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis



Table 1
Clinical parameters of diabetic mice with or without macitentan treatment.

Groups Body weight (g) Blood glucose (mmol/l) Urine volume range (ml)

Baseline 29.1±1.65 7.88±0.535 2.0±0.16
2 months

C 34.0±2.5 8.86±2.7 2.1±0.15
D 44.4±2.5⁎ 29.1±2.5⁎ 5.72±0.24⁎

DM 46.0±2.6⁎ 26.5±1.7⁎ 4.22±0.24⁎

4 months
C 36.0±2.5 8.8±2.7 2.12±0.13
D 48.4±2.1⁎ 30.1±2.5⁎ 5.87±0.24⁎

DM 47.2±2.5⁎ 32.2±0.4⁎ 3.9±0.5⁎

C = control, D = diabetic, DM = macitentan treated diabetic.
⁎ Pb0.05 vs. C.
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and analyzed by western blotting using collagen α-I(IV) and β-actin
antibody (Santa Cruz Biotechnology). The signals were detected
with horseradish peroxidase-conjugated secondary antibody (Santa
Fig. 1. qRT-PCR analysis of ET-1 (A–C, G–I) and TGF-β1 (D–F and J–L) mRNAs expression in
induced upregulation of these transcripts in all examined organs, both after 2 and 4 months
[C = control, D = diabetic, DM = diabetic on macitentan treatment. mRNA levels are expre
from C, + = significantly different from D].
Cruz Biotechnology) and developed with the chemiluminescent sub-
strate (Amersham Pharmacia Biotechnology, Amersham, UK). The
blots were analyzed by densitometry.

Nuclear protein extraction and NF-κB assay

Nuclear protein was isolated from the kidneys as described else-
where, with some modifications (Chen et al., 2003a, 2003b). This
was not performed in other tissues due to lack of available material.
Tissues were suspended in 0.4 ml of cold buffer A [10 mmol/l HEPES,
pH 7.9, 10 mmol/l KCl, 0.1 mmol/l EDTA, 0.1 mmol/l EGTA, 1 mmol/l
1,4-dithiothreitol (DTT), and 0.5 mmol/l PMSF] by gentle pipetting.
Twenty-five microliters of a 10% Igepal CA-630 was added, and ho-
mogenates after vortexing were centrifuged (10,000 g for 30 s). The
nuclear pellet was resuspended in 50 μl of ice-cold buffer C
(20 mmol/l HEPES, pH 7.9, 0.4 mol/l NaCl, 1 mmol/l EDTA, 1 mmol/l
EGTA, 1 mmol/l DTT, and 1 mmol/l PMSF), and the tube was vigorously
the kidneys (A, D, G, J), hearts (B, E, H, K) and retinas (C, F, I, L) demonstrated diabetes-
of diabetes. Furthermore such upregulations were prevented by macitentan treatment.
ssed as a ratio to β-actin mRNA, and normalized to controls, * = significantly different
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rocked at 4 °C for 15 min on a shaking platform. The nuclear extract
was centrifuged at 4 °C (15,000 g for 5 min), and the supernatant was
frozen at −70 °C. The protein concentrations were measured using
the BCA protein assay, with bovine serum albumin as a standard
(Pierce, IL). NF-κB (p65) protein was estimated in the nuclear extracts
of all by ELISA following the standard manufacturer's protocol
(TransAM transcription assay kit, CA, USA).

Histological analysis

Formalin-fixed tissues embedded in paraffin were sectioned at
5 μm thickness on positively charged slides. The sections were stained
with hematoxylin and eosin and periodic acid-Schiff (PAS) stain.

Statistical analysis

The data are expressed as mean±standard error of the mean. Sta-
tistical significance was determined by analysis of variance (ANOVA)
followed by the Bonferroni–Dunn test. Differences were considered
to be statistically significant at values of Pb0.05.
Fig. 2. qRT-PCR analysis of VEGF mRNAs expression in the kidneys (A, B), and retinas (C, D)
upregulation of these transcripts, both after 2 and 4 months of diabetes. Furthermore such
pg/μg of total protein of the cell lysate [C = control, D = diabetic, DM = diabetic on macite
to controls, * = significantly different from C, + = significantly different from D].
Results

Clinical monitoring

Diabetic dysmetabolism was monitored through evaluating body
weight gain and reducing sugar levels in the blood. The diabetic
db/db mice showed significantly increased body weight gain and hy-
perglycemia compared to the control mice. Diabetic animals further
showed polyuria. No effects of macitentan treatment were seen on
these parameters (Table 1).

Macitentan treatment prevented increased production of vasoactive
and fibrogenic factors in type 2 diabetes

Increased production of vasoactive factors and fibrogenic factors is
characteristic features of all chronic diabetic complications. Previous
studies from our and from other laboratories have shown increase
in ET-1 and TGF-β1 are two important mediators of such process.
Hence in our first set of studies we focused on these factors. Diabetic
animals exhibited a significant increase in ET-1 mRNA expression
and ELISA of VEGF protein levels in the kidneys (E, F) demonstrated diabetes-induced
upregulations were prevented by macitentan treatment. VEGF protein is expressed as
ntan treatment. mRNA levels are expressed as a ratio to β-actin mRNA, and normalized

image of Fig.�2
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compared to the control group in all examined organs, namely kid-
ney, retina and heart (Fig. 1A–C, G–I). Such increases were seen
after 2 months of follow-up and were sustained after 4 months.
Along with ET-1 similar changes were seen in the mRNA expression
of TGF-β1 (Fig. 1D–F, J–L). Treatment of diabetic animals with maci-
tentan showed significant inhibition of these transcripts. We further
examined VEGF in this scenario. Augmented VEGF expressions have
been demonstrated in organs affected by diabetic complications. In
addition, interdependency of ET with VEGF has been demonstrated
in chronic diabetic complications. We focused on retina and kidney
as role of VEGF upregulation is well established in these organs. Dia-
betes caused augmented VEGF mRNA expression in the retina and
kidneys after 2- and after 4-months of diabetes. Macitentan treat-
ment prevented diabetes-induced VEGF upregulation in these organs;
the effects of macitentan were most pronounced in the kidneys
(Fig. 2A–D). Increased VEGF protein production in the kidney tissues
of diabetic mice was also significantly inhibited by macitentan treat-
ment (Fig. 2E, F).

Macitentan treatment prevented NF-κB activation and increased
extracellular matrix protein production in type 2 diabetes

It has been previously demonstrated that NF-κB activation is one
of the main mechanisms mediating ET-dependent augmented ECM
protein production in chronic diabetic complications. Hence, we ex-
amined such mechanisms and increased ECM protein production in
this model. We focused NF-κB analysis in the kidneys as more tissues
were available. As expected, diabetes caused increased nuclear NF-κB
(p65) expression indicating NF-κB activation. Macitentan treatment
prevented NF-κB activation both after 2 and 4 months of follow-up
(Fig. 3).

We have previously demonstrated that FN is one of the key ECM
proteins which is upregulated in diabetes through an ET-dependent
mechanism. Such process also affects a splice variant of FN, namely
EDB+FN. This variant is especially interesting as this is not expressed
in normal adults. Upon analysis, diabetic groups had significantly
upregulated levels of FN mRNA in all examined organs (Fig. 4A–C,
G–I). However, such abnormalities were prevented with treatment
of macitentan (Fig. 4A–C, G–I). In addition to FN, we analyzed the
mRNA expression of collagen α-I(IV) in the kidneys, retinas and
hearts of the mice. Diabetic mice had significantly increased expres-
sion of collagen compared to their control counterparts in all organs
(Fig. 4D–F, J–L). When treated with macitentan, they exhibited signif-
icantly lowered expression of this transcript (Fig. 4D–F, J–L) and no
significant differences were found between the control animals and
the diabetic animals treated with macitentan in any organs. Further-
more, examination of EDB+FN transcripts, (performed after 2 months
Fig. 3. Diabetes caused NF-κB (p65) activation in the kidneys after 2 and after 4 months of
NF-κB (p65) protein is expressed as ng/μg of total protein of the nuclear extract [C = control
C, + = significantly different from D].
of follow-up) showed that diabetes induced upregulations of EDB+FN
were also prevented by macitentan (Fig. 4M–O).

We further expanded these investigations in an attempt to identi-
fy whether changes seen at the mRNA level are also reflected at the
protein level. Hence, we examined FN levels in the kidneys and hearts
and collagen I-α(IV) levels in the kidneys as more tissues were avail-
able in these. In parallel with the mRNA alterations, diabetes caused
increased collagen I-α(IV) and FN protein expression. Such changes
were also prevented by macitentan treatment (Fig. 5).

Macitentan treatment prevented structural and functional changes
in type 2 diabetes

We then proceeded to determine, whether these molecular
changes produce any structural changes at the level of the whole
organ. We focused on kidneys for such analyses. The tissues were
stained with PAS stain to visualize mesangial expansion in the glo-
meruli. The kidneys from the diabetic mice showed glomerular
mesangial expansion whereas the kidneys from the diabetic mice
treated with macitentan were reminiscent of the kidneys from the
control animals (Fig. 6A).

We further examined the effects of macitentan treatment on the
functional parameters. To this extent, we measured urinary albumin
and serum creatinine levels. We also performed hemodynamic stud-
ies to assess cardiac function.

Diabetes caused albuminuria and increased serum creatinine
levels. Such changes were pronounced after 4 months of diabetes
and corrected by macitentan (Fig. 6B–E). Similarly, in the heart, we
investigated functional alteration. Hemodynamic studies demonstrat-
ed that both after 2 and 4 months of diabetes these animals develop
changes indicative of cardiac contractile dysfunction and cardiac fail-
ure (Fig. 7A–H). In keeping with such changes, their myocardium
showed increased mRNA expression of atrial and brain natriuretic
peptides. Treatment with macitentan prevented such abnormalities
(Fig. 7I–L).

Discussion

In this study, we have shown that in type 2 diabetes, there is in-
creased production of ET-1 in the heart, retina and kidneys. Such
ET-1 upregulations are associated with augmented expression of va-
soactive and fibrogenic factors such as TGF-β1 and VEGF, NF-κB acti-
vation and increased ECM protein production. Diabetic animals also
developed functional and structural deficits in the organs. We also
demonstrated that treatment of db/db mice with dual ET receptor
blocker macitentan prevented such abnormalities.
follow-up macitentan treatment resulted in significant prevention of NF-κB activation.
, D = diabetic, DM= diabetic on macitentan treatment, * = significantly different from

image of Fig.�3


Fig. 4. qRT-PCR analysis of FN (A–C, G–I) and collagen α-I(IV) (D–F and J–L) mRNAs expression in the kidneys (A, D, G, J), hearts (B, E, H, K) and retinas (C, F, I, L) demonstrated
diabetes-induced upregulation of these transcripts in all examined organs, both after 2 and 4 months of diabetes. Furthermore such upregulations were prevented by macitentan
treatment. Furthermore diabetes-induced augmented EDB+FN mRNA expression in the kidney (M), hearts (N) and retina (O) after 2 months were also prevented by macitentan
therapy [C = control, D = diabetic, DM = diabetic on macitentan treatment, mRNA levels are expressed as a ratio to β-actin mRNA, and normalized to controls, * = significantly
different from C, + = significantly different from D].
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It has been previously reported that leptin receptor mutation is
one of the causes of monogenetic obesity in humans (Farooqi and
O'Rahilly, 2000). The genes affected in monogenic obesity encode li-
gands and receptors of the highly conserved leptin–melanocortin
pathway, which is critical for the regulation of food intake and body
weight (Farooqi, 2008; Farooqi and O'Rahilly, 2008). It is well-
established that obesity is associated with cardiovascular disease, di-
abetes mellitus and certain cancers (Farooqi and O'Rahilly, 2008). In-
terestingly, leptin has been demonstrated to mediate obesity induced
myocardial ET-1 upregulation (Adiarto et al., 2007). db/db mice, used
in this study, have a point mutation in the leptin receptor and
have been used for the study of type 2 diabetes and its associated

image of Fig.�4


Fig. 5. Diabetes caused increased collagen α-I(IV) protein production in the kidneys (A, showing representative western blots) and augmented FN protein production (measured by
ELISA) in the kidneys of (B,C) and heart (D,E) after 2 and 4 months of diabetes. FN protein is expressed as ng/500 ng of total protein content of the cell lysate [C = control, D =
diabetic, DM = diabetic on macitentan treatment. * = significantly different from C, + = significantly different from D].
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complications (Wang et al., 2011; Kanda et al., 2009). Adiarto et al.
(2007) demonstrated the involvement of leptin in obesity induced
upregulation of myocardial ET-1. Selected proteins, identified through
studying renal transcriptome of db/db mice, were found to be
altered in the type 2 diabetic patients with reduced GFR (Simonson
et al., 2011). Although one previous study has shown an association be-
tween tubulointerstitial collagen deposition and ET-1 in the db/db
mice, a direct cause–effect relationship was not studied (Mishra et al.,
2006).

Macitentan is a highly potent, dual ETA/ETB receptor antagonist.
In vivo, macitentan is metabolized into a pharmacologically active
compound augmenting its activity (Iglarz et al., 2008; Sidharta et al.,
2011; Raja, 2010; Kummer et al., 2009). We carried out studies in
the db/db mice, a well-established model of type 2 diabetes, which
develop pathologic changes, indicative of chronic diabetic complica-
tions in the retina, kidney and heart (Wang et al., 2011; Kanda et
al., 2009; Li et al., 2010), unlike most of the previous endothelin re-
ceptor antagonist studies conducted on animals with type 1 diabetes.
Although there are some investigations with regards diabetic ne-
phropathy were performed in the type 2 models of diabetes, there
are no studies that investigated the effects of ET blocker in diabetic
retinopathy or cardiomyopathy. To establish a role of the ET system
in the pathogenesis of such changes, we first confirmed that this
model yields increased expression of ET-1 in these three organs. In di-
abetes, ET-1 contributes to blood flow alteration, increased perme-
ability and increased ECM protein production (Evans et al., 2000;
Deng et al., 1999). ET-1, in diabetes, plays interactive roles with
other vasoactive and fibrogenic factors such as TGF-β1 and VEGF
(Khan and Chakrabarti, 2003; Chen et al., 2000; Khan et al., 2004).
In keeping with our previous data, we observed ET-1-dependent
upregulation of structural proteins, such as collagen, FN and
EDB+FN and vasoactive factors such as VEGF and TGF-β1. Associa-
tion of ET-1 and collagen deposition in kidneys of db/db mice has
been also reported by others (Mishra et al., 2006). Furthermore, we
have shown that such changes are associated with alteration of spe-
cific transcription factors NF-κB (Chen et al., 2003a; Rubanyi and
Polokoff, 1994; Chen et al., 2003b). Such prevention of biochemical
changes by macitentan translated into amelioration of functional
and structural changes. Prevention of diabetic nephropathy by ET-
blockade has been demonstrated by several previous studies (Saleh
et al., 2011a, 2011b; Simonson et al., 2011). It was also reported
that macitentan prevented renal vasoconstriction, increased renal
blood flow and glomerular filtration rate, vascular, tubulointerstitial
lesions and glomerular damage and proteinuria in type 1 diabetic

image of Fig.�5


Fig. 6. A) Representative photomicrographs (PAS stain) showing diabetes-induced mesangial expansion is prevented by macitentan treatment. (B, C), increased urinary albumin
excretion (μg/day) and (D, E) increased serum creatinine (mg/dl) levels in the diabetic animals were also prevented by macitentan treatment [C = control, D = diabetic, DM =
diabetic on macitentan treatment, * = significantly different from C, + = significantly different from D, original magnification 40× for all micrographs].

665S. Sen et al. / Life Sciences 91 (2012) 658–668
rats (Iglarz et al., 2008). ETA receptor blocker has been reported to be
more beneficial than combined ETA/ETB blockade in diabetic ne-
phropathy (Saleh et al., 2011b). Interestingly, Benigni et al. (1998)
have demonstrated that non-selective ET blockade is effective in pre-
venting type 1 diabetes induced renal injury to a similar degree to
that of ACE inhibition, without reducing the blood pressure to a
level similar to the later. Same group has also demonstrated that in
ZDF rat, a model of type 2 diabetes, combined ACE inhibition and
ETA receptor antagonist therapy provide renoprotection through
ACE inhibition and cardioprotection through ETA blockade (Zoja et
al., 2011). On the other hand, some authors have reported ACE inhibi-
tion is more effective than ETA blockade in prevention of renal and
cardiac dysfunctions in type 2 diabetes (Gross et al., 2004, 2003a,
2003b). Similarly in the L-NAME induced hypertensive model, al-
though bosentan reversed renal fibrosis, such effects were found to
be less compared to angiotensin II blockade (Chatziantoniou and
Dussaule, 2005; Dussaule and Chatziantoniou, 2007). Interestingly
these two groups of drugs demonstrated synergistic effects in the
prevention of advanced structural changes such as tubulointerstitial
fibrosis, podocyte loss in the kidney of rats with type 1 diabetes as
demonstrated using a selective ETA blocker and ACE blocker
(Gagliardini et al., 2009). Hence it appears that multiple mechanisms
and cell types are involved in the process of renal fibrosis in chronic
nephropathies (Remuzzi et al., 2006). Nevertheless, there is signifi-
cant evidence that ETs are involved in the pathogenesis of such pro-
cess. In several studies, along with other therapeutic modalities, ETA
blockade has shown efficacy both in human and in the rodents
(Barton, 2008).

Diabetes-induced increased vasoconstriction and impaired vaso-
dilation is well documented as an early functional alteration. The
most potent vasoconstrictor ET-1 and vasodilator NO have been
shown to exhibit a state of imbalance in all target organs of diabetic
complications (Deng et al., 1999; Dogra et al., 2001; Lambert et al.,
1996; Johnstone et al., 1993). On the other hand, treatment with
bosentan showed no effect on the phenylephrine induced contractil-
ity of the large vessels from the leptin deficient ob/ob mice (Okon et
al., 2003). ETs are implicated in the regulation of other endothelial pa-
rameters (Yanagisawa et al., 1988). Inhibition of ET-receptor signal-
ing prevents glucose-induced permeability and expression of ECM
proteins, collagen and FN (Chen et al., 2003a; Rubanyi and Polokoff,
1994; Chen et al., 2003b). The mechanisms of ET action may entail ac-
tivation of PKC via G protein-coupled ET receptor type B (ETB) (Levin,
1995; Chen et al., 2000). We also previously demonstrated that, in
endothelial cells and animal models of type 1 diabetes ET-1
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overexpression leads to increased ECM protein expression, via activa-
tion of transcription factors NF-κB and activating protein-1 (AP-1)
(Chen et al., 2003a; Rubanyi and Polokoff, 1994; Chen et al., 2003b).
Interestingly, ET alteration in diabetes leads to alternative splicing
of FN in the vitreous of patients with proliferative diabetic retinopa-
thy and retinal tissues of diabetic animals. Such FN alternative splic-
ing produces the embryonic variant of the ECM protein, EDB+FN.
EDB+FN was shown to cause endothelial cell proliferation and VEGF
expression (Khan et al., 2004). We have further shown that in the
heart, diabetes induced alterations are associated with ANP and BNP
upregulations. However, other investigators failed to find such
changes (Bartels et al., 2010; Magnusson et al., 2004; Yano et al.,
1999; Nannipieri et al., 2002). Various diabetic models and/or dura-
tion of diabetes may be in part responsible.
Diabetes activates several pathways in the organs affected by
chronic complications. These include the aldose reductase pathway,
the advanced glycation end products pathway, the hexosamine path-
way and the protein kinase C pathway. Increased oxidative stress may
be a key mechanism leading to such activation (Brownlee, 2001). In
chronic diabetes, protein kinase C and mitogen-activated protein ki-
nase are known to upregulate ET-1 expression (Brownlee, 2001; Xin
et al., 2004). Excessive amounts of oxidative stress also cause damage
to the DNA which activates Poly ADP ribose polymerase (PARP) in an
attempt to repair the damage (Brownlee, 2001; Virag and Szabo,
2002). Interestingly, we have previously demonstrated that PARP in-
teracts with ET-1 (Chiu et al., 2008). Role of oxidative stress in such
process has further been established as antioxidants such as curcumin
and others are effective in preventing chronic diabetic complications
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(Chen et al., 2003a; Kowluru and Kanwar, 2007; Farhangkhoee et al.,
2006). Interestingly, ET-1 stimulated vascular reactive oxygen spe-
cies/hydroxyl radical formation has been reported to be reduced in
obesity (Mundy et al., 2007). It is however possible that, other factors
may also cause ET-1 upregulation and other aforesaid abnormalities
in diabetes. Further experiments are needed to determine the full ex-
tent of various lesions produced in diabetes and pathogenetic role of
ET-1 activation in such process.

Conclusion

Data from this study demonstrate the role of ET-1 activation in the
pathogenesis of chronic complications affecting multiple organs in
type 2 diabetes. It further demonstrates that ET receptor blockade
may emerge as a potential therapeutic modality to prevent such
damage.
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