A Note on Hermite-Fejér Interpolation for the Unit Circle

L. Daruis and P. González-Vera*
Department of Mathematical Analysis
La Laguna University
3827 La Laugna, Tenerife, Canary Islands, Spain
pglez@ull.es

(Received November 1999; revised and accepted October 2000)

Abstract

In this note, an extension to the unit circle of the classical Hermite-Fejér Theorem is given. (c) 2001 Elsevier Science Ltd. All rights reserved.

Keywords-Hermite-Fejér interpolation, Laurent polynomials, Orthogonal polynomials, Positive measure.

1. INTRODUCTION

Let X be an arbitrary triangular matrix

$$
-1 \leq x_{n n}<x_{n-1 n}<\cdots<x_{1 n} \leq 1, \quad n=1,2, \ldots,
$$

in the interval $[-1,1]$ and let f be a function defined on this interval. Then, the interpolatory Lagrange polynomial is given by

$$
L_{n}(f, X, x)=\sum_{k=1}^{n} l_{k, n}(x) f\left(x_{k n}\right),
$$

where $l_{k, n}$ are the well-known fundamental polynomials of Lagrange. The interest of interpolation of functions is that quadrature formulas are often constructed from interpolating polynomials. Indeed, if we want to approximate the integral

$$
\int_{-1}^{1} f(x) \sigma(x) d x
$$

where $\sigma(x)$ is a weight function on $[-1,1]$, we can replace the function $f(x)$ in the integral by $L_{n}(f, X, x)$ and one obtains a quadrature formula. Furthermore, the uniform convergence of

[^0]such interpolating polynomials to the function will give us the convergence of the quadrature formula. But, it is known (see [1]), that for any matrix X, the Lagrange interpolation can never be convergent for all continuous functions. For this reason the Hermite-Fejér interpolants were introduced. Let us recall the definition of the Hermite-Fejér interpolation problem. Indeed, it consists of finding a polynomial $P_{2 n-1}(f, X, x)$ of degree at most $2 n-1$ satisfying the conditions
\[

$$
\begin{align*}
& P_{2 n-1}\left(f, X, x_{k n}\right)=f\left(x_{k n}\right), \\
& P_{2 n-1}^{\prime}\left(f, X, x_{k n}\right)=0, \quad k=1, \ldots, n . \tag{1.1}
\end{align*}
$$
\]

If X is the matrix of Chebyshev nodes, i.e., $x_{k n}=(\cos (2 k-1) \pi) / 2 n, k=1, \ldots, n, n=1,2, \ldots$, in contrast to Lagrange interpolation, Fejér proved the following.
Theorem 1.1. (See [2, p. 118].) In the above conditions, the sequence $\left\{P_{2 n-1}(f, X, \cdot)\right\}$ converges uniformly for all continuous functions f on $[-1,1]$.

In this paper, we shall be concerned with the interpolation of functions defined not on $[-1,1]$ but on the unit circle denoted by $\mathbb{T}=\{z:|z|=1\}$. In this respect, some notations are required. Thus, for every pair (p, q) of integers, where $p \leq q$, we denote by $\Lambda_{p, q}$ the linear space of all Laurent polynomials (L-polynomials)

$$
L(z)=\sum_{j=p}^{q} c_{j} z^{j}, \quad c_{j} \in \mathbb{C} .
$$

We write Λ for the linear space of all L-polynomials, Π for the space of all polynomials and $\Pi_{n}\left(=\Lambda_{0, n}\right)$ for the space of all polynomials of degree at most n. We shall also write $\mathbb{D}=\{z$: $|z|<1\}$ for the open unit disk. Let us remark that as for interpolation on \mathbb{T}, L-polynomials play the same role as the usual polynomials when interpolation over an interval is considered. This is basically motivated by the fact that any continuous function on a Jordan curve C of the finite z-plane can be uniformly approximated on C by the sum of a polynomial in z and \bar{z} (see [3]). In particular, if $C=\mathbb{T}$, then any continuous function on the unit circle can be uniformly approximated on \mathbb{T} by L-polynomials. Finally, we will choose as interpolation nodes rotations of roots of unity. In the real case, the Chebyshev nodes defined above are the zeros of the so-called Chebyshev polynomials of the first kind $T_{n}(x)=\cos (n \arccos x)$, which are orthogonal on $[-1,1]$ with respect to the positive measure $d \mu(x)=d x / \sqrt{1-x^{2}}$. In order to obtain nodes on \mathbb{T} in a similar way, we could proceed as follows. Let $d \omega(\theta)$ be a positive measure on $[0,2 \pi]$ and consider the following Hermitian product over Π :

$$
(f, g)_{\omega}=\int_{0}^{2 \pi} f\left(e^{i \theta}\right) \overline{g\left(e^{i \theta}\right)} d \omega(\theta)
$$

By applying the Gram-Schmidt orthogonalization process to $\left\{1, x, \ldots, x^{n}\right\}$ an orthogonal basis $\left\{\rho_{k}\right\}_{0}^{n}$ of monic polynomials can be deduced. The sequence $\left\{\rho_{k}\right\}_{0}^{n}$ represents the system of monic orthogonal polynomials (or Szegö polynomials) with respect to $d \omega(\theta)$. It is well known that for each n, the zeros of ρ_{n} lie inside \mathbb{D} (see, e.g., [4, p. 184]). So they cannot be taken as interpolation nodes. In order to overcome this drawback, Jones et al. in [5] introduced the so-called para-orthogonal polynomials given by

$$
B_{n}(z, \lambda)=\rho_{n}(z)+\lambda \rho_{n}^{*}(z),
$$

λ being an arbitrary unimodular complex number and $\rho_{n}^{*}(z)=z^{n} \rho_{n}(1 / z)$. It can be shown that B_{n} has exactly n distinct zeros on \mathbb{T} (see [5]).

If μ is a probability measure on the interval $[-1,1]$, then we can define a measure ω on $[0,2 \pi]$ by $d \omega(\theta)=\mu(\cos \theta)|\sin \theta| d \theta / 2$. If $d \mu(x)=\left(1 / \pi \sqrt{1-x^{2}}\right) d x$, then the corresponding measure on $[0,2 \pi]$ is the Lebesgue measure which is given by $d \omega(\theta)=(1 / 2 \pi) d \theta$. The Szegö polynomials with respect to this measure are $\rho_{n}(z)=z^{n}$ and the para-orthogonal polynomials in this case are $B_{n}(z, \lambda)=z^{n}+\lambda,|\lambda|=1 \forall n$. Thus, we see that the zeros of the corresponding paraorthogonal polynomials are rotations of unity.

2. PRELIMINARY RESULTS

Let f be a differentiable function on \mathbb{T} and $z_{k} \in \mathbb{T}, k=1, \ldots n$ with $z_{k} \neq z_{j}$, for $k \neq j$. Then we know that there exists a unique polynomial $P \in \Pi_{2 n-1}$ such that

$$
\begin{aligned}
P\left(z_{k}\right) & =f\left(z_{k}\right) \\
P^{\prime}\left(z_{k}\right) & =f^{\prime}\left(z_{k}\right), \quad k=1, \ldots n
\end{aligned}
$$

and we can write $P(z)$ as (Hermite's interpolation formula [6, pp. 52-53])

$$
\begin{equation*}
P(z)=\sum_{k=1}^{n} A_{k}(z) f\left(z_{k}\right)+\sum_{k=1}^{n} B_{k}(z) f^{\prime}\left(z_{k}\right) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{k}(z)=\left(1-2\left(z-z_{k}\right) l_{k}^{\prime}\left(z_{k}\right)\right) l_{k}^{2}(z), \quad k=1, \ldots n \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{k}(z)=\left(z-z_{k}\right) l_{k}^{2}(z), \quad k=1, \ldots n \tag{2.3}
\end{equation*}
$$

l_{k} being the fundamental Lagrange polynomials given by $l_{k}(z)=W_{n}(z) / W_{n}^{\prime}\left(z_{k}\right)\left(z-z_{k}\right), k=$ $1, \ldots n$ with $W_{n}(z)=\prod_{k=1}^{n}\left(z-z_{k}\right)$.

Let p and q be two nondecreasing sequences of nonnegative integers such that

$$
\begin{equation*}
p+q=2 n-1, \quad n=1,2, \ldots \tag{2.4}
\end{equation*}
$$

Then, we have the following.
Proposition 2.1. Let f be a differentiable function on \mathbb{T}. Then there exists a unique $L \in \Lambda_{-p, 4}$, with p and q satisfying (2.4), such that

$$
\begin{align*}
L\left(z_{k}\right) & =f\left(z_{k}\right) \\
L^{\prime}\left(z_{k}\right) & =f^{\prime}\left(z_{k}\right), \quad k=1, \ldots n \tag{2.5}
\end{align*}
$$

where $\left\{z_{k}\right\}_{k=1}^{n}$ are the roots of $z^{n}+\lambda=0$. The L-polynomial can be written in an explicit formula as

$$
\begin{equation*}
L(z)=\sum_{k=1}^{n} A_{k}^{*}(z) f\left(z_{k}\right)+\sum_{k=1}^{n} B_{k}^{*}(z) f^{\prime}\left(z_{k}\right) \tag{2.6}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{k}^{*}(z)=\frac{z_{k}^{p+2}\left(z^{n}+\lambda\right)^{2}}{z^{p} n^{2} \lambda^{2}\left(z-z_{k}\right)^{2}}+\frac{(p-n+1) z_{k}^{p+1}\left(z^{n}+\lambda\right)^{2}}{z^{p} n^{2} \lambda^{2}\left(z-z_{k}\right)} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{k}^{*}(z)=\frac{z_{k}^{p+2}\left(z^{n}+\lambda\right)^{2}}{z^{p} n^{2} \lambda^{2}\left(z-z_{k}\right)} . \tag{2.8}
\end{equation*}
$$

Proof. The existence and unicity of the L-polynomial satisfying (2.5) is a consequence of the fact that $\Lambda_{-p, q}$ is a Chebyshev system on \mathbb{T} (see [2, p. 31]). Thus, let $L \in \Lambda_{-p, q}$ be such this solution. We can write $L(z)=P(z) / z^{p}$ where $P \in \Pi_{q}$ and

$$
L^{\prime}(z)=\frac{P^{\prime}(z) z^{p}-P(z) p z^{p-1}}{z^{2 p}}
$$

Since $L\left(z_{k}\right)=f\left(z_{k}\right), k=1, \ldots n$, then

$$
P\left(z_{k}\right)=z_{k}^{p} f\left(z_{k}\right)
$$

On the other hand, since $L^{\prime}\left(z_{k}\right)=f^{\prime}\left(z_{k}\right), k=1, \ldots n$, then

$$
P^{\prime}\left(z_{k}\right)=p z_{k}^{p-1} f\left(z_{k}\right)+z_{k}^{p} f^{\prime}\left(z_{k}\right) .
$$

Let $g(z)=z^{p} f(z)$, then g is differentiable on \mathbb{T} and $g^{\prime}(z)=p z^{p-1} f(z)+z^{p} f^{\prime}(z)$. Therefore, one has $P \in \Pi_{q} \subset \Pi_{2 n-1}$, satisfying

$$
\begin{align*}
P\left(z_{k}\right) & =g\left(z_{k}\right), \\
P^{\prime}\left(z_{k}\right) & =g^{\prime}\left(z_{k}\right), \quad k=1, \ldots n . \tag{2.9}
\end{align*}
$$

By (2.1), we have $P(z)=\sum_{k=1}^{n} A_{k}(z) g\left(z_{k}\right)+\sum_{k=1}^{n} B_{k}(z) g^{\prime}\left(z_{k}\right)$, where $A_{k}(z)$ and $B_{k}(z)$ are given as in formulas (2.2) and (2.3), respectively. In this case, since $W_{n}(z)=z^{n}+\lambda$,

$$
l_{k}(z)=-\frac{z_{k}\left(z^{n}+\lambda\right)}{n \lambda\left(z-z_{k}\right)}
$$

and

$$
l_{k}^{\prime}(z)=-\frac{z_{k}}{n \lambda}\left(\frac{(n-1) z^{n}-n z_{k} z^{n-1}-\lambda}{\left(z-z_{k}\right)^{2}}\right) .
$$

Therefore, by applying the L'Hopital rule two times, we have

$$
\begin{aligned}
l_{k}^{\prime}\left(z_{k}\right) & =-\frac{z_{k}}{n \lambda} \lim _{z \rightarrow z_{k}}\left(\frac{n(n-1) z^{n-1}-n(n-1) z_{k} z^{n-2}}{2\left(z-z_{k}\right)}\right) \\
& =-\frac{z_{k}}{2 n \lambda} \lim _{z \rightarrow z_{k}}\left(n(n-1)^{2} z^{n-2}-n(n-1)(n-2) z_{k} z^{n-3}\right) \\
& =-\frac{z_{k}}{2 n \lambda}\left(n(n-1)^{2} z_{k}^{n-2}-n(n-1)(n-2) z_{k}^{n-2}\right) \\
& =-\frac{z_{k}}{2 n \lambda}\left(n(n-1) z_{k}^{n-2}\right) \\
& =-\frac{(n-1) z_{k}^{n-1}}{2 \lambda}=\frac{(n-1) \lambda}{2 z_{k} \lambda}=\frac{n-1}{2 z_{k}},
\end{aligned}
$$

and one has

$$
\begin{align*}
& A_{k}(z)=\frac{z_{k}^{2}\left(z^{n}+\lambda\right)^{2}}{n^{2} \lambda^{2}\left(z-z_{k}\right)^{2}}-\frac{(n-1) z_{k}\left(z^{n}+\lambda\right)^{2}}{n^{2} \lambda^{2}\left(z-z_{k}\right)} \\
& B_{k}(z)=\frac{z_{k}^{2}\left(z^{n}+\lambda\right)^{2}}{n^{2} \lambda^{2}\left(z-z_{k}\right)} \tag{2.10}
\end{align*}
$$

Thus,

$$
\begin{aligned}
L(z)=\frac{P(z)}{z^{p}} & =\sum_{k=1}^{n} \frac{A_{k}(z) z_{k}^{p}}{z^{p}} f\left(z_{k}\right)+\sum_{k=1}^{n} \frac{B_{k}(z)}{z^{p}}\left(p z_{k}^{p-1} f\left(z_{k}\right)+z_{k}^{p} f^{\prime}\left(z_{k}\right)\right) \\
& =\sum_{k=1}^{n} \frac{A_{k}(z) z_{k}^{p}+B_{k}(z) p z_{k}^{p-1}}{z^{p}} f\left(z_{k}\right)+\sum_{k=1}^{n} \frac{B_{k}(z) z_{k}^{p}}{z^{p}} f^{\prime}\left(z_{k}\right) \\
& =\sum_{k=1}^{n} A_{k}^{*}(z) f\left(z_{k}\right)+\sum_{k=1}^{n} B_{k}^{*}(z) f^{\prime}\left(z_{k}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
A_{k}^{*}(z) & =\left(\frac{z_{k}^{p+2}\left(z^{n}+\lambda\right)^{2}}{n^{2} \lambda^{2}\left(z-z_{k}\right)^{2}}-\frac{(n-1) z_{k}^{p+1}\left(z^{n}+\lambda\right)^{2}}{n^{2} \lambda^{2}\left(z-z_{k}\right)}+\frac{p z_{k}^{p+1}\left(z^{n}+\lambda\right)^{2}}{n^{2} \lambda^{2}\left(z-z_{k}\right)}\right) / z^{p} \\
& =\frac{z_{k}^{p+2}\left(z^{n}+\lambda\right)^{2}}{z^{p} n^{2} \lambda^{2}\left(z-z_{k}\right)^{2}}+\frac{(p-n+1) z_{k}^{p+1}\left(z^{n}+\lambda\right)^{2}}{z^{p} n^{2} \lambda^{2}\left(z-z_{k}\right)} \\
B_{k}^{*}(z) & =\frac{z_{k}^{p+2}\left(z^{n}+\lambda\right)^{2}}{z^{p} n^{2} \lambda^{2}\left(z-z_{k}\right)}
\end{aligned}
$$

and the proof follows.

Lemma 2.2. Let $W_{n}(z)=z^{n}+\lambda$ and let $z_{k}, k=1, \ldots, n$ be the n roots of $W_{n}(z)=0$. Then,

$$
\frac{\left|W_{n}(z)\right|^{2}}{n^{2}} \sum_{k=1}^{n} \frac{1}{\left|z-z_{k}\right|^{2}}=1, \quad \forall z \in \mathbb{T}
$$

Proof. For all $z \in \mathbb{T}$,

$$
\left|z-z_{k}\right|^{2}=\left(z-z_{k}\right) \overline{\left(z-z_{k}\right)}=-\frac{\left(z-z_{k}\right)^{2}}{z z_{k}}
$$

So,

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{1}{\left|z-z_{k}\right|^{2}} & =-z \sum_{k=1}^{n} \frac{z_{k}}{\left(z-z_{k}\right)^{2}}=z \sum_{k=1}^{n} \frac{\left(z-z_{k}\right)-z}{\left(z-z_{k}\right)^{2}} \\
& =z\left(\sum_{k=1}^{n} \frac{1}{\left(z-z_{k}\right)}-z \sum_{k=1}^{n} \frac{1}{\left(z-z_{k}\right)^{2}}\right)
\end{aligned}
$$

On the other hand,

$$
\sum_{k=1}^{n} \frac{1}{\left(z-z_{k}\right)}=\frac{W_{n}^{\prime}(z)}{W_{n}(z)}=\frac{n z^{n-1}}{z^{n}+\lambda}
$$

and

$$
\begin{aligned}
-\sum_{k=1}^{n} \frac{1}{\left(z-z_{k}\right)^{2}} & =n \frac{(n-1) z^{n-2}\left(z^{n}+\lambda\right)-n z^{2(n-1)}}{\left(z^{n}+\lambda\right)^{2}} \\
& =-\frac{n z^{n-2}\left(z^{n}-(n-1) \lambda\right)}{\left(z^{n}+\lambda\right)^{2}}
\end{aligned}
$$

Thus, one obtains

$$
\begin{align*}
0<\sum_{k=1}^{n} \frac{1}{\left|z-z_{k}\right|^{2}} & =z\left(\frac{n z^{n-1}}{z^{n}+\lambda}-z \frac{n z^{n-2}\left(z^{n}-(n-1) \lambda\right)}{\left(z^{n}+\lambda\right)^{2}}\right) \tag{2.11}\\
& =-\frac{\lambda n^{2} z^{n}}{\left(z^{n}+\lambda\right)^{2}}=\frac{n^{2}}{\left|z^{n}+\lambda\right|^{2}}=\frac{n^{2}}{\left|W_{n}(z)\right|^{2}}
\end{align*}
$$

and the proof follows.

3. MAIN RESULT

Throughout this section, we will assume that $p(n)$ and $q(n)$ are two nondecreasing sequences of nonnegative integers such that $p(n)+q(n)=2 n-1, n=1,2, \ldots$ with $\lim _{n \rightarrow \infty} p(n)=$ $\lim _{n \rightarrow \infty} q(n)=\infty$ and $|p(n)-n+1|$ bounded. 'I'hen we have the following.
Theorem 3.1. Let f be a continuous function on \mathbb{T}, i.e., $f \in C(\mathbb{T})$ and let L_{n} be the unique L-polynomial in $\Lambda_{-p(n), q(n)}$ satisfying

$$
\begin{align*}
& L_{n}\left(z_{k}\right)=f\left(z_{k}\right) \\
& L_{n}^{\prime}\left(z_{k}\right)=0, \quad k=1, \ldots n \tag{3.1}
\end{align*}
$$

where $\left\{z_{k}\right\}_{k=1}^{n}$ are the roots of $z^{n}+\lambda_{n}=0,\left\{\lambda_{n}\right\}$ being an arbitrary sequence on \mathbb{T}. Then the sequence L_{n} converges to f uniformly on \mathbb{T}.
Proof. By Proposition 2.1, we can write

$$
L_{n}(z)=\sum_{k=1}^{n} A_{k}^{*}(z) f\left(z_{k}\right)
$$

with A_{k}^{*} as in formula (2.7). By unicity, we have that $\sum_{k=1}^{n} A_{k}^{*}(z)=1$, and therefore,

$$
\sum_{k=1}^{n} A_{k}^{*}(z) f(z)=f(z)
$$

Thus,

$$
\begin{aligned}
\left|f(z)-\sum_{k=1}^{n} A_{k}^{*}(z) f\left(z_{k}\right)\right| & =\left|\sum_{k=1}^{n} A_{k}^{*}(z) f(z)-\sum_{k=1}^{n} A_{k}^{*}(z) f\left(z_{k}\right)\right| \\
& \leq \sum_{k=1}^{n}\left|A_{k}^{*}(z)\right|\left|f(z)-f\left(z_{k}\right)\right| .
\end{aligned}
$$

Since $f \in C(\mathbb{T})$, because of the uniform continuity, for a given arbitrary positive number ϵ, there exists $\delta>0$ such that if $\left|z-z_{k}\right|<\delta$, then $\left|f(z)-f\left(z_{k}\right)\right|<\epsilon$. So

$$
\begin{align*}
\left|f(z)-\sum_{k=1}^{n} A_{k}^{*}(z) f\left(z_{k}\right)\right| & \leq \epsilon \sum_{k=1,\left|z-z_{k}\right|<\delta}^{n}\left|A_{k}^{*}(z)\right|+\sum_{k=1,\left|z-z_{k}\right| \geq \delta}^{n}\left|A_{k}^{*}(z)\right|\left|f(z)-f\left(z_{k}\right)\right| . \tag{3.2}\\
& =I_{1, n}+I_{2, n} .
\end{align*}
$$

If $\left|z-z_{k}\right| \geq \delta$, then by formula (2.7) and since $z, z_{k} \in \mathbb{T}, k=1, \ldots, n$,

$$
\left|A_{k}^{*}(z)\right| \leq \frac{\left|z^{n}+\lambda_{n}\right|^{2}}{n^{2} \delta^{2}}+\frac{|p(n)-n+1|\left|z^{n}+\lambda_{n}\right|^{2}}{n^{2} \delta}
$$

Now, $f \in C(\mathbb{T})$ and \mathbb{T} is a compact set, hence, there exists $M>0$ such that $|f(z)| \leq M, \forall z \in \mathbb{T}$. So,

$$
\left|f(z)-f\left(z_{k}\right)\right| \leq 2 M, \quad \forall z \in \mathbb{T}, \quad \forall k=1, \ldots, n,
$$

and since it holds on $\mathbb{T},\left|z^{n}+\lambda_{n}\right|^{2} \leq 4$, we obtain

$$
I_{2, n} \leq \frac{8 M}{n \delta^{2}}+\frac{8 M}{\delta} \frac{|p(n)-n+1|}{n}
$$

Since $|p(n)-n+1|$ is bounded, $I_{2, n}<\epsilon$ for sufficiently large n.
On the other hand,

$$
\begin{aligned}
I_{1, n} & =\epsilon \sum_{k=1\left|z-z_{k}\right|<\delta}^{n}\left|A_{k}^{*}(z)\right| \\
& =\epsilon\left(\frac{\left|z^{n}+\lambda_{n}\right|^{2}}{n^{2}} \sum_{k=1}^{n} \frac{1}{\left|z-z_{k}\right|^{2}}\right)+\epsilon(|p(n)-n+1|) \frac{\left|z^{n}+\lambda_{n}\right|^{2}}{n^{2}} \sum_{k=1}^{n} \frac{\left|z-z_{k}\right|}{\left|z-z_{k}\right|^{2}} \\
& \leq \epsilon\left(\frac{\left|z^{n}+\lambda_{n}\right|^{2}}{n^{2}} \sum_{k=1}^{n} \frac{1}{\left|z-z_{k}\right|^{2}}\right)+\epsilon \delta(|p(n)-n+1|)\left(\frac{\left|z^{n}+\lambda_{n}\right|^{2}}{n^{2}} \sum_{k=1}^{n} \frac{1}{\left|z-z_{k}\right|^{2}}\right) .
\end{aligned}
$$

By Lemma 2.2,

$$
I_{1, n}<\epsilon+\epsilon \delta|p(n)-n+1|=(1+\delta|p(n)-n+1|) \epsilon .
$$

Again, since $|p(n)-n+1|$ is bounded, $I_{1, n}<\epsilon$ and the proof follows.
Example. If we choose $p(n)=n-1$, then $L \in \Lambda_{-(n-1), n}$ and

$$
L_{n}(z)=\sum_{k=1}^{n} A_{k}^{*}(z) f\left(z_{k}\right)
$$

where now $A_{k}^{*}(z)$ takes the simple form

$$
A_{k}^{*}(z)=\frac{z_{k}^{n+1}\left(z^{n}+\lambda_{n}\right)^{2}}{z^{n-1} n^{2} \lambda_{n}^{2}\left(z-z_{k}\right)^{2}}=-\frac{z_{k}\left(z^{n}+\lambda_{n}\right)^{2}}{z^{n-1} n^{2} \lambda_{n}\left(z-z_{k}\right)^{2}} .
$$

4. CONCLUSION

Numerical estimation of integrals on the unit circle of the form $\int_{0}^{2 \pi} f\left(e^{i \theta}\right) d \omega(\theta), \omega(\theta)$ being a positive measure on $[0,2 \pi)$, has become an important topic because of its connection with the rapidly growing field of digital processing (see [5] and reference therein found) and giving rise to the so-called Szegö quadrature formulas [5]. In these formulas, the integrand $f\left(e^{i \theta}\right)$ is replaced by a certain interpolating Laurent polynomial. Thus, as in the real case, studying the uniform convergence of sequences of interpolating Laurent polynomials reveals as an interesting problem.

REFERENCES

1. J. Szabados and P. Vértesi, A survey on mean convergence of interpolatory processes, Journal of Computational and Applied Mathematics 43, 3-18, (1992).
2. P.J. Davis, Interpolation and Approximation, Dover Publications, New York, (1975).
3. J.J. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Sc. Coll. Pubs. 20, (1969).
4. N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Hafner, New York, (1965).
5. W.B. Jones, Olav Njåstad and W.J. Thron, Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle, Bull. London Math. Soc. 21, 113-152, (1989).
6. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York, (1980).

[^0]: The work of the first author was performed as part of a grant of the Gobierno de Canarias.
 The work of the second author was supported by the Scientific Research Project of the Spanish D.G.E.S. under Contract PB96-1029.
 *Author to whom all correspondence should be addressed.

