
Journal of Computational and Applied Mathematics 124 (2000) 245–261
www.elsevier.nl/locate/cam

Piecewise linear methods for nonlinear equations and
optimization

Eugene L. Allgower 1; ∗, Kurt Georg 1; 2
Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA

Received 7 April 1999; received in revised form 18 November 1999

Abstract

Piecewise linear methods had their beginning in the mid-1960s with Lemke’s algorithm for calculating solutions to
linear complementarity problems. In the 1970s and 1980s activity moved on to computing �xed points of rather general
maps and economic equilibria. More recently, they have been used to approximate implicitly de�ned manifolds, with
applications being made to computer graphics and approximations of integral over implicitly de�ned manifolds. In this
paper we present the basic ideas of piecewise linear algorithms and a selection of applications. Further references to the
literature on piecewise linear algorithms are indicated. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Piecewise linear algorithms, also referred to in the literature as simplicial algorithms, can be used to
generate piecewise linear manifolds which approximate the solutions of underdetermined systems of
equations H (x)=0, where H :RN+K → RN may be a mapping having relaxed smoothness properties.
Of particular interest and importance is the case K = 1, in which case the algorithms produce an
approximation of an implicitly de�ned curve. If the de�ning map H is itself piecewise linear, then
H−1(0) is a polygonal path. More generally, H may also be piecewise smooth, or in some instances,
an upper semi-continuous multi-valued map. Intuitively, the approximations which are produced result
from traversing through cells of a tiling of RN+K which intersect H−1(0). Often the tilings which
are used are triangulations of RN+K into simplices and hence the term simplicial algorithms occurs.
Piecewise linear algorithms have been used to �nd solutions to complementarity problems, �xed

points of mappings, and economic equilibria [33]. Many classical theorems of analysis which can
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be proven by means of homotopies or degree theory have been re-examined in terms of piecewise
linear algorithms. Indeed, these algorithms can be viewed as a constructive approach to the Brouwer
degree. Recent applications with K ¿ 1 have been made to obtain computer graphical approximations
of surfaces, surface and volume integrals, and solutions of di�erential–algebraic equations. In the
�rst part of the paper we deal with the case K =1, and in Section 9, we consider the more general
case K ¿ 1.
The �rst prominent example of a piecewise linear algorithm was designed in [27,26] to calculate

a solution of the linear complementarity problem, see Section 7. This algorithm played a crucial
role in the development of subsequent piecewise linear algorithms. Scarf [32] gave a numerically
implementable proof of the Brouwer �xed point theorem, based upon Lemke’s algorithm. Eaves
[17] observed that a related class of algorithms can be obtained by considering piecewise linear
approximations of homotopy maps. Concurrently, Merrill [28] gave a restart version for �xed points
of upper semi-continuous maps. Thus the piecewise linear continuation methods began to emerge as a
parallel to the classical embedding or predictor corrector numerical continuation methods (see [2,3]).
Piecewise linear methods require no smoothness of the underlying equations and hence have, at

least in theory, a more general range of applicability than classical embedding methods. In fact, they
can be used to calculate �xed points of set-valued maps. They are more combinatorial in nature
and are closely related to the topological degree. Piecewise linear continuation methods are usually
considered to be less e�cient than the predictor corrector methods when the latter are applicable,
especially for large N . The reasons for this lie in the fact that steplength adaptation and exploitation
of special structure are more di�cult to implement for piecewise linear methods. Some e�orts to
overcome this were given, e.g., in [31,35].
Many applications of piecewise linear algorithms for optimization and complementarity problems

have recently been superceded by interior point methods which can handle the much larger (but
more special) systems frequently occuring in practical problems (see, e.g., [25,29,37]).
We cast the notion of piecewise linear algorithms into the general setting of subdivided manifolds

which we will call piecewise linear manifolds. Lack of space precludes an extensive bibliography.
The older literature on the subject is well documented (see, e.g., [2,3]).

2. Basic facts

A piecewise linear algorithm consists of moving (pivoting) through cells which subdivide the
domain of the map H . Let us formally introduce the basic notions.
Let E denote some ambient �nite-dimensional Euclidean space which contains all points arising in

the sequel. A half-space � and the corresponding hyperplane @� are de�ned by �={y ∈ E: x∗y6�}
and @� = {y ∈ E: x∗y = �}, respectively, for some x ∈ E with x 6= 0 and some � ∈ R. A �nite
intersection of half-spaces is called a cell. If � is a cell and � a half-space such that �⊂ � and
� :=� ∩ @� 6= ∅, then the cell � is called a face of �. For reasons of notation we consider � also
to be a face of itself, and all other faces are proper faces of �. The dimension of a cell is the
dimension of its a�ne hull. In particular, the dimension of a singleton is 0 and the dimension of
the empty set is −1. If the singleton {v} is a face of �, then v is called a vertex of �. If � is a
face of � such that dim �=dim �− 1, then � is called a facet of �. The interior of a cell � consists
of all points of � which do not belong to a proper face of �.



E.L. Allgower, K. Georg / Journal of Computational and Applied Mathematics 124 (2000) 245–261 247

A piecewise linear manifold of dimension N is a system M 6= ∅ of cells of dimension N such
that the following conditions hold:

1. If �1; �2 ∈ M, then �1 ∩ �2 is a common face of �1 and �2.
2. A cell � of dimension N − 1 can be a facet of at most two cells in M.
3. The family M is locally �nite, i.e., any relatively compact subset of

|M| :=
⋃
�∈M

� (1)

meets only �nitely many cells � ∈ M.

A simple example of a piecewise linear manifold is RN subdivided into unit cubes with integer
vertices.
We introduce the boundary @M of M as the system of facets which are common to exactly one

cell of M. Generally, we cannot expect @M to again be a piecewise linear manifold. However, this
is true for the case that |M| is convex. Two cells which have a common facet � are called adjacent.
Moving from one cell to another through a common facet is called pivoting.
It is typical of piecewise linear path following that at any particular step only one current cell

is stored in the computer, along with some additional data, and the pivoting step is performed by
calling a subroutine which makes use of the data to determine an adjacent cell which then becomes
the new current cell.
A cell of particular interest is a simplex �= [v1; v2; : : : ; vN+1] of dimension N which is de�ned as

the convex hull of N+1 a�nely independent points v1; v2; : : : ; vN+1 ∈ E. These points are the vertices
of �. If a piecewise linear manifold M of dimension N consists only of simplices, then we call M
a pseudo-manifold of dimension N . Such manifolds are of special importance, see, e.g., [34]. If a
pseudo-manifold T subdivides a set |T|, then we also say that T triangulates |T|. We will use
the notions pseudo-manifold and triangulation somewhat synonymously. Some triangulations of RN

of practical importance were already considered in [11,21]. Eaves [19] gave an overview of standard
triangulations.
If � is a simplex in a pseudo-manifold T and � is a facet of � which is not in the boundary

of T, then there is exactly one simplex �̃ in T which is di�erent from � but contains the same
facet �, and there is exactly one vertex v of � which is not a vertex of �̃. We call v the vertex of
� opposite �. There is also exactly one vertex ṽ of �̃ opposite �. We say that � is pivoted across �
into �̃, and that the vertex v of � is pivoted into ṽ.
A simple triangulation can be generated by the following pivoting rule (pivoting by reection; see

[12]) if

� = [v1; v2; : : : ; vi; : : : ; vN+1]

is a simplex in RN , and � is the facet opposite a vertex vi, then � is pivoted across � into �̃ =
[v1; v2; : : : ; ṽi; : : : ; vN+1] by setting

ṽi =




vi+1 + vi−1 − vi for 1¡i¡N + 1;

v2 + vN+1 − v1 for i = 1;

vN + v1 − vN+1 for i = N + 1:

(2)
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In fact, a minimal (nonempty) system of N -simplices in RN which is closed under the above pivoting
rule is a triangulation of RN . We note that the above-described triangulation maintains a consistent
ordering of the vertices of the simplices.

3. Piecewise linear algorithms

Let M be a piecewise linear manifold of dimension N + 1. We call H : |M| → RN a piecewise
linear map if the restriction H� :� → RN of H to � is an a�ne map for all � ∈ M. In this case, H�

can be uniquely extended to an a�ne map on the a�ne space spanned by �. The Jacobian H ′
� is

piecewise constant and has the property H ′
�(x−y)=H�(x)−H�(y) for x; y in this a�ne space. Note

that under a choice of basis H ′
� corresponds to an (N; N + 1)-matrix which has a one-dimensional

kernel in case of nondegeneracy, i.e., if its rank is maximal.
If M is a pseudo-manifold triangulating a set X = |M|, and if H̃ :X → Rk is a map, then the

piecewise linear approximation of H̃ (with respect to M) is de�ned as the unique piecewise linear
map H :X → Rk which coincides with H̃ on all vertices of M, i.e., H̃ is a�nely interpolated on
the simplices of M.
A piecewise linear algorithm is a method for following a polygonal path in H−1(0). To handle

possible degeneracies, we introduce a concept of regularity. A point x ∈ |M| is called a regular
point of H if x is not contained in any face of dimension ¡N , and if H ′

� has maximal rank N for
all faces � containing x. A value y ∈ RN is a regular value of H if all points in H−1(y) are regular.
By de�nition, y is vacuously a regular value if it is not contained in the range of H . If a point or
value is not regular it is called singular.
The following analogue of Sard’s theorem holds for piecewise linear maps (see, e.g., [18]). This

enables us to con�ne ourselves to regular values. We note that degeneracies can also be handled via
the closely related concept of lexicographical ordering (see [8,16,34]).

Theorem 3.1 (Perturbation Theorem). Let H :M → RN be a piecewise linear map where M is a
piecewise linear manifold of dimension N+1. Then for any relatively compact subset C ⊂ |M| there
are at most �nitely many �¿ 0 such that C∩H−1(̃�) contains a singular point of H . Consequently;
�̃ is a regular value of H for almost all �¿ 0. Here we use the notation

�̃ :=




�

�2

...

�N


 :

Let 0 be a regular value of H . This implies that H−1(0) consists of polygonal paths whose
vertices are always in the interior of some facet. If � is a cell, then � ∩ H−1(0) is a segment (two
end points), a ray (one end point), a line (no end point) or empty. The latter two cases are not of
interest for piecewise linear path following. A step of the method consists of following the ray or
segment from one cell into a uniquely determined adjacent cell. The method is typically started at
a point of the boundary or on a ray (coming from in�nity), and it is typically terminated at a point
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of the boundary or in a ray (going to in�nity), The numerical linear algebra (piecewise linear step)
required to perform one step of the method is typical for linear programming and usually involves
O(N 2) operations for dense matrices.
On the other hand, even if 0 is not a regular value of H , the above theorem helps us to do

something similar. Namely, � ∩ H−1(̃�) is a segment (two end points) for all su�ciently small
�¿ 0, a ray (one end point) for all su�ciently small �¿ 0, a line (no end point) for all su�ciently
small �¿ 0 or empty for all su�ciently small �¿ 0. This leads us to the following

De�nition 3.1. We call an N -dimensional facet � completely labeled with respect to an a�ne map
H : � → RN , if � ∩ H−1(̃�) 6= ∅ for all su�ciently small �¿ 0. We call a cell � of dimension ¿N
transverse with respect to an a�ne map H :� → RN , if � ∩ H−1(̃�) 6= ∅ for all su�ciently small
�¿ 0.

Instead of following the paths H−1(0) for a regular value 0, we now follow more speci�cally the
regularized paths

⋃
{H−1(0) ∩ �:� transverse}:

Of course, this set coincides with H−1(0) for the case that 0 is a regular value of H .
For �¿ 0 su�ciently small and �̃ a regular value of H , a node of the polygonal paths H−1(̃�)

corresponds to a completely labeled facet (which is intersected), and hence the piecewise linear
algorithm traces such completely labeled facets belonging to the same cell. The method is usually
started either on the boundary, i.e., in a completely labeled facet � ∈ @M, or on a ray, i.e., in a
transverse cell � ∈ M which has only one completely labeled facet.
Hence, a piecewise linear algorithm generates a succession of transverse cells �i and completely

labeled facets �i such that �i; �i+1 have the common facet �i. We are thus led to the following generic
version:

Algorithm 3.1 (Piecewise Linear Algorithm).
1. Start
(a) start from the boundary
(i) let �1 ∈ @M be completely labeled
(ii) �nd the unique �1 ∈ M such that �1⊂ �1

(b) start from a ray
(i) let �0 ∈ M have precisely one completely labeled facet �1
(ii) pivoting step:
�nd �1 ∈ M; �1 6= �0 such that �1⊂ �1

2. for i = 1; 2; 3; : : :
(a) if �i is the only completely labeled facet of �i

then stop (ray termination)
(b) else

piecewise linear step:
�nd the other completely labeled facet �i+1 of �i



250 E.L. Allgower, K. Georg / Journal of Computational and Applied Mathematics 124 (2000) 245–261

(c) if �i+1 ∈ @M
then stop (boundary termination)

(d) else
pivoting step:
�nd �i+1 ∈ M; �i+1 6= �i, such that �i+1⊂ �i+1

4. Numerical considerations

From a numerical point of view, two steps of a piecewise linear algorithm have to be e�ciently
implemented. Usually, a current cell � and a completely labeled facet � of � are stored via some
characteristic data.
A pivoting step consists of �nding the adjacent cell �̃ sharing the same facet �. The implementation

of this step is dependent on the special piecewise linear manifold under consideration. Typically,
this step is performed by only a few operations. The pivoting rule (2) is a simple example.
A piecewise linear step consists of �nding a second completely labeled facet �̃ of � (if it exists,

otherwise we have ray termination). This is usually computationally more expensive than the pivoting
rule and typically involves some numerical linear algebra.
Let us consider an example. We assume that a cell of dimension N + 1 is given by

� := {x ∈ RN+1: Lx¿c};
where L :RN+1 → Rm is a linear map and c ∈ Rm is a given value. Furthermore, let us assume that

�i := {x ∈ RN+1: Lx¿c; e∗i Lx = e∗i c};
for i = 1; 2; : : : ; m, is a numbering of all the facets of �. Here and in the following ei denotes the
ith unit vector, i.e., the ith column of the identity matrix.
On the cell �, the piecewise linear map H :M → RN reduces to an a�ne map, and hence there

is a linear map A :RN+1 → RN and a vector b ∈ RN such that the segment of the path in � can be
written as

� ∩ H−1(0) = {x ∈ RN+1: Ax = b; Lx¿c}: (3)

Let �i be completely labeled. This implies that the rank of A is N . If we exclude degeneracies, then
�i∩H−1(0)={x0} is a singleton, and there is a unique vector t in the one-dimensional kernel A−1(0)
such that e∗i Lt =−1. Since x0 is in the interior of �i (by excluding degeneracies), we have

e∗j Lx0¿e∗j c for j = 1; : : : ; m; j 6= i

and hence x0 − �t is in the interior of � for small �¿ 0.
If (3) is a ray, then e∗j L(x0 − �t)¿e∗j c for all �¿ 0. Otherwise, we have e∗j Lt ¿ 0 for at least

one index j, and since we are excluding degeneracies, the minimization

k := argmin

{
e∗j (Lx0 − c)

e∗j Lt
: j = 1; : : : ; m; e∗j Lt ¿ 0

}
(4)
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yields the unique completely labeled facet �k of � with k 6= i. For the minimum

�0 :=
e∗k (Lx0 − c)

e∗k Lt
¿ 0;

we obtain: � ∩ H−1(0) = {x0 − �t: 06�6�0}.
Minimizations such as (4) are typical for linear programming, and the numerical linear algebra

can be e�ciently handled by standard routines. Successive linear programming steps can often make
use of previous matrix factorizations via update methods. In the case of a pseudo-manifold M where
the cell � is a simplex, it is convenient to handle the numerical linear algebra with respect to the
barycentric coordinates based on the vertices of �. Then the equations become particularly simple,
(see, e.g., [2, Sections 12:2–12:4] or [34] for details).
We now give some examples of how the piecewise linear path following methods are used.

5. Piecewise linear homotopy algorithms

Let us see how the above ideas can be used to approximate zero points of a map G :RN → RN

by applying piecewise linear methods to an appropriate homotopy map. In order to also allow for
applications to optimization problems or other nonlinear programming problems, we consider the
case where G is not necessarily continuous, e.g., G might be a selection of a multi-valued map. For
the case that �x is a point of discontinuity of G, we have to generalize the notion of a zero point in
an appropriate way, as described below.
Eaves [17] presented the �rst piecewise linear homotopy method for computing a �xed point. A

restart method based on somewhat similar ideas was developed in [28]. Fixed point problems and
zero point problems are obviously equivalent.
As an example of a piecewise linear homotopy algorithm, let us sketch the algorithm of Eaves

and Saigal [20]. We consider a triangulation T of RN × (0; 1] into (N + 1)-simplices � such
that every simplex has vertices in adjacent levels RN × {2−k ; 2−k−1} and a diameter 6Ck for some
k=0; 1; : : : and some 0¡C ¡ 1 which is not dependent on k. We call such a triangulation a re�ning
triangulation (with re�ning factor C). Of course, the main point here is to obtain a triangulation
which is easily implemented. The �rst such triangulation was proposed in [17]. Todd [34] gave a
triangulation with re�ning factor 1

2 . Subsequently, many triangulations with arbitrary re�ning factors
were developed (see the books [14,19]). To ensure success (i.e., convergence) of the algorithms, it
is necessary to require a boundary condition.
Let us �rst introduce some notation. For x ∈ RN we denote by U(x) the system of neighborhoods

of x. By co(X ) we denote the closed convex hull of a set X ⊂RN . By RN
� we denote the system

of compact convex nonempty subsets of RN . We call the map G :RN → RN asymptotically linear
if the following three conditions hold:

1. G is locally bounded, i.e., each point x ∈ RN has a neighbourhood U ∈ U(x) such that G(U ) is
a bounded set.

2. G is di�erentiable at ∞, i.e., there exists a linear map G′
∞ :RN → RN such that ||x||−1||G(x)−

G′
∞x|| → 0 for ||x|| → ∞.

3. G′
∞ is nonsingular.
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If a map G :RN → RN is locally bounded, then we de�ne its set-valued hull G� :RN → RN
� by

setting

G�(x) :=
⋂

U∈U(x)

co(G(U )):

It is not di�cult to see that G� is upper semi-continuous, and that G is continuous at x if and only
if G�(x) is a singleton. By using a degree argument on the set-valued homotopy

H�(x; �) := (1− �)G′
∞x + �G�(x);

it can be seen that G� has at least one zero point, i.e., a point �x such that 0 ∈ G�( �x). Our aim here
is to approximate such a solution numerically.
We now construct a piecewise linear homotopy for an asymptotically linear map G :RN → RN .

First we de�ne H̃ :RN × [0;∞)→ RN by setting

H̃ (x; �) :=

{
G′

∞(x − x1) for �= 1;

G(x) for �¡ 1:

Here x1 is a chosen starting point of the method. Then we consider a re�ning triangulation T of
RN × (0; 1] as above, and we use the piecewise linear approximation H of H̃ (with respect to T)
to trace the polygonal path in H−1(0) which contains the starting point (x1; 1).
The boundary @T is a pseudo-manifold which triangulates the sheet RN ×{1}. If we assume that

the starting point u1 := (x1; 1) is in the interior of a facet �1 ∈ @T, then it is immediately clear that
�1 is the only completely labeled facet of @T. Hence, the piecewise linear algorithm started in �1
cannot terminate in the boundary, and since all cells of T are compact, it cannot terminate in a ray.
Hence, it has no termination. Thus, the piecewise linear algorithm generates a sequence �1; �2; : : : of
completely labeled facets of T. Let us also consider the polygonal path generated by the piecewise
linear algorithm. This path is characterized by the nodes (x1; �1); (x2; �2); : : : such that (xi; �i) is
the unique zero point of the piecewise linear homotopy H in �i for i = 1; 2; : : : : The resulting algo-
rithm, i.e., applying Algorithm 3:1 to the above homotopy H , is due to Eaves [17] and Eaves and
Saigal [20].
We call �x ∈ RN an accumulation point of the algorithm if

lim inf
i→∞

||xi − �x||= 0:

The following convergence theorem holds.

Theorem 5.1. The set A of accumulation points generated by the Eaves–Saigal algorithm is compact;
connected and nonempty. Each point �x ∈ A is a zero point of G�; i.e.; we have 0 ∈ G�( �x).

A proof can be found in [3, p. 153].
As a consequence, if the set-valued hull G� has only isolated zero points, then the sequence xi

generated by the Eaves–Saigal algorithm converges to a zero point of G�.
As a simple example, we consider the situation of the celebrated Brouwer �xed-point theorem.

Let F :C → C be a continuous map on a convex, compact, nonempty subset C ⊂RN with nonempty
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interior. We de�ne an asymptotically linear map G :RN → RN by setting

G(x) :=

{
x − F(x) for x ∈ C;

x − x1 for x 6∈ C:

Here, a point x1 in the interior of C is used as a starting point. The above piecewise linear algorithm
generates a point �x ∈ RN such that 0 ∈ G�( �x). If �x 6∈ C, then G�( �x) = { �x − x1}, but �x 6= x1 implies
that this case is impossible. If �x is an interior point of C, then G�( �x)={ �x−F( �x)}, and hence �x is a
�xed point of F . If �x is in the boundary @C, then G�( �x) is the convex hull of �x− x1 and �x− F( �x),
and hence �x = (1 − �)x1 + �F( �x) for some 06�61. But �¡ 1 would imply that �x is an interior
point of C, and hence we have �=1, and again �x is a �xed point of F . Hence, the above piecewise
linear homotopy algorithm generates a �xed point of F in either case.
Many similar asymptotically linear maps can be constructed which correspond to important non-

linear problems (see e.g., [2, Chapter 13]). In particular, let us mention two examples that relate to
nonlinear optimization (see [2, Examples 13.1.17 and 13.1.22]).
Consider the constrained minimization problem

min
x

{�(x):  (x)60}; (5)

where �;  :RN → R are convex. We assume the Slater condition
{x:  (x)¡ 0; ||x − x0||¡r} 6= ∅

and the boundary condition that the problem

min
x

{�(x):  (x)60; ||x − x0||6r}
has no solution on the boundary {x: ||x − x0|| = r} for some suitable x0 ∈ RN and r ¿ 0. This
boundary condition is satis�ed, for example, if

{x:  (x)60}⊂{x: ||x − x0||¡r}
or more generally, if

∅ 6= {x:  (x)60} ∩ {x: �(x)6C}⊂{x: ||x − x0||¡r}
for some C ¿ 0. Let us de�ne the map G :RN → RN by

G(x) ∈




@�(x) for  (x)60 and ||x − x0||¡r;

@ (x) for  (x)¿ 0 and ||x − x0||¡r;

{x − x0} for ||x − x0||¿r;

where @ indicates the set of subdi�erentials of a convex function. G is asymptotically linear with
Jacobian G′(∞) = Id. Hence, by Theorem 5.1, we obtain a zero point 0 ∈ G�( �x). It can be shown
that �x solves the minimization problem (5).
As a second example let us consider the nonlinear complementarity problem: Find an x ∈ RN

such that

x ∈ RN
+; g(x) ∈ RN

+; x∗g(x) = 0; (6)

where g :RN → RN is a continuous map.
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Here R+ denotes the set of nonnegative real numbers, and in the sequel we also denote the set of
positive real numbers by R++. For x ∈ RN we also introduce the positive part x+ ∈ RN

+ by setting
e∗i x+ :=max{e∗i x; 0} for i = 1; : : : ; N and the negative part x− ∈ RN

+ by x− := (−x)+: The following
formulae are then obvious: x = x+ − x−; (x+)∗(x−) = 0.
It can be seen that x is a solution of (6) if and only if x= �x+ where �x is a zero point of the map

x 7→ g(x+)− x−: (7)

We assume the following coercivity condition: There is a bounded open neighborhood V ∈ RN such
that

x∗g(x)¿ 0 for all x ∈ @V ∩ RN
+:

We choose

�¿max{||g(x)||∞ + ||x||∞: x ∈ �V ∩ RN
+}

and de�ne


 := {x ∈ RN: ||x−||∞ ¡�; x+ ∈ V}:
Now de�ne G :RN → RN by

G(x) =

{
x if x 6∈ 
;

g(x+)− x− if x ∈ 
:

Again, G is asymptotically linear and G′(∞) = Id. Hence, we have a zero point 0 ∈ G�( �x). It can
be shown that �x is a zero point of the map (7) and hence a solution of (6).

6. Index and orientation

Nearly all piecewise linear manifolds M which are of importance for practical implementations,
are orientable. If M is orientable and of dimension N +1, and if H :M → RN is a piecewise linear
map, then it is possible to introduce an index for the piecewise linear solution manifold H−1(0)
which has important invariance properties and also yields some useful information. It should be
noted that this index is closely related to the topological index which is a standard tool in topology
and nonlinear analysis. Occasionally, index arguments are used to guarantee a certain qualitative
behavior of the solution path.
We begin with some basic de�nitions. Let F be a linear space of dimension k. An orientation of

F is a function or : F k → {−1; 0; 1} such that the following conditions hold:
1. or(b1; : : : ; bk) 6= 0 if and only if b1; : : : ; bk are linearly independent.
2. or(b1; : : : ; bk) = or(c1; : : : ; ck) 6= 0 if and only if the transformation matrix between b1; : : : ; bk and

c1; : : : ; ck has positive determinant.

It is clear from the basic facts of linear algebra that any �nite-dimensional linear space permits
exactly two orientations.
Let � be a cell of dimension k and a� � its a�ne hull. We introduce the k-dimensional linear

space tng � := {x − y: x; y ∈ a� �} as the tangent space of �. The cell � is oriented by orienting
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this tangent space. Such an orientation or� of � induces an orientation or�;� on a facet � of � by
the following convention:

or�;�(b1; : : : ; bk−1) := or�(b1; : : : ; bk)

whenever b1; : : : ; bk−1 is a basis for tng �, and b1; : : : ; bk is a basis for tng � such that bk points from �
into the interior of the cell �. It is routine to check that the above de�nition of or�;� indeed satis�es
the de�nition of an orientation.
If M is a piecewise linear manifold of dimension N + 1, then an orientation of M is a choice

of orientations {or�}�∈M such that

or�;�1 =−or�;�2 (8)

for each � which is a facet of two di�erent cells �1; �2 ∈ M. By making use of the standard
orientation

or(b1; : : : ; bN ) := sign det(b1; : : : ; bN )

of RN , it is clear that any piecewise linear manifold of dimension N which subdivides a subset of
RN is oriented in a natural way.
If H :M → RN is a piecewise linear map on a piecewise linear manifold of dimension N + 1

such that zero is a regular value of H , then it is clear that the system

kerH := {� ∩ H−1(0)}�∈M

is a one-dimensional piecewise linear manifold which subdivides the solution set H−1(0). For the
case that M is oriented, the orientation of M and the natural orientation of RN induce an orientation
of kerH . Namely, for � ∈ kerH; v ∈ tng(�) and � ∈ M such that �⊂ �, the de�nition

or�(v) := or�(b1; : : : ; bN ; v) sign det(H ′
�b1; : : : ; H

′
�bN ) (9)

is independent of the special choice of b1; : : : ; bN ∈ tng(�), provided the b1; : : : ; bN are linearly
independent. Clearly, an orientation of the one-dimensional manifold kerH is just a rule which
indicates a direction for traversing each connected component of kerH . Keeping this in mind, we
now briey indicate why the above de�nition indeed yields an orientation for kerH .
Let � be a facet of M which meets H−1(0) and does not belong to the boundary @M, let

�1; �2 ∈ M be the two cells containing �, and let �j :=H−1(0)∩�j ∈ kerH for j=1; 2. If b1; : : : ; bN

is a basis of tng(�), and if aj ∈ tng(�j) points from � into �j, then from condition (8) it follows
that

or�1 (b1; : : : ; bN ; a1) =−or�2 (b1; : : : ; bN ; a2)

and hence (9) implies that

or�1 (a1) =−or�2 (a2);
which is exactly the right condition in the sense of (8) to ensure that the manifold kerH is oriented.

7. Lemke’s algorithm

The �rst prominent example of a piecewise linear algorithm was designed in [26,27] to calculate
a solution of the linear complementarity problem. Subsequently, several authors have studied com-
plementarity problems from the standpoint of piecewise linear homotopy methods; see the references
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in [3, Section 38]. Complementarity problems can also be handled via interior point methods (see
[29,37]). Linear complementarity problems arise in quadratic programming, bimatrix games, vari-
ational inequalities and economic equilibria problems. Hence numerical methods for their solution
have been of considerable interest. For further references, see [10].
We present the Lemke algorithm as an example of a piecewise linear algorithm since it played

a crucial role in the development of subsequent piecewise linear algorithms. Let us consider the
following linear complementarity problem: Given an a�ne map g :RN → RN , �nd an x ∈ RN such
that

x ∈ RN
+; g(x) ∈ RN

+; x∗g(x) = 0: (10)

If g(0) ∈ RN
+, then x = 0 is a trivial solution to the problem. Hence, this trivial case is always

excluded and the additional assumption g(0) 6∈ RN
+ is made.

It is not di�cult to show the following: De�ne f :RN → RN by f(z) := g(z+) − z−. If x is a
solution of the linear complementarity problem, then z := x− g(x) is a zero point of f. Conversely,
if z is a zero point of f, then x := z+ solves the linear complementarity problem.
The advantage which f provides is that it is obviously a piecewise linear map if we subdivide

RN into orthants. This is the basis for our description of Lemke’s algorithm. For a �xed d ∈ RN
++

we de�ne the homotopy H :RN × [0;∞)→ RN by

H (x; �) :=f(x) + �d: (11)

For a given subset I ⊂{1; 2; : : : ; N} an orthant can be written in the form
�I := {(x; �): �¿0; e∗i x¿0 for i ∈ I; e∗i x60 for i ∈ I ′}; (12)

where I ′ denotes the complement of I . The collection of all such orthants forms a piecewise linear
manifold M (of dimension N + 1) which subdivides RN × [0;∞). Furthermore, it is clear that
H :M → RN is a piecewise linear map since x 7→ x+ switches its linearity character only at the
co-ordinate hyperplanes.
Let us assume for simplicity that zero is a regular value of H . We note however, that the case

of a singular value is treated in the same way by using perturbation techniques. Lemke’s algorithm
is started on a ray: if �¿ 0 is su�ciently large, then

(−g(0)− �d)+ = 0 and (−g(0)− �d)− = g(0) + �d ∈ RN
++

and consequently

H (−g(0)− �d; �) = 0:

Hence, the ray de�ned by

� ∈ [�0;∞) 7→ −g(0)− �d ∈ �∅ (13)

for �0 := max
i=1;:::;N

−e∗i g(0)
e∗i d

(14)

is used (for decreasing �-values) to start the path following. Since the piecewise linear manifold M
consists of the orthants of RN × [0;∞), it is �nite, and there are only two possibilities:
1. The algorithm terminates on the boundary |@M| = RN × {0} at a point (z; 0). Then z is a zero
point of f, and hence z+ solves the linear complementarity problem.
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2. The algorithm terminates on a secondary ray. Then it can be shown (see [9]), that the linear
complementarity problem has no solution, at least if the Jacobian g′ belongs to a certain class of
matrices.

Let us illustrate the use of index and orientation by showing that the algorithm generates a solution
in the sense that it terminates on the boundary under the assumption that all principal minors of the
Jacobian g′ are positive. Note that the Jacobian g′ is a constant matrix since g is a�ne.
For �I ∈ M, see (12), we immediately calculate the Jacobian

H ′
�I
= (f′

�I
; d);

where

f′
�I
ei =

{
g′ei for i ∈ I;

ei for i ∈ I ′:
(15)

If � ∈ kerH is a solution path in �I , then formula (9) yields

or�(v) = sign detf′
�I
or�I (e1; : : : ; eN ; v)

and since or�I (e1; : : : ; eN ; v) = sign(v
∗eN+1) by the standard orientation in RN+1, we have that detf′

�I

is positive or negative if and only if the �-direction is increasing or decreasing, respectively, while
� is traversed according to its orientation. It is immediately seen from (15) that detf′

�I
is obtained

as a principal minor of g′, i.e., by deleting all columns and rows of g′ with index i ∈ I ′ and taking
the determinant of the resulting matrix (where the determinant of the “empty matrix” is assumed
to be 1). Since we start in the negative orthant �∅ where the principal minor is 1, we see that
the algorithm traverses the primary ray against its orientation, because the �-values are initially
decreased. Hence, the algorithm continues to traverse kerH against its orientation. For the important
case that all principal minors of g′ are positive, the algorithm must continue to decrease the �-values
and thus it stops at the boundary |@M|=RN ×{0}. Hence, in this case the algorithm �nds a solution.
Furthermore, it is clear that this solution is unique, since kerH can contain no other ray than the
primary ray.

8. Further aspects of piecewise linear algorithms

Lack of space precludes the presentation of speci�c details of the extensive activity in piecewise
linear methods which took place in the eighties and nineties. In particular, considerable activity took
place on variable dimension algorithms, studies were made on the e�ciency of triangulations, and
on the complexity of piecewise linear methods. Literature of these developments until approximately
1994 can be found in [3]. The Netherlands school which works on piecewise linear methods continues
to be active in this �eld, see, e.g., the recent publications and references cited therein: [15,23,24,36].
Many of the newer developments can be generally described in the following way: Very special

piecewise linear manifolds are constructed for special classes of problems, e.g., special economic
equilibrium problems or special complementarity problems. The aims are to �t the construction of the
manifold to the problem in such a way that a convergence proof, leading to an existence theorem for
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solutions, can be carried out, and=or the resulting piecewise linear algorithm is easily implemented
and becomes very e�cient.

9. Approximating manifolds

Let us now consider the case K ¿ 1. The ideas of numerical continuation [3] and piecewise
linear methods can be extended to the approximation of implicitly de�ned manifolds H̃

−1
(0) where

H̃ :RN+K → RN .
For simplicity, we assume in this section that zero is a regular value of the smooth map H̃ :RN+K →

RN . Hence M̃ := H̃
−1
(0) is a smooth K-dimensional manifold. Before we discuss the methods for

obtaining piecewise linear approximations of M̃, let us briey indicate the well-known fact that the
Gauss–Newton method can be used to obtain a nonlinear projector P from a neighborhood U of M̃
onto M̃.
More precisely, given a point v0 ∈ U , the sequence

vi+1 = vi − H̃
′
(vi)+H̃ (vi); i = 0; 1; : : : (16)

converges quadratically to a point v∞ :=P(v0) ∈ M̃. Here H̃
′
(vi)+ denotes the Moore–Penrose

inverse.
Rheinboldt [30], has exploited this idea to project a standard triangulation of the tangent space

at a point of M̃ onto M̃, which leads to a local triangulation of the manifold in a neighborhood of
that point. This method will be discussed elsewhere in this volume. The method is well-suited for
approximating smooth manifolds in which the dimension N is large, such as in multiple parameter
nonlinear eigenvalue problems (see, e.g., [30]). It has been applied to the calculation of fold curves
and to di�erential–algebraic equations (see [13]).
The approximation of implicit surfaces has also been an active area of research in computer

graphics, where H :R3 → R1 (see [7] for bibliography and references to software).
A global approximation of M̃ can be obtained via piecewise linear algorithms. This has been

developed in [5,6] (see also [2, Chapter 15; 3, Section 40:2]).
Piecewise linear algorithms have been applied to the visualization of body surfaces, and to the

approximation of surface and body integrals [4] (see also [3, Section 41]). They can also be used as
automatic mesh generators for boundary element methods [22]. For software for surface and volume
approximation via piecewise linear methods; see the URL of the second author.
We begin with a description of the underlying ideas. Let us suppose that T triangulates the space

RN+K . An important advantage of the usual standard triangulations is that any simplex can be very
compactly stored and cheaply recovered by means of an (N +K)-tuple of integers m corresponding
to its barycenter. It is also possible to perform the pivoting steps directly on the integer vector m
and thereby to save some arithmetic operations.
As in Section 3, let H denote the piecewise linear approximation of H̃ with respect to T. The

de�nitions of regular points and regular values extend analogously to this context. We again obtain
a perturbation theorem, i.e., the proof of Theorem 3.1 involving �-perturbations, generalizes verbatim
if 1 is replaced by K .
If zero is a regular value of H , the zero set H−1(0) carries the structure of a K-dimensional

piecewise linear manifold. We formulate this last remark more precisely.
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Theorem 9.1. Let zero be a regular value of H. If � ∈ T has a non-empty intersection with
H−1(0); then M� :=� ∩ H−1(0) is a K-dimensional polytope; and the family

M := {M�:� ∈ T; � ∩ H−1(0) 6= ∅}
is a K-dimensional piecewise linear manifold.

The following algorithm describes the fundamental steps for obtaining the piecewise linear mani-
fold M approximating M̃. We again make the assumptions that H̃ :RN+K → RN is a smooth map,
T is a triangulation of RN+K , and zero is a regular value of both H̃ and its piecewise linear ap-
proximation H . Analogously to the de�nitions preceding Algorithm 3:1, we call a simplex � ∈ T
transverse if it contains an N -face which is completely labeled with respect to H ; see De�nition
3.1. In the algorithm below, the input is one transverse simplex �, and the output is the maximal set
� of transverse simplices that meet a certain given compact domain D and are connected to �. For
any transverse simplex � ∈ �, the dynamically varying set V (�) keeps track of all vertices which
remain to be checked in order to �nd all possible new transverse simplices via pivoting.

Algorithm 9.1 (PL Approximation of a Manifold).
1. input:
(a) a transverse starting simplex � ∈ T
(b) a compact subset D⊂RN+K for bounding the search

2. initialization:
� := {�} and V (�) := set of vertices of �

3. while V (�) 6= ∅ for some � ∈ �
(a) get � ∈ � such that V (�) 6= ∅, and get v ∈ V (�)
(b) pivot the vertex v into v′ to get an adjacent simplex �′

(c) if �′ ∩ � is not transverse or �′ ∩ D = ∅
delete v from V (�)

(d) else if �′ is not new, i.e., �′ ∈ �
delete v from V (�) and v′ from V (�′)

(e) else �′ is added to the list �, i.e.,
(i) � :=� ∪ {�′}
(ii) V (�′) := set of vertices of �′

(iii) delete v from V (�) and v′ from V (�′)

For purposes of exposition, we have formulated the above algorithm in a very general way. A
number of items remain to be discussed. We will show below how a starting simplex in 1a can be
obtained in the neighborhood of a point x ∈M̃. The list � can be used to generate a K-dimensional
connected piecewise linear manifold

M := {M�}�∈�

(see Theorem 9.1). This piecewise linear manifold approximates M̃ quadratically in the mesh size of
T, as was shown in [1] (see also [3, Section 40.3]). If M̃ is compact, the generated piecewise linear
manifold will be compact without boundary, provided the mesh of the triangulation is su�ciently
small and the bounding set D is su�ciently large. It is not really necessary to perform the pivot
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in 3(b) if �′ ∩ � is not transverse, since this will already be known from the current data. In the
comparing process 3(d), it is crucial that compact exact storing is possible for standard triangulations.
The list searching in 3(a) and 3(d) can be performed via e�cient binary tree searching.
The piecewise linear manifold M furnishes an initial coarse piecewise linear approximation

of M̃. Several improvements are possible. The �rst is that a Gauss–Newton type method as in
(16) can be used to project the nodes of M onto M̃. Thus a new piecewise linear manifold M1 is
generated which inherits the adjacency structure of the nodes from M and has nodes on M̃.
In many applications (e.g., boundary element methods) it is desirable to uniformize the mesh M1.

A very simple and successful means of doing this is “mesh smoothing”. One such possible method
consists of replacing each node of the mesh by the average of the nodes with which it shares an
edge and by using the resulting point as a starting value for a Gauss–Newton type process to iterate
back to M̃. The edges or nodal adjacencies are maintained as before. Three or four sweeps of this
smoothing process over all of the nodes of M1 generally yields a very uniform piecewise linear
approximation of M̃.
Another step which is useful for applications such as boundary element methods is to locally

subdivide the cells of the piecewise linear manifolds M or M1 into simplices in such a way that
the resulting manifold can be given the structure of the pseudo-manifold M2.
Once an approximating pseudo-manifold M2 has been generated, it is easy to re�ne it by, e.g.,

the well-known construction of halving all edges of each simplex � ∈ M2, triangulating it into 2K

subsimplices and projecting the new nodes back onto M̃.
We have assumed that zero is a regular value of H . In fact, as in the Perturbation Theorem 3.1

and following remarks, �̃-perturbations and the corresponding general de�nition “completely labeled”
automatically resolves singularities even if zero is not a regular value of H . The situation is similar
to the case K = 1.
Let us next address the question of obtaining a transverse starting simplex. If we assume that

a point x on M̃ is given, then it can be shown that any (N + K)-simplex with barycenter x and
su�ciently small diameter is transverse (see [3, Section 40:3]).
Algorithm 9.1 merely generates a list � of transverse simplices. For particular purposes such

as boundary element methods, computer graphics, etc., a user will wish to have more information
concerning the structure of the piecewise linear manifold M, e.g., all nodes of the piecewise linear
manifoldM together with their adjacency structure. Hence, to meet such requirements, it is necessary
to customize the above algorithm for the purpose at hand.
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