A characterization of the Dedekind completion of a totally ordered group of infinite rank

by E. Olivos, H. Soto and A. Mansilla

Departamento de Matemática y Estadística, Universidad de la Frontera, Temuco, Chile

Communicated by Prof. M.S. Keane

ABSTRACT

In non-Archimedean functional analysis the Dedekind completion of a linearly ordered group of infinite rank is an important object, being the natural home for the norms of vectors as well as of linear operators. However the standard construction by cuts does not give the much needed actual description of the elements obtained. In this paper we consider a class of Hahn products, called \(\Gamma_\alpha \) (\(\alpha \) an ordinal), whose rank is the order-type of \(\alpha \). We give an operational representation of every element of the Dedekind completion of such a group in terms of the supremum and infimum of its convex subgroups.

1. INTRODUCTION

In the last years a theory of Banach spaces over fields with a Krull valuation of infinite rank has been in constant development (see [5,8]). It started with the construction by Keller in [4] of what was called at that time a non-classical Hilbertian space (nowadays a Form Hilbert space). The crucial point was that the scalar field admitted a valuation with a value group \(G \) of infinite rank.

As the theory progressed, \(G^\# \), the Dedekind completion of \(G \) became an important object. In order to obtain a satisfactory operator theory it is necessary to define their norm and the natural way is, for an operator \(A \) on the space \(E \), that \(\| A \| \) should be the supremum of the set \(\{ g \in G: \| Ax \| \leq g\| x \| \text{ for all } x \in E \} \) and

MSC: 06F15, 20E22, 20K25

Key words and phrases: Totally ordered group, Dedekind completion, Rank of a group

* Supported by DIUFRO 120520.

E-mail: eolivos@ufro.cl (E. Olivos).
therefore (the semigroup) $G^\#$ has to be considered. In addition, for any space E a non-Archimedean norm $\| \cdot \| : E \to G^\#$ can be defined; see [5] for an example in which the norm of every vector of an orthogonal base of E is the supremum of a convex subgroup. Interesting properties of $G^\#$-normed spaces are obtained in [10].

Hahn products are specially suited as value groups for these non-Archimedean Banach spaces, thus a subclass of them was built in [7]. Let α be an ordinal, $\{G_\beta\}_{\beta < \alpha}$ be a family of subgroups of the multiplicative group of the positive real numbers. A group Γ_α is a Hahn product with skeleton (α, G_β), multiplicatively written and antilexicographically ordered. In that paper it was proved that the ordinal α gives information about the (ultra)metrizability of the field and the behaviour of its absolutely convex subsets. These properties were obtained from the special characteristics of the groups Γ_α and its convex subgroups, for instance, Γ_α is the union of a countable chain of convex subgroups if and only if the ordinal α has cofinality ω.

Several completions of totally, partially or lattice ordered groups have been described in the literature [1–3]. But in every case, even when the completion is by the process of Dedekind cuts, the final object considered is again a group, extension of the first one. We stress the fact that if the rank of G is greater than 1, then $G^\#$ is only a semigroup since the supremum (infimum) of a convex subgroup cannot be invertible. And, as we have seen, for the Banach space theory, it is crucial that these elements should appear in the completion.

In this paper we obtain an explicit operational description of the elements of the Dedekind completion $\Gamma_\alpha^\#$ of the Hahn product Γ_α. After the Preliminaries in Section 2, we deal in Section 3 with the case in which every group of the family $\{G_\beta\}_{\beta < \alpha}$ is complete. In the fourth section we generalize to a description of the completion $\Gamma_\alpha^\#$ in the case the groups $\{G_\beta\}_{\beta < \alpha}$ are arbitrary subgroups of (\mathbb{R}^+, \cdot).

An unexpected result is obtained in the case when not every group G_β is complete. Let Γ'_α be the group associated to the family $\{G_\beta\}_{\beta < \alpha}$, where G_β is the completion of G_β for each $\beta < \alpha$, and $(\Gamma'_\alpha)^\#$ its completion. We prove the surprising fact that $\Gamma_\alpha^\#$ is not dense in $(\Gamma'_\alpha)^\#$ with respect to the order topology. Moreover, there are intervals in $(\Gamma'_\alpha)^\#$ which do not contain any element of $\Gamma_\alpha^\#$ (see Example 4.2).

2. PRELIMINARIES

Let G be a nontrivial totally ordered multiplicatively written group with unit 1. We denote the (Dedekind) completion of G by $G^\#$. Two associative and commutative operations can be defined over $G^\#$ by

\[
\begin{align*}
x \ast y & := \inf_{G^\#} \{g_1g_2 : g_1, g_2 \in G, g_1 \geq x, g_2 \geq y\}, \\
x \cdot y & := \sup_{G^\#} \{g_1g_2 : g_1, g_2 \in G, g_1 \leq x, g_2 \leq y\}
\end{align*}
\]

for every $x, y \in G^\#$.

Notice that these operations coincide over G. Moreover, for all $g \in G$ and $x \in G^\#$, $g \ast x = g \cdot x$. We will denote this common value by gx. 634
A unique extension of the inversion, called the antipode, can be defined over $G^\#$. It is a map $\omega : G^\# \rightarrow G^\#$ such that $\omega \circ \omega$ is the identity, $\omega(t) = s$ whenever s, t are the supremum and infimum respectively of some convex subgroup H and $\omega(gx) = g^{-1}\omega(x)$ for all $g \in G, x \in G^\#$. (See [6], Theorem 1.4.8 for details.)

The convex hull of a subset $A \subseteq G$ is

$$\text{conv}_{G^\#} A = \{x \in G^\#: \exists g_1, g_2 \in A (g_1 \preceq x \preceq g_2)\}.$$

In this paper we will work with a class of Hahn products, defined as Γ_α in [7]. Their structure is the following.

Let α be an ordinal. For each $\beta < \alpha$, let G_β be a totally ordered group of rank 1. The group Γ_α associated to the family $\{G_\beta\}_{\beta < \alpha}$ is defined by:

$$\Gamma_\alpha := \left\{ f : \alpha \rightarrow \bigcup_{\beta < \alpha} G_\beta : f(\beta) \in G_\beta \text{ and } \supp(f) = \{ \beta < \alpha : f(\beta) \neq 1_{G_\beta} \text{ is finite} \} \right\}$$

with componentwise multiplication and antilexicographical ordering.

If $f \in \Gamma_\alpha$, then the degree of f is $\deg(f) := \max \supp(f)$.

To every element b of G_β we associate its characteristic function $\chi(\beta, b) \in \Gamma_\alpha$, defined as

$$\chi(\beta, b)(\gamma) := \begin{cases} b & \text{if } \gamma = \beta, \\ 1_{G_\gamma} & \text{if } \gamma \neq \beta. \end{cases}$$

This function will be used several times in the proofs of the main theorems of this paper.

The convex subgroups of Γ_α are easily described. Following Ribenboim's notation (see [9]), we define for each $\beta < \alpha$, the sets $H_\beta^* := \{ f \in \Gamma_\alpha : \deg(f) < \beta \}$ and $H_\beta := \{ f \in \Gamma_\alpha : \deg(f) \leq \beta \}$, both are convex subgroups. If $\beta = \gamma + 1$ for an ordinal γ, $H_\beta^* = H_\gamma$ and it is a principal convex subgroup (there exists an element $g \in G$ such that H_γ is the smallest convex subgroup which contains it); otherwise, H_β^* is a limit convex subgroup (union of a chain of principal convex subgroups) properly contained in H_β. Note that $H_0^* = \{1_{\Gamma_\alpha}\}$ and if β is a limit ordinal, the group H_β^* contains all the subgroups H_γ for $\gamma < \beta$ and it is properly contained in H_β. In the other hand, if H is a convex subgroup of Γ_α then there exists an ordinal $\beta < \alpha$ such that either $H = H_\beta$ or $H = H_\beta^*$ (see [7], Proposition 2.1). We denote by s_β^* and t_β^*, respectively, the supremum and infimum of H_β^* in $\Gamma_\alpha^\#$. Whenever we use the notation H_β for a principal convex subgroup, then its supremum and infimum will be written as s_β and t_β.

3. THE COMPLETION OF Γ_α: FIRST CASE

In this section we characterize the completion $\Gamma_\alpha^\#$ in the case that the family $\{G_\beta\}_{\beta < \alpha}$ contains only complete groups, that is to say, cyclic groups or isomorphic
copies of the multiplicative group \((0, \infty)\). We establish the main result of this section in Theorem 3.2. First, we will prove the following lemma which shows that for every totally ordered group, the orbits in \(G^\#\) of the supremum and infimum of convex subgroups are disjoint.

Lemma 3.1. Let \(G\) be a totally ordered and multiplicatively written nontrivial group and let \(\{H_i\}_{i \in I}\) be the collection of all its proper convex subgroups, where \(I\) is a totally ordered set with a least element, say \(-\infty\), such that \(H_{-\infty} = \{1_G\}\) and \(H_i \subset H_j\) whenever \(i < j\). Let \(s_i = \sup_{G^\#} H_i\), \(t_i = \inf_{G^\#} H_i\). Then

1. \(G s_i \cap G s_j = \emptyset\), whenever \(i \neq j\).
2. \(G t_i \cap G t_j = \emptyset\), whenever \(i \neq j\).
3. \(G t_i \cap G s_j = \emptyset\), whenever \(i \neq j\).

Proof. We will use the following equalities derived from the definition of the operations \(\cdot\) and \(*\) (see [6], Proposition 1.4.11). Assume \(i < j\).

\[
\begin{align*}
s_i \cdot t_j &= t_j, \quad s_i \cdot t_j = t_j, \\
t_i \cdot t_j &= t_j, \quad s_i \cdot s_j = s_j, \\
s_j \cdot t_j &= t_j, \quad s_j \cdot s_j = s_j.
\end{align*}
\]

(1) We proceed by contradiction. Suppose that there are \(g_1, g_2 \in G\) such that \(g_1 s_i = g_2 s_j\) and \(i < j\). If it were the case that \(i = -\infty\), then \(g_1 = g_2 s_j\) which implies that \(s_j \in G\). This cannot be since \(j > -\infty\) which implies \(s_j \notin G\).

Therefore \(i > -\infty\). But now, using associativity we have \(g_1(s_i \cdot t_j) = g_2(s_j \cdot t_j)\) as well as \(g_1(s_i \cdot t_j) = g_2(s_j \cdot t_j)\). By the equalities at the start of the proof we have \(g_1 t_j = g_2 t_j\) and \(g_1 t_j = g_2 s_j\), so \(t_j = s_j\) a contradiction. Thus, \(G s_i \cap G s_j = \emptyset\), whenever \(i \neq j\).

(2) Let \(g_1 t_i = g_2 t_j\). By applying the antipode \(\omega\), we obtain \(g_1^{-1} s_i = g_2^{-1} s_j\), and the result follows from (1).

(3) Again we derive a contradiction. Suppose there exist \(g_1, g_2 \in G\) such that \(g_1 t_i = g_2 s_j\) with \(i \neq j\). As in case (1), neither index \(i\) nor \(j\) can be equal to \(-\infty\). Hence there are two cases to consider. If \(-\infty < i < j\), using commutative and associativity of the operation \(*\), we have \(g_1(t_i \cdot s_i) = g_2(s_j \cdot s_i)\), which implies \(g_1 s_i = g_2 s_j\), false by (1). In the other hand, if \(-\infty < j < i\), then \(g_1(t_i \cdot t_j) = g_2(s_j \cdot t_j)\), and \(g_1 t_i = g_2 t_j\), false by (2).

\(\square\)

Remark. The only remaining case, \(G t_i = G s_i\), is well known. It is equivalent to the fact that \(G/H_i\) is quasi-discrete (i.e. the minimum of \(\{g \in G/H_i: g > 1\}\) exists) (see [6], Proposition 1.4.12). When \(G\) is a group \(\Gamma_\alpha\), this implies that \(\Gamma_\alpha s_\beta^* = \Gamma_\alpha t_\beta^*\) if and only if \(G_\beta\) is a cyclic group (see [7], Proposition 2.6).

The next theorem shows the principal result of this section, the characterization of the completion of the group \(\Gamma_\alpha\) when the family \(\{\overline{G_\beta}\}_{\beta < \alpha}\) contains only complete groups.

636
Theorem 3.2. Let α be an ordinal, $\{G_\beta\}_{\beta<\alpha}$ a family of totally ordered multiplicatively written complete groups of rank 1. Then each element x in the Dedekind completion $\Gamma_\alpha^#$ of the group Γ_α can be written as $x = fu$ for some $f \in \Gamma_\alpha$ and u the supremum or the infimum of some convex subgroup.

Proof. We have to prove that if $x \in \Gamma_\alpha^#$, then there exists an element $f \in \Gamma_\alpha$ and an ordinal $\lambda < \alpha$ such that $x = fs^*_\lambda$ or $x = ft^*_\lambda$. (Note that $x \in \Gamma_\alpha$ if and only if $x = xs^*_0 = xt^*_0$.)

The first case, α is a limit ordinal, bears the weight of the proof. We shall fix an ordinal ξ and consider the set of the "ξ-coordinates" of the functions $f \in \Gamma_\alpha$ such that $f \leq x$. There are three possibilities to discuss, and it will shown that in any of them x has the prescribed form. The second case, when α is a successor ordinal, can then readily be reduced to one of the alternatives just discussed. This completes the proof.

Let us then assume that α is a limit ordinal, so that Γ_α is an strictly increasing union of proper convex subgroups. For each $x \in \Gamma_\alpha^#$, there are possibly infinitely many $\delta < \alpha$ such that $x \in \text{conv}_{\Gamma_\alpha^#} H_\delta \cup \{s_\delta\}$, where H_δ is a principal convex subgroup of Γ_α. Let δ_x be the smallest of them and consider the interval $F_x = (t_{\delta_x}, x] = \{f \in \Gamma_\alpha: t_{\delta_x} < f \leq x \leq s_{\delta_x}\}$ contained in Γ_α. It is clear that $\deg(f) \leq \delta_x$ for every $f \in F_x$ and strict inequality holds when $f \in H_{\delta_x}^*$.

We define the set $F_x[\delta_x] := \{f(\delta_x): f \in F_x\} \subseteq G_{\delta_x}$. We have three cases to consider.

Case 1. If $F_x[\delta_x]$ is not bounded above, we will prove that $x = s_{\delta_x}$. Indeed, it is clear that s_{δ_x} is an upper bound of F_x. Now, if $1 \leq w < s_{\delta_x}$, then there exists $g \in \Gamma_\alpha$ such that $w \leq g < s_{\delta_x}$ (see [5], Proposition 1.1.4). Then $\deg(g) \leq \delta_x$ and by hypothesis, there exists $f \in F_x$ such that $g(\delta_x) < f(\delta_x)$. Thus $f < g$ and w is not an upper bound of F_x.

Case 2. Now, let $F_x[\delta_x]$ be bounded above and suppose that $a := \sup_{G_{\delta_x}} F_x[\delta_x]$ does not belong to $F_x[\delta_x]$. This means that $G_{\delta_x} \cong (0, \infty)$. We will prove that $x = \chi(\delta_x, a)t_{\delta_x}^*$, with $\chi(\delta_x, a)$ the characteristic function defined in Preliminaries.

That $\chi(\delta_x, a)t_{\delta_x}^*$ is an upper bound of F_x is straightforward. First, note that the set $F'_x = \{f \in F_x: \deg f = \delta_x\}$ is nonempty and $\sup_{\Gamma_\alpha^#} F'_x = \sup_{\Gamma_\alpha^#} F_x$. Let f be an arbitrary element of F'_x. Then $\deg f = \delta_x$ and $f(\delta_x) < \alpha$, therefore $f < \chi(\delta_x, a)g$ for every $g \in H_{\delta_x}^*$. Hence $f \leq \chi(\delta_x, a)t_{\delta_x}^*$ and $\chi(\delta_x, a)t_{\delta_x}^*$ is an upper bound of F_x as claimed.

Now consider $h \in \Gamma_\alpha$ such that $t_{\delta_x} < h < \chi(\delta_x, a)t_{\delta_x}^*$. It is not possible that $h(\delta_x) > a$ because of the last inequality. Neither can it be that $h(\delta_x) = a$ since in that case $h\chi(\delta_x, a^{-1}) > t_{\delta_x}^*$, a contradiction. Therefore $h(\delta_x) < a$. But then, by hypothesis there exists $f \in F_x$ such that $h(\delta_x) < f(\delta_x) < a$. It follows that $h < f < x$. As no element of Γ_α lies between x and $\chi(\delta_x, a)t_{\delta_x}^*$, this two elements are equal as it was claimed.
Case 3. If $F_x[\delta_x]$ is bounded above and it has a maximum $a := \max F_x[\delta_x]$ in $F_x[\delta_x]$, we will obtain the result by transfinite induction over δ_x.

If $\delta_x = 0$ then $x \in \Gamma_\alpha$ and $x = \max F_x$.

Let $\delta_x = \gamma + 1$ be a successor ordinal and define $A_x := \{ f \in F_x : f(\delta_x) = a \}$. For every $f \in A_x$, let $f' = f \chi(\delta_x,a-1)$. This means that f' coincides with f except for the coordinates δ_x where $f'(\delta_x) = I_{\delta_x}$.

Now let $A^- := \{ f' : f \in A_x \}$. It is clear that $\sup_{\Gamma_\alpha} A_x = \chi(\delta_x,a) \sup_{\Gamma_\alpha} A^-$. Then $A^- \subseteq \conv_{\Gamma_\alpha} H_\gamma \cup \{ s_\gamma \}$ and, by induction hypothesis, $\sup A^- = fu$, for some $f \in \Gamma_\alpha$ and u the supremum or the infimum of some (principal or limit) convex subgroup. So, $x = \chi(\delta_x,a)fu$.

For the limit case, let $\delta_x = \bigcup_{\beta < \delta_x} \beta$ be a limit ordinal.

As before let $A_x := \{ f \in F_x : f(\delta_x) = a \}$ and $A^- = \{ f' = f \chi(\delta_x,a-1) : f \in A_x \}$. We have two cases. If there exists an ordinal $\lambda < \delta_x$ such that $A^- \subseteq \conv_{\Gamma_\alpha} H_\lambda \cup \{ s_\lambda \}$, we use the induction hypothesis and then $x = \chi(\delta_x,a) \sup_{\Gamma_\alpha} A^-$. In the other case, the set $\deg(A^-) = \{ \deg(f') : f' \in A^- \}$ tends to δ_x, hence either $\sup_{\Gamma_\alpha} A^- = s^*_\delta_x$ which implies $x = \chi(\delta_x,a)s^*_\delta_x$ or $\inf_{\Gamma_\alpha} A^- = t^*_\delta_x$ which implies $x = \chi(\delta_x,a)t^*_\delta_x$.

We finish the proof considering the case which Γ_α has a maximal proper convex subgroup H. That implies that α is a successor ordinal, say $\alpha = \gamma + 1$. Given $x \in \Gamma_\alpha$, if there exists a convex subgroup H such that $x \in \conv_{\Gamma_\alpha} H$ we proceed as the above proof. Otherwise, we define $\delta_x := \gamma$ and necessarily $F_x[\delta_x]$ is bounded above. Therefore, with exactly the same reasoning as in Cases 2 and 3 above, we obtain the statement of the theorem. □

Theorem 3.2 shows that if all groups of the family $\{G_\beta\}_{\beta < \alpha}$ are complete then every element of the completion of the associated group Γ_α belongs to some orbit $\Gamma_\alpha u$, where u is the supremum or infimum of some convex subgroup H. We will use this result in the next section to describe the completion for an arbitrary Γ_α. Let us examine the following example.

Example 3.3. In order to illustrate the case when α is a limit ordinal, let us consider $\alpha = \omega + \omega$. Assume that every G_β is a subgroup of the multiplicative group \mathbb{R}^+, let $A = \{ f \in \Gamma_\alpha : f^2 \leq \chi(\omega,2) \}$. If G_ω is the cyclic group generated by 2, we are in case 3 and the supremum of A is s^*_ω. In fact, the degree of any $g \in \Gamma_\alpha$ such that $g > s^*_\omega$ is at least ω, hence $g^2 > \chi(\omega,2)$. If, on the other hand, $G_\omega = \mathbb{R}^+$ then it is clear that $\sup_{\Gamma_\alpha} A = \chi(\omega,\sqrt{2})s^*_\omega$, an element of the group times the supremum of a limit convex subgroup.

4. THE COMPLETION OF Γ_α. GENERAL CASE

In this section we characterize the completion Γ_α^* when the family $\{G_\beta\}_{\beta < \alpha}$ is an arbitrary family of totally ordered groups of rank 1.

Let α be an ordinal, $\{G_\beta\}_{\beta < \alpha}$ and $\{G'_\beta\}_{\beta < \alpha}$ be two families of totally ordered groups of rank 1 such that $G_\beta \subseteq G'_\beta$ for all $\beta < \alpha$ and let Γ_α and Γ'_α be the groups associated with each family.
Note that there is a natural correspondence between the set of convex subgroups of Γ_α and Γ'_α, and since Γ_α can be canonically embedded in Γ'_α, we will assume that $\Gamma_\alpha \subseteq \Gamma'_\alpha$.

We call H'_β (H_β) the convex subgroups of G_β and H'_β^* (H_β^*) the convex subgroups of Γ'_α. It is easy to see that G_β is cofinal (or equal to) G'_β, so each H'_β^* is cofinal in H'_β. Let $s'_\beta^* = \sup_{(\Gamma'_\alpha)^*} H'_\beta^*$ and $t'_\beta^* = \inf_{(\Gamma'_\alpha)^*} H'_\beta^*$. Then Γ'^*_α can be embedded in $(\Gamma'_\alpha)^*$ through the mapping $\tau : \Gamma'^*_\alpha \rightarrow (\Gamma'_\alpha)^*$ defined for each $x \in \Gamma'_\alpha$ by

$$\tau(x) = \sup \{ g \in \Gamma_\alpha : g \leq x \}.$$

Clearly τ is strictly increasing and $\tau(g) = g$ for all $g \in \Gamma_\alpha$. Furthermore, a straightforward proof shows that $\tau(s'_\beta^*) = s'_\beta^*$ and $\tau(t'_\beta^*) = t'_\beta^*$. Therefore, Γ'^*_α can be considered as a subset of $(\Gamma'_\alpha)^*$ and we can identify the supremum and infimum of all the convex subgroups. Nevertheless the next proposition shows that Γ'^*_α is not dense in $(\Gamma'_\alpha)^*$.

Remark. We also could have used the embedding $\sigma(x) = \inf_{(\Gamma'_\alpha)^*} \{ g \in \Gamma_\alpha : g \geq x \}$. These two embeddings are different in general and this fact is the clue to show that Γ'^*_α is not dense in $(\Gamma'_\alpha)^*$. First we show the following proposition.

Proposition 4.1. Let $\{G_\beta\}_{\beta < \alpha}$ be an arbitrary family of totally ordered groups of rank 1. For each $\beta < \alpha$, let G'_β be the (Dedekind) completion of G_β and let Γ'_α be the group associated to the family $\{G'_\beta\}_{\beta < \alpha}$. Let $\beta > 0$, such that G_β is not complete, and let $b \in G'_\beta \setminus G_\beta$. Then for each $f \in \Gamma'_\alpha$ with $\deg(f) = \beta$ and $f(\beta) = b$, we have

1. $\sup_{(\Gamma'_\alpha)^*} \{ g \in \Gamma_\alpha : g \leq f \} = \chi(\beta,b)t'_\beta^*$
2. $\inf_{(\Gamma'_\alpha)^*} \{ g \in \Gamma_\alpha : g \geq f \} = \chi(\beta,b)s'_\beta^*$.

Proof. We shall only consider the first statement, the proof of the second one follows the same lines. Let $\beta < \alpha$ be such that $G_\beta \neq G'_\beta$, and let $b \in G'_\beta \setminus G_\beta$.

We consider the set of all elements in Γ'_α that satisfy the hypothesis of the theorem $F = \{ f \in \Gamma'_\alpha : \deg(f) = \beta$ and $f(\beta) = b \}$.

Notice that for all $g \in \Gamma_\alpha$ we have that $g \leq \chi(\beta,b)$ if and only if g is a lower bound of F. In other words $\sup_{(\Gamma'_\alpha)^*} \{ g \in \Gamma_\alpha : g$ is a lower bound of $F \} = \sup_{(\Gamma'_\alpha)^*} \{ g \in \Gamma_\alpha : g \leq \chi(\beta,b) \}$.

Since the construction of Γ'_α includes only complete groups, by Theorem 3.2 we have that $\inf_{(\Gamma'_\alpha)^*} F = \chi(\beta,b)t'_\beta^*$. Hence $\sup_{(\Gamma'_\alpha)^*} \{ g \in \Gamma_\alpha : g \leq \chi(\beta,b) \} \leq \chi(\beta,b)t'_\beta^*$.

Equality follows from the fact that $\chi(\beta,b)t'_\beta^* < \chi(\beta,b)$ in the order of $(\Gamma'_\alpha)^*$. \qed

Recall that a set A is dense in a set X if $a = \sup_X \{ x \in A : x \leq a \} = \inf_X \{ x \in A : x \geq a \}$ for each $a \in X$. Since the supremum of the set $\{ g \in \Gamma_\alpha : g \leq f \}$ is not equal to f we obtain the following corollary.

Corollary 4.1. Let $\Gamma_\alpha, \Gamma'_\alpha$ as in the above proposition. If for some $\beta > 0$ the group G_β is not complete, then Γ'^*_α is not dense in $(\Gamma'_\alpha)^*$.
Example 4.2. Consider a group Γ_ω with $G_1 \cong (\mathbb{Q}^+, \cdot)$, and let $f = (1, \sqrt{2}, 1, \ldots) \in \Gamma_\omega'$. We contend that the interval $(f t_0, f s_0)$ in Γ_ω' does not contain any element of Γ_ω. In fact, such an element should have the form $g = (a, b, 1, \ldots)$ for some $a \in G_0$ and $b \in \mathbb{Q}^+$. But clearly such a g does not belong to the interval.

The next theorem gives a complete description of the elements of $(\Gamma'_\omega)^\#$.

Theorem 4.3. Under the hypothesis of Proposition 4.1, each element $x \in \Gamma_\omega^\# \setminus \Gamma_\omega$ satisfies one of the following sentences:

1. $x = gu$, with $g \in \Gamma_\alpha$ and u the supremum or the infimum of a convex subgroup.
2. $x = g \chi(\beta, b) t_\beta^*$, for some $g \in \Gamma_\alpha$ and $\beta < \alpha$ such that $G_\beta \neq G_\beta'$ and $b \notin G_\beta$.

Proof. Let $x \in \Gamma_\omega^\#$. Using the mapping τ from $\Gamma_\omega^\#$ in $(\Gamma'_\omega)^\#$ previously defined, we may assume $\Gamma_\omega \subset (\Gamma'_\omega)^\#$. Then $x = f u$, with $f \in \Gamma'_\omega$ and u the supremum or infimum of some (principal or limit) convex subgroup. This also includes the case $u = 1$, the supremum (and infimum) of the trivial subgroup H_0^*.

Note first that if $f \in \Gamma'_\omega \setminus \Gamma_\omega$ there exist ordinals $\beta < \alpha$ such that $f(\beta) \in G_\beta' \setminus G_\beta$. Hence, each $f \in \Gamma'_\alpha$ can be written as $f = g f'$, where $g \in \Gamma_\alpha$, $f' \in \Gamma'_\alpha$ and $f'(\deg(f')) \in G_{\deg(f')} \setminus G_{\deg(f')}$. Let $\delta_0 := \deg(f')$. By the definition of τ, we have $fu = \sup_{(\Gamma'_\omega)^\#}(h \in \Gamma_\omega; h \leq fu) = g \sup_{(\Gamma'_\omega)^\#}(h \in \Gamma_\omega; h \leq f'u)$. If $f' \in \text{Stab}(u)$, then $x = gu$, as we want. If that is not so, then by the above proposition, $\sup_{(\Gamma'_\omega)^\#}(h \in \Gamma_\omega; h \leq f'u) = \chi(\delta_0, f'(\delta_0)) t_{\delta_0}^*$ and therefore $\tau(x) = g \chi(\delta_0, f'(\delta_0)) t_{\delta_0}^*$ and we are done. \qed

Therefore we have proven that every element x in the completion of Γ_α either belongs to some orbit $\Gamma_\alpha u$, where u is the supremum of some convex subgroup of Γ_α, or u is the infimum of some convex subgroup H where Γ_α / H is quasidense, or x belongs to some orbit $\Gamma_\alpha \chi(\beta, b) t_\beta^*$, where G_β is not a complete group (hence, G_β is a countable dense subgroup of the multiplicative group $(0, \infty)$), and $b \notin G_\beta$.

REFERENCES

(Received June 2008)