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In the definition of saturation, some authors require the saturation orders to be
monotonically decreasing. while others do not. In this paper, we do not requirc
monotonicity. and give an example of a saturated method having no monotonic
saturation order. Further, we present a class of methods having monotonic
saturation orders provided they are saturated. We begin by quoting some related
results partially known. € 1989 Academic Press. Inc.

1. INTRODUCTION

We consider the space C of rcal, continuous, and 2n-periodic functions
on the line equipped with the norm | f| :=sup._ i f{x)|. Let the Fourier
series of f& C be given by

=0

F)~24 Y (apcoskx+besinkx)=: T A x).
2 k=1 k=0
For an infinite matrix B={(b,)=(b,4), ccn i1 series-to-sequence form,
satisfying
Y bl < oo (neN:={0,12, .1} (.1}
k=0
we define
o, (f.x) =Y b Ax) (neN, feC, xeR) (1.2)
k=0

Condition (1.1) guarantees that the series in (1.2) converge absolutely and
uniformly [2, p.45]. Hence ¢,,: C = C.
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We notice that the following continues to hold when L (1<p<0)is
substituted for C. Let T,, (meN) denote the set of real trigonometric
polynomials of degree <m, ¢, the set of real-valued nullsequences, and
define ¢ := {(s,)eco|VneN: s,>0}.

If o =(¢,)ecs, we denote

F=F%¢p):={feC||f-0,l=0(p,)asn— x},

and consider the statements

(i) erc:<1im M;_“ﬂ=o:feTm),
(i) erC:(liminfM=0=>feTm>,

(iii) F\T, # .

DEerINITION. Let B=(b,,) be a matrix satisfying (1.1).

(a) B is called saturated relative to T, if there is a ¢ € ¢ satisfying
(i) and (iii).

(b) B is called w-saturated relative to T, if there is a gpecy
satisfying (ii) and (iii).

In both (a) and (b), ¢ is called a saturation order and F the saturation
class of B relative to 7,,.

Obviously, every u-saturated matrix is saturated. We use the term
“y-saturated,” because the saturation order of a w-saturated matrix B is
unique in the sense that any two saturation orders ¢ = (¢,), ¥ = (y,) of B
satisfy the conditions ¢,=0(,) and ¥,=0(p,) as n—oc (see [4,
pp- 50 ff.]) while these conditions are not satisfied in general, if B is merely
saturated (see [4, p. 82 and pp. 100-102] and [6]). We notice that (b) is
essentially the definition used by Tureckii [8] and, in case m=0, by
Devore [4].

In the second section of this paper, we give characterizations of saturated
matrix methods and u-saturated matrix methods, respectively, with which
we show in the third section that certain saturated matrix methods B (in
particular those with monotonically decreasing rows (b,;), . and b,,=1)
always have monotonically decreasing saturation orders. Further, we show
that this is not true in general (see Example4) and that there are
u-saturated matrices with monotonically decreasing rows having no mono-
tonically decreasing saturation order (see Example 3).
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2. CHARACTERIZATION OF SATURATED
AND u~-SATURATED MATRIX METHODS

Our first result can be found in similar versions by several authors (see
for example [7, 6, 8, 4, 27; in [2] see especially Problem 12.1.4, p. 439}
The proof follows the same line used by these authors, so we omit it

In the sequel, we employ the definition a/0 := < for a=0.

TaEOREM 1. Ler B=(b,,) satisfy (L.1).

(a) Let o= (@, eci be given.

() o satisfies (1), if and oniy if

Yk >m+ 1 lim inf — 2" — < o, 2.0
n—o |1 —by

(BY o satisfies (ii), if and only if

1—4
Vk>m+1;1iminf'——2k—'>0. (2.2)
(v) @ satisfies (iii), if and only if
A . @y ‘
ko= m+ 1: lim inf 5 f>0‘ 2.3
Kade s T Yk

(b)Y B is sarurated (respectively u-saturated) relative to T,,, if and oniy
if there exists a @ e ¢ satisfying (2.1) (respectively (2.2}) and (2.3).

As an immediate consequence of Theorem I, we obtain the following
corollary (sec [6] too).

COROLLARY 1. Let B=(b,,) satisfy (1.1), let all the entries b,, be real,
and suppose that there is an integer N such that nz N implies

Vkzm+1:b,<b,,,, 1 <L

Further, let o = (¢, )ecy be given. Then (2.1) is eguivalent to

lim inf —2" < o0,
7= 1 _bn‘m+ 1
condition (2.2) is equivalent to
Lo 1=b
lim inf —27+ 15 @,

n— D,
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and (2.3) is equivalent to

lim inf —2n
n— o 1_bn,m+1

> Q. (24)

Our next result is a characterization of saturated and w-saturated
methods using only properties of the matrix B (compare [3, Theorem 3.1;
4, Theorem 3.1]). To state the result, we denote

ch = {(s,) € ¢o|5, #0 for infinitely many ne N },

cg = {(s,) € cols,#0 for all but finitely many ne N }.

THEOREM 2. Let B=(b,,) satisfy (1.1).

(a) B is saturated relative to T,,, if and only if there exists an integer
ko=zm+ 1 such that

(1= bty) e €€Hs (2.5)

1—b
VYk=m+1:lim inf'——"k°—|< 0. (2.6)
n—o [1—by|

In the case when (2.5) and (2.6) hold, a saturation order ¢ = (¢,,) is given by

.Z{II—bnko' (bnko?él)
"o min({|1=b,| |m+1<j<nandb;#1} U {a,}) (otherwise)

in which (a,) is any sequence of ¢ .
(b) B is u-saturated relative to T,,, if and only if there exists an integer
kozm+1 such that

(1 _bnko)nel\lecg’ (27)

1-b
Vk>m+1:1iminf'———""—|
nee |1 =byel

>0. (2.8)

In the case that (2.7) and (2.8) hold, a saturation order @ =/(@,) is
given by

I Ilﬁ_bnkol (bnko'_)‘él)
SR (otherwise).

The proof of Theorem 2 follows from Theorem 1.

We note that, because of our definition a/0 := oo (¢=0), (2.6) implies
1—b,,#0 for infinitely many n so that (2.5) could be weakened to
(1 —b,.,) e co (but compare Corollary 2(a) in this connection).
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Further, we point out that the condition (1 —b,,,) € ¢, cannot be omitted
in Theorem 2 as can be shown by the example B={(b,,}. b0, =1, b, :=0
(neN,k=1). B satisfies (2.6) and (2.8) with Ay,:=m+1, bui, by
Corollary 1, B is neither saturated nor u-saturated relative to 7,,, since
(2.4) is not satisfied for any ¢ ec¢g. Therefore, [ 3, Theorem 3.1] and [4,
Theorem 3.1 and some other results of Chap. 3] have to be modified in a
corresponding manner. Moreover, the matrix 8 =(5,,) of Example 1 below
shows that the condition “1—b,, #0 for all but finitely many ne N” in
Theorem 2(b) cannot be omitted either, since B given by (2.11) satisfies
(2.8) with ky :=1 (we consider the case m=0) and (1 —b,,)ecy'cg, but is
not u-saturated relative to T, (we remark that the kernel of the matrix
given by (2.11) is not positive).

Finally, we call attention to the fact that, by Theorem 2(a} and [10,
Theorem 2], for every matrix B saturated relative to T, such that
(1 —b.).cn€c for every ke N, there exists a matrix having the same
summability domain, but not saturated relative to 7,,. {The summability
domain of a matrix B=(b,;) is the set

ool
Y buy exists for every ne N
k=0

Cgi= {u=(u,,)

x* \
and< Y b,,kuk)
k=0

is convergent}.)

ne N

The next result can easily be obtained as a consequence of Corollary !.
COROLLARY 2. Ler B={(b,,) satisfy the assumptions of Coroliary 1.
(a} B is saturated relative to T,,, if and only if
(1—=b,mi1)ECh. (2.9
In the case that (2.9) holds, a saturation order ¢ = (9p,,) is given by

. {l_bn.m+1 (bn,m+19£1)
(p’l =

a (otherwise),

where (a,) is any sequence of cg.
(b) B is u-saturated relative to T,,, if and only if

(L=b, .\ )ECE. (2.10)

In the case that (2.10) holds, a saturation order ¢ ={@,) is given by

,={1_bn,m+l (bn.m+17él\’
=l {otherwise).
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Now it is easy to construct examples of matrices which are (u-)saturated
or not.

ExampLE 1. By Corollary 2 we obtain that the matrix B=(b,,) given
by

_n-l-Ll (neven and k <n)
0,k—1
b, = 1—% (n odd and k <) (2.11)
0 (otherwise)

is saturated relative to T, for every me N and u-saturated relative to T,
for every m>1 (in both cases ((n+ 1) ') is a saturation order), but not
u-saturated relative to T, (see [9] too). This example shows that
Problem 12.1.1 in [2] is false (see [1, p. 87 ff.] too).

ExampLE 2. Let g:[0,1)— [0, o) be a function. We consider order
summability [ g] introduced by Jurkat—Peyerimhoff [5]. Define for i, j,
keN, i<,

bj[l_g](k)
kK gli/(j+1)) -
T T+ g 1) (k<i)
- .k g(i/(.jJr.l)) - .k_i : .1 . (i<k<))
JH11+g(/(j+1)) j+1—il+g(/(j+1))
0 (otherwise),

and arrange the pairs (J, i) in lexicographic order so that (j, i) is the nth
pair where n=j(j + 1)/2 + i. If we denote bLg1 :=bL£)(k), then B, := (bLgY)
is the series-to-sequence form of the matrix A* given in the proof of
Theorem 5.1 in [5] and equivalent to [ g].

By Corollary 2, it follows that B, is saturated relative to T, since
1—-blel(m+1)=(m+1)/(j+1)#0 for all j>m+1. Moreover, B, is
u-saturated relative to 7,,, if and only if there exists an integer j,=>m + 1
such that g(i/(j+1))#0 for all j=j, and all i with m+1<i<.

3. MONOTONICITY OF SATURATION ORDERS

If B is a matrix u-saturated relative to T,, then Vértesi [9, proof of
Theorem 1.3] has shown that there exists a monotonically decreasing
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¥ € ¢ such that B is saturated relative to T, with saturation order . If B
is only saturated, this does not remain valid in general {see Example4
below). But we can prove the following result.

THEOREM 3. Let B=(b,) satisfy the assumptions of Corollary 1.
Further, let B be saturated relative to T,,, and define = ({1 ,)) by

wn = Sup{l _bx',,'71+ 1 ‘ vz "E}'

Then B is saturated relative to T, and W is a monotonically decreasing
saturation order.

Since (1 —b,,,,.,)€c by Corollary 2(a), we can argue as in the proof
of Theorem 1.3 in [9]: There exists a strictly increasing sequence of
positive integers (n;) such that ¢,=1-b, , , for all ieN. Because
W,21—5,, ., for all neN, the conclusion follows by Corollary 1 and
Theorem 1(b).

The next example shows that an analogous resuit to Theorem 3 is not
true for u-saturated matrices in general.

ExampPLE 3. We consider the matrix B=(b,,} defined by

(neven and k& < n)

/ k 2
b, = 1—( > (nodd and k < n)

0 (otherwise).

In virtue of Corollary 2(b), the matrix B is u-saturated relative to 7.
and {l—b,,.,,) is a saturation order. Suppose that there exists a
monotonically decreasing y = (/,,) € ¢ such that B is u-saturated relative
to T,, with saturation order . By Theorem 1{b) and Corollary 1, we have

1_b7'7 2
lim inf( yotmei Yy >>0
Jj— l//2,'41 l—'bEj‘erl

which contradicts
2j+1

l_szfl,lnﬁ—l l/ij l_ij—l‘mx&l_ N
(2j)°

< ={m+1)
E/j.'Zjvl 1_ij,m-¢—l 1_b2j,m+1

¢

as jooc (2j—1=2m+ 1)

Finally, we show that there exists a matrix saturated relative to 7,,, but
having no monotonically decreasing saturation order.
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ExampLE 4. Consider any sequence (¢,) € ¢y, and put
1—¢, (ne{jU+1)2+k|jeN, j>k})
by =140 (n<k)
1 (otherwise).

By Theorem 2, the matrix B=(b,,) is saturated relative to T,,, and (¢,) is
a saturation order (consider any k,>m + 1, and choose a, :=¢,), but B is
not u-saturated relative to any T,,.

Now we consider a special sequence (¢,). Since, for every ne N, there
exists a uniquely determined j=j(n)eN and a uniquely determined
k=k(n) such that k<jand n=j(j+ 1)/2 + k, we define

1 k+1
o= )
n+1

Suppose that there exists a monotonically decreasing y = (y,)e¢; such
that B is saturated relative to T, with saturation order . By Theorem 1,
the sequence y satisfies (2.1) and (2.3). Choose k,>m+ 1 according to
(2.3). Then it follows from (2.1) that

liminf— V" o
n—x ll _bn,ko+l|

Hence we can choose a strictly increasing sequence (n;) of positive integers
satisfying no>ko+1, b, 4,1 # 1 for all ie N and

1—5
lim inf'—l;'—~"°+‘|>o. (3.1)

Because of our definition of B, every n, can be written as
n=3jlji+ Dt+ko+1  (jizko+1).
Since i is monotonically decreasing and since

ni+ji=%(ji+ U)(j;i+2) + ko,

we get
1 —=bpkoril Yy
¥, 1= b0t kol
1 _bn;,k0+1| _ (n+j:+ 1)k0+1
T bl (1)

2 ) 1 ko+1
<<—n"—+f1—> (m+1)"'>0  as i- oo,

which contradicts (3.1) and (2.3). Hence there exists no monotonically
decreasing saturation order of B.
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