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1. INTRODUCTION 

Let X be an arbitrary triangular matrix 

-1 I %n < 2n_ln < ... < Zln I 1, n= 1,2,..., 

in the interval [-1, l] and let f be a function defined on this interval. Then, the interpolatory 

Lagrange polynomial is given by 

-L(f,X, x) = 2 ~k,n(~)f(~kn), 
k=l 

where lk,n are the well-known fundamental polynomials of Lagrange. The interest of interpolation 

of functions is that quadrature formulas are often constructed from interpolating polynomials. 

Indeed, if we want to approximate the integral 

s l f(z)+) d? 
-1 

where o(x) is a weight function on [-l,l], we can replace the function f(x) in the integral 

by Ln(f, X, Z) and one obtains a quadrature formula. Furthermore, the uniform convergence of 
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such interpolating polynomials to the function will give us the convergence of the quadrature 

formula. But, it is known (see [l]), that for any matrix X, the Lagrange interpolation can never 

be convergent for all continuous functions. For this reason the Hermite-Fejer interpolants were 

introduced. Let us recall the definition of the Hermite-Fejer interpolation problem. Indeed, it 

consists of finding a polynomial Pz,_l(f, X, CC) of degree at most 2n - 1 satisfying the conditions 

P2n-l(f,X,%J = f&Z), 

P&&f, x, Qcn) = 0, k = 1,. . . , n. (1.1) 

If X is the matrix of Chebyshev nodes, i.e., xkn = (cos(2k - 1)7r)/2n, k = 1,. . . , n, n = 1,2,. . . , 

in contrast to Lagrange interpolation, Fejer proved the following. 

THEOREM 1.1. (See [2, p. 1181.) In the above conditions, the sequence { Pz,_ i (f, X, .)} converges 

uniformly for all continuous functions f on [-1, 11. 

In this paper, we shall be concerned with the interpolation of functions defined not on [-1, l] 

but on the unit circle denoted by T = {Z : 1.~1 = 1). In this respect, some notations are required. 

Thus, for every pair (p,q) of integers, where p I q, we denote by Ap,g the linear space of all 

Laurent polynomials (L-polynomials) 

L(Z) = 2 CjZj, Cj E Cc. 

j=p 

We write A for the linear space of all L-polynomials, II for the space of all polynomials and 

II,(= As,,) for the space of all polynomials of degree at most n. We shall also write llD = {Z : 

IzI < 1) for th e o p en unit disk. Let us remark that as for interpolation on T, L-polynomials 

play the same role as the usual polynomials when interpolation over an interval is considered. 

This is basically motivated by the fact that any continuous function on a Jordan curve C of 

the finite z-plane can be uniformly approximated on C by the sum of a polynomial in z and z 

(see [3]). I n p t 1 ar icu ar, if C = ‘Il’, then any continuous function on the unit circle can be uniformly 

approximated on T by L-polynomials. Finally, we will choose as interpolation nodes rotations of 

roots of unity. In the real case, the Chebyshev nodes defined above are the zeros of the so-called 

Chebyshev polynomials of the first kind Tn(z) = cos(n arccosz), which are orthogonal on [-1, l] 

with respect to the positive measure &(z) = dz/dn. In order to obtain nodes on ‘ll’ in a 

similar way, we could proceed as follows. Let dw(8) be a positive measure on [0,2n] and consider 

the following Hermitian product over II: 

(f,gL = 1”” f (6’) 9 (eie) dw(@). 

By applying the Gram-Schmidt orthogonalization process to {1,x,. . . , ?} an orthogonal ba- 

sis {pk}; of manic polynomials can be deduced. The sequence {Pk}$ represents the system of 

manic orthogonal polynomials (or Szeglj polynomials) with respect to h(8). It is well known 

that for each n, the zeros of pn lie inside D (see, e.g., [4, p. 1841). So they cannot be taken 

as interpolation nodes. In order to overcome this drawback, Jones et al. in [5] introduced the 

so-called para-orthogonal polynomials given by 

X being an arbitrary unimodular complex number and p;(z) = .znpn(l/z). It can be shown 

that B, has exactly n distinct zeros on T (see [5]). 

If p is a probability measure on the interval [-I, 11, then we can define a measure w on [0,27r] 

by dw(B) = ~(cos~)] sint9(d8/2. If dp(x) = (l/&i-??)dx, then the corresponding measure 

on [0,27r] is the Lebesgue measure which is given by dw(8) = (1/27r) de. The Szego polynomials 

with respect to this measure are p,(z) = Z~ and the para-orthogonal polynomials in this case 

are B,(z,X) = zn + A, ]A] = 1 Vn. Thus, we see that the zeros of the corresponding para- 

orthogonal polynomials are rotations of unity. 
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2. PRELIMINARY RESULTS 

Let f be a differentiable function on ‘lf and zk E T, k = 1,. . . n with zk # zj, for k # j. Then 

we know that there exists a unique polynomial P E ll12~-1 such that 

pbk) = f(zk), 

p’kk) = f’(zk), k = l,...n, 

and we can write P(z) as (Hermite’s interpolation formula [6, pp. 52-531) 

p(z) = 2 Ak(z)f(zk) + 2 Bk(Z)f’(Zk), 

k=l k=l 

(2.1) 

where 

.&(Z) = (1 - 2(z - zk)&(zk)) (i$), k = 1,. . . n, (2.2) 

and 

Bk(Z) = (z - zk) &z), k=l,...n, (2.3) 

II, being the fundamental Lagrange pOlynOmi& given by lk(Z) = w,(z)/wA(zk)(z - zk), k = 

1 )... n with wn(.z) = nz=,(z - zk). 
Let p and q be two nondecreasing sequences of nonnegative integers such that 

p+q=2n-1, n== 1,2 ).‘.. (2.4) 

Then, we have the following. 

PROPOSITION 2.1. Let f be a differentiable function on ‘I’. Then there exists a unique L E A_-p,q, 

with p and q satisfying (2.4), such that 

L(tk) = f(zk), 

L’(zk) = f’(zk), k = 1,. . . n, (2.5) 

where {zk}F,r are the roots of zn + X = 0. The L-polynomial can be written in an explicit 

formula as 

L(z) = k A;(z)f(&) + 2 B;@)f’(Zk) (2.6) 
k=l k=l 

with 

A;(z) = 
Z$’ (9 + X)2 

zpn2X2(z - Zk)2 

+ (p - n + l)zE+l (P + A)” 

Zpn2X2(Z - Zk) 

B,*(z) = 
zg+Z (z” + q2 

Zpn2X2(z - zk). 

(2.7) 

(2.8) 

PROOF. The existence and unicity of the L-polynomial satisfying (2.5) is a consequence of the 

fact that II-~+, is a Chebyshev system on T (see [2, p. 311). Thus, let L E A-,,, be such this 
solution. We can write L(z) = P(z)/zP where P E II, and 

L’(z) = P’(z)zP - mPzp-l 
z2p 

Since L(zk) = f(zk), k = 1,. . . n, then 

p(zk) = $f(Zk). 
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On the other hand, since L’(zk) = f’(zk), k = 1,. . . n, then 

P’(Zk) = pz;-lf(zk) + z;f’(zk). 

Let g(z) = zPf(z), then g is differentiable on T and g’(z) = p.zP-‘f(z) + zPf’(z). Therefore, one 

has P E II, c l&-1, satisfying 

P(-zk) = g(z/C), 

P’(z4 = g’(zlc), k= l,...n. (2.9) 

By (2.1), we have P(z) = J-& Ak(z)g(a) + Xi=1 Bk(z)g’(zrc), where Ak(.z) and Bk(z) are 

given as in formulas (2.2) and (2.3), respectively. In this case, since Wn(z) = .zn + A, 

and 

Z/$(Z) = - 
zlc(zn + X) 

nX(z - zrc) 

&(z) = -z 
( 

(n - l)zn - nzkz+l - X 

(z - zJJ2 

Therefore, by applying the L’Hopital rule two times, we have 

and one has 

Thus, 

where 

$(Zk) = -2 /Ilk -+ ( n(n - ljz n-l _ n(n - l)zkznd2 

2(z - zlc) 

= -2 JiTk (n(n - 1)2zn-2 - n(n - l)(n - 2)zkP3) 

= -& (n(n - 1)2zL-2 - n(n - l)(n - 2).~$-~) 

= -& (n(n - 1)~;~~) 

=_(n-l)zE-l = (n-1)X n-l 

2x 2zkx =YQ 

&(z) = 
z;(z”+x)2 (n-l)zk(z”+X)2 

n2X2(z - zk)2 - n2P(z - Zk) ’ 

&(z) = 
z; (Zn + q2 

(2.10) 

n2X2(z - zk) ’ 

P(z) It Ak(+; 
L(z) = --y = c zp 

k=l 

f(Zk) + 2 y 

k=l 

(&?-(Zk) + $f’(zk)) 

= 2 Ak(Z)Z; +zz:(Z)~Z:-’ f(zk) + 2 Bkl”dZ: f,(zk) 

k=l k=l 

= 2 A;(z)f(zk) + 2 B;(z)f’(zk), 

k=l k=l 

A;(z) = 
( 

z;+2(Zn + X)2 

n2X2(z - zk)2 - 

(n - l)z,P+l(zn +X)2 + pzg+l(zn + X)2 

n2X2(Z - Zk) n2X2(Z - Zk) 
)/ 

zp 

z~+~(z~ + X)2 

= zpn2X2(z - zk)2 

+ (p - n + l)zi+l(zn + X)2 

zpn2X2(z - Zk) ’ 

B;(z) = 
z;‘” (Zn +x)2 

Zpn2X2(Z - Zk) ’ 

and the proof follows. 
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LEMMA 2.2. Let Wn(z) = .zn + X and let zk, k = 1,. . . , n be the n roots of Wn(z) = 0. Then, 

PROOF. For all z E T, 

n 71 

k=l 12 - Zkj2 = -’ kzl (z - tk)2 = ’ k=l c 
1 

c 
zk 

On the other hand, 
7% 

c 
1 WA(z) nznM1 -=-=- 

k=l (z--zk) w&) zn+A 

and 

n 

c 1 (n - l).~?-~ (9 + A) - nZ2(n-1) - 
k=l (x - zk)2 = n (P + x)2 

n.zn-2(zn - (n - 1)X) 
=- 

(z” + A)” . 

Thus, one obtains 

o<g l ( n.P--l 

k=l Iz--k12 =t 7GYX 

n~?-~ (9 - (n - 1)X) 

(tn +x)2 ) 
An29 n2 n2 

= -(p + X)2 = 1.P + x12 = IW&)12 

(2.11) 

and the proof follows. 

3. MAIN RESULT 

Throughout this section, we will assume that p(n) and q(n) are two nondecreasing sequences 

of nonnegative integers such that p(n) + q(n) = 2n - 1, n = 1,2,. . . with lim,,, p(n) = 

limn-+oo q(n) = co and \p(n) - n + l( bounded. Then we have the following. 

THEOREM 3.1. Let f be a continuous function on ‘IT, i.e., f E C(%) and let L, be the unique 

L-polynomial in A_,(,),,(,) satisfying 

Ln(Zk) = f(zk)r 

L;(zk) = 0, k = 1,. . . n, (3.1) 

where {zk}~,l are the roots of zn + A, = 0, {A,} being an arbitrary sequence on T. Then the 

sequence L, converges to f uniformly on T. 

PROOF. By Proposition 2.1, we can write 

Ln(z) = 2 A;(z)f(%), 
k=l 



1002 L. DARUIS AND P. GONZALEZ-VERA 

with Ai as in formula (2.7). By unicity, we have that cF=, A;(z) = 1, and therefore, 

2 A;(M). = f(z). 

Thus, 

k=l 

f(z) - 2 A;(Z)fkk) 
k=l 

2 A;(z)f(z) - 2 Ai( 
k=l k=l 

k=l 

Since f E C(T), because of the uniform continuity, for a given arbitrary positive number E, there 

exists 6 > 0 such that if Iz - Zkl < 6, then If(z) - f(zk)l < 6. So 

k=l k=l,lz-a(<6 

= II,, + I2,n. 

A;(z)l If(z) - fbk)l 
l (3.2) 

If 12 - zkl > 6, then by formula (2.7) and since z, Zk E T, k = 1,. . , n, 

(A;(41 i IZnn-in12 + /p(n) - n + 11 Ii? + AnI2 
n26 . 

Now, f E C(T) and ‘ll’ is a compact set, hence, there exists M > 0 such that If(z)1 5 M, ‘v’t E T. 

so, 
If(z) - .fbk)l 5 2M, VZET, Vk=l,..., n, 

and since it holds on T, Jz” + X,12 5 4, we obtain 

Since Ip(n) - n + l( is bounded, ls,n < E for sufficiently large n. 

On the other hand, 

n 

I l,n = E c lAXz)I 

+d(lp(n)-n+lI) 

By Lemma 2.2, 
Ii,, < E + e@(n) - n + 11 = (1 + dip(n) - n + 11)~. 

Again, since Ip(n) - n + 11 is bounded, 11,~ < e and the proof follows. 

EXAMPLE. If we choose p(n) = n - 1, then L E A-(,-l),, and 

L,(z) = 2 Ai( 
k=l 

where now A;(z) takes the simple form 

A*,(z) = 
z;+’ (2” + x?J2 4 (.? + &)2 

p-ln2jjz(z - zk)2 = - zn-‘n2&(z - &)2 ’ 



HermiteFejer Interpolation 1003 

4. CONCLUSION 

Numerical estimation of integrals on the unit circle of the form so?” f(eie) dw(0), w(e) being 

a positive measure on [0,2n), has become an important topic because of its connection with the 

rapidly growing field of digital processing (see [5] and reference therein found) and giving rise to 

the so-called Szego quadrature formulas [5]. In these formulas, the integrand f(eie) is replaced 

by a certain interpolating Laurent polynomial. Thus, as in the real case, studying the uniform 

convergence of sequences of interpolating Laurent polynomials reveals as an interesting problem. 
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