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Asymptotics for Voronoi tessellations on random samples
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Abstract

Let V (X1; : : : ; Xn) denote the total edge length of the Voronoi tessellation on random variables
X1; : : : ; Xn. If X1; X2; : : : are independent and have a common continuous density f(x) on the unit
square which is bounded away from 0 and ∞ then it is shown that

lim
n→∞

V (X1; : : : ; Xn)
n1=2

= 2

∫
[0;1]2

(f(x))1=2 dx c:c:;

where c.c. denotes complete convergence. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to describe the a.s. stochastic behavior of the total edge
length of planar tessellations of random point sets. Although we restrict attention to
Voronoi tessellations of random sets in R2, the approach appears suitable for describ-
ing the a.s. behavior of the Delaunay triangulation and related Euclidean graphs in
Rd; d¿2.
We recall the basic de�nition of the planar Voronoi tessellation. Given x1; : : : ; xn ∈

[0; 1]2; consider the locus of points closer to xi; 16i6n, than to any other point.
This set of points is a cell and is denoted by C(i) :=C(xi): C(i) is the intersection
of n − 1 half-planes and is a convex polygonal region with at most n − 1 sides. The
cells C(i); 16i6n, partition the square into a convex net which is variously called
the Voronoi tessellation, Voronoi diagram, or Dirichlet tessellation of [0; 1]2. We let
V(x1; : : : ; xn) designate the graph of the Voronoi tessellation of [0; 1]2 associated with
the points x1; : : : ; xn, which are called the Voronoi generators of V(x1; : : : ; xn). We
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are interested in the total edge length V (x1; : : : ; xn) of the graph V(x1; : : : ; xn). The
Delaunay triangulation is a closely related graph: it puts an edge between generators
xi and xj if the cells C(i) and C(j) are adjacent.
Voronoi tessellations are of widespread interest and have numerous applications.

They have often been used as a model for natural phenomena in agriculture, astro-
physics, cell biology, communication theory, crystallography, geology, metallography,
and zoology. See Aurenhammer (1991) and Okabe et al. (1992). They can be naturally
interpreted as a result of a growth process; we refer to Stoyan et al. (1995) and the
encyclopedic work of Okabe et al. (1992) for details and a thorough treatment of the
applications. In mathematics, the Voronoi tessellation forms one of the fundamental
constructions of computational geometry (Preparata and Shamos, 1985).
This paper studies the behavior of Voronoi diagrams on random point sets X1; : : : ; Xn;

where Xi; i¿1; are i.i.d. random variables with values in [0; 1]2. Voronoi diagrams on
random point sets are of general interest. Voronoi diagrams on Poisson point sets are
discussed in Moller (1994); they are used in quantum �eld theory (Christ et al., 1982,
Drou�e and Itzykson, 1984) and in random networks (Jerauld et al., 1984). They also
occur naturally in percolation models. Percolation is usually considered with respect to
the edges on a �xed lattice, but this is somewhat restrictive. A more general approach
involves percolation on the edges of a Voronoi diagram de�ned by random generators.
We are interested in the large n behavior of the total edge length V (X1; : : : ; Xn) of

the Voronoi tessellation. There has been little work in this area, save for the notable
work of Miles (1970) and Avram and Bertsimas (1993) who investigate Voronoi tes-
sellations and Delaunay triangulations on a Poisson number of uniformly distributed
random variables on [0; 1]2. More precisely, Miles (1970) considers the functional
V (U1; : : : ; UN (n)) where Ui; i¿1; are i.i.d. with the uniform distribution on [0; 1]2 and
where N (n) is an independent Poisson random variable with parameter n. Using er-
godic theoretic methods Miles (1970, p. 115) obtains precise asymptotics for the mean
total edge length:

Theorem 1.1 (Miles, 1970). With the above notation we have

lim
n→∞

EV (U1; : : : ; UN (n))
n1=2

= 2: (1.1)

Avram and Bertsimas (1993) show that the functional V (n) :=V (U1; : : : ; UN (n)) is
the sum of approximately independent random variables and in this way they show a
central limit theorem of the form

V (n)− EV (n)√
Var V (n)

d→N (0; 1):

Talagrand (1995) uses isoperimetry to show that V (n) does not di�er signi�cantly
from its mean and in this way he establishes that (1.1) holds in the sense of complete
convergence (c.c.). Recall that random variables Yi; i¿1; converge completely to a
constant C if and only if for all �¿ 0 we have

∑∞
i=1 P(|Yi − C|¿�)¡∞.

In this paper we use the theory of subadditive and superadditive Euclidean func-
tionals to extend Miles’ asymptotics (1.1) to non-uniform random variables on [0; 1]2.
Additionally, the asymptotics hold in the sense of complete convergence.



K. McGivney, J.E. Yukich / Stochastic Processes and their Applications 83 (1999) 273–288 275

Theorem 1.2. Let Yi; i¿1; be i.i.d. random variables on [0; 1]2 with a continuous
density fY which is bounded away from 0 and ∞. Then

lim
n→∞

V (Y1; : : : ; Yn)

n
1
2

= 2
∫
[0;1]2

(fY (x))1=2 dx c:c: (1.2)

Remarks. (1) Theorem 1.2 bears a striking resemblance to the landmark result of
Beardwood et al. (1959) describing the total edge length T (X1; : : : ; Xn) of the shortest
tour on i.i.d. random variables X1; X2; : : : with a common density f(x); x∈ [0; 1]2. They
showed that

lim
n→∞

T (X1; : : : ; Xn)
n(d−1)=d

= �
∫
[0;1]d

(f(x))(d−1)=d dx a:s:; (1.3)

where � is a positive constant depending only on the dimension d. Other functionals in
Euclidean optimization, including the total edge length of the minimal spanning tree,
minimal triangulation, and minimal matching, satisfy a limit similar to (1.3); see the
monographs of Steele (1997) and Yukich (1998) for details and references. Theorem
1:2 thus shows that the asymptotics of the Voronoi length functional resemble those
of the classic problems of Euclidean combinatorial optimization.
(2) The main attraction of complete convergence is not that it strengthens a.s. con-

vergence, but that it provides convergence results for the two distinctly di�erent ways
to interpret the dependence of functionals V (X1; : : : ; Xn) and V (X1; : : : ; Xn+1). Given the
functional V (X1; : : : ; Xn), one can increment the number of existing sample points by
one to get the new functional V (X1; : : : ; Xn; Xn+1); this is the so-called incrementing
model of problem generation. However, one can also consider the functional which
is based on a completely new sample of points {X ′

1 ; : : : ; X
′
n ; X

′
n+1} to get the new

functional V (X ′
1 ; : : : ; X

′
n+1). This second method is the independent model of problem

generation. The di�erence between the limit theory for the two models is analogous
to the di�erence between the limit theory of sequences and triangular arrays of ran-
dom variables. A.s. limit results for the independent model imply a.s. limits for the
incrementing model, but without extra assumptions, the converse is false in general.
To prove a.s. limits for both models of problem generation we will show the complete
convergence of V (X1; : : : ; Xn)=n1=2. Notice that the “hard” half of the Borel–Cantelli
lemma shows that c.c. results are necessary if one is to obtain a.s. asymptotics in the
context of the independent model. Weide (1978) was the �rst to recognize the need
for complete convergence in the probabilistic analysis of algorithms.
(3) The limit (1.2) will in general fail without assumptions on the underlying distri-

bution. For example, if the random variables Yi; i¿1, have support on a linear subset
of [0; 1]2 then V (Y1; : : : ; Yn)=�(n), violating the n1=2 growth rate prescribed by (1.2).
(4) By H�older’s inequality the right-hand side of (1.2) is largest when fY is the

uniform density on [0; 1]2.

As noted in Remark 1, the connection between (1.2) and (1.3) is hardly accidental
and reects similarities in the structure of Voronoi tessellations and graphs of problems
in Euclidean combinatorial optimization. To make these ideas more precise, we �rst
recall some of the properties enjoyed by the total edge length of a typical graph in
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combinatorial optimization. Here and elsewhere, x1; : : : ; xn denotes points in Rd; d¿2;
� is a positive scalar, and L denotes a functional (such as the total edge length of a
graph on {x1; : : : ; xn}) de�ned on pairs (F; R), where F is a �nite set in Rd and R is
a d-dimensional rectangle in Rd. When F ⊂ [0; 1]d we simply write L(F) instead of
L(F; [0; 1]d).

Scaling: L({�x1; : : : ; �xn}; �R) = �L({x1; : : : ; xn}; R) for all �¿ 0; (1.4)

Translation invariance: L({x1 + y; : : : ; xn + y}; R+ y)
=L({x1; : : : ; xn}; R) for all y∈Rd; (1.5)

Subadditivity: L(x1; : : : ; xn)6
∑md

j=1
L({x1; : : : ; xn} ∩ Qj; Qj) + Cmd−1 where

{Qj}mdj=1 is the partition of [0; 1]d into subcubes of edge length 1=m; (1.6)

Superadditivity: L(x1; : : : ; xn)¿
∑md

j=1
L({x1; : : : ; xn} ∩ Qj; Qj)− Cmd−1; and

(1.7)

Smoothness: for all n; k ∈N |L(x1; : : : ; xn)− L(x1; : : : ; xk)|6C|n− k|(d−1)=d: (1.8)
Here C is a positive constant depending only on L and d. L is a Euclidean functional

if (1.4) and (1.5) are satis�ed.
When functionals L satisfy conditions (1.4)–(1.8) then general theorems of Redmond

and Yukich (1994,1996) describe the asymptotics of L(X1; : : : ; Xn), where Xi; i¿1; are
i.i.d. random variables. The Voronoi length functional V satis�es (1.4) and (1.5) and
is thus Euclidean. However, V does not satisfy properties (1.6)–(1.8) and therefore
the general approach of Redmond and Yukich (1994,1996) may not be applied.
It turns out that V satis�es modi�ed versions of (1.6)–(1.8); these versions are

weaker but still strong enough to deliver the desired asymptotics (1.2). The following
de�nitions play a key role; here X; Xi; i¿1, denote i.i.d. random variables with values
in [0; 1]d such that the law of X is nonatomic, and N (n) is an independent Poisson
random variable with parameter n.

De�nition 1.3. A Euclidean functional L is subadditive in mean if

EL(X1; : : : ; XN (n))6
md∑
j=1

EL({X1; : : : ; XN (n)} ∩ Qj; Qj) + c1(m)c2(n) (1.9)

and L is superadditive in mean if

EL(X1; : : : ; XN (n))¿
md∑
j=1

EL({X1; : : : ; XN (n)} ∩ Qj; Qj)− c1(m)c2(n) (1.10)

where c1(m) depends only on m and c2(n) = o(n(d−1)=d).

The following notion of smoothness represents a natural weakening of the standard
smoothness condition (1.8).
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De�nition 1.4. A Euclidean functional L is smooth in mean if there exists a constant C
such that whenever X; Xi; i¿1; are i.i.d. random variables on [0; 1]d and W; Wi; i¿1,
are i.i.d. random variables on [0; 1]d which are independent of X; Xi; then for all
16k6n=2 we have

|EL(X1; : : : ; Xn;W1; : : : ; Wk)− EL(X1; : : : ; Xn)|6Ck(d−1)=d: (1.11)

Terminology: 1. If a Euclidean functional L satis�es conditions (1.9)–(1.11) then
we omit the term “in mean” and simply say that L is subadditive, superadditive, and
smooth, respectively.
2. Throughout we denote by C a positive constant whose value may change from

line to line. C may occasionally depend on auxiliary constants �; �; ; and m and
sometimes the notation will reect this.

2. Auxiliary results

This section collects some results which will be useful in the sequel. Here and
henceforth Xi; i¿1; and Yi; i¿1; are i.i.d. random variables in [0; 1]2 with respective
densities fX and fY satisfying

�6fX6 and �6fY6; (2.1)

where � and  are positive, �nite constants. Our main goal in this section is to show
that when d=2, V satis�es subadditivity (1.9), superadditivity (1.10), and smoothness
(1.11) if we restrict attention to densities of the type (2.1).
The �rst result provides some crude but handy upper bounds for V (F); F ⊂ [0; 1]2.

Lemma 2.1. For all �nite F ⊂ [0; 1]2; V (F)6C · card F .

Proof. We count the number of edges in V(F) which do not lie on the boundary
of [0; 1]2, which we represent as a single vertex. The degree of every vertex in the
resulting graph is at least three and since each edge has two vertices we obtain 3�62e,
where � and e denote the number of vertices and edges in the graph, respectively.
Combining this bound with Euler’s formula shows that there are at most 3card F edges
in V(F).

The next result provides a “high probability” (i.e., with probability at least 1−n−�; �
large) edge length bound for edges in the graph V(X1; : : : ; Xn).

Lemma 2.2. For all �¿ 0 there is a constant C :=C(�) such that the length of the
longest edge in the Voronoi diagram on {X1; : : : ; Xn} is at most C

√
log n=�n with

probability at least 1− n−�.

Proof. If the longest edge has a length t ¿ 0; then there is a disk of radius Kt; K ¿ 0
a constant, which does not contain any sample points. However for all �¿ 0 there is
a constant C such that with probability at least 1− n−�, the largest hole in the sample
{Xi}ni=1 has diameter at most C

√
log n=�n.
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The next lemma captures the “high probability” local behavior of Voronoi diagrams.
This local dependence was noted earlier by Avram and Bertsimas (1993).

Lemma 2.3. For all �¿ 0 there is a constant C :=C(�) such that with probability
at least 1− n−�; {Xi}ni=1 has the property that for all X ∈ {Xi}ni=1 only points at a
distance less than C

√
log n=�n from X generate an edge in the Voronoi cell C(X ) in

V(X1; : : : ; Xn):

Proof. Suppose that X1 generates an edge E belonging to the cell C(X ) and that
||X1 − X ||¿C

√
log n=�n. Consider the ball B centered around (X1; X ) of diameter

||X1−X ||. Let D denote that half of the ball B whose diameter coincides with the edge
E and which contains X . Recall that with high probability {Xi}ni=1 does not have any
holes with diameter larger than C

√
log n=�n. Thus the interior of D contains generators

with high probability. Thus the distance between the points in D ∩ E and a generator
in D is smaller than the distance between points in D ∩ E and X . This contradicts the
de�nition of C(X ).

The next result bounds the number of edges in the Voronoi cells in V(X1; : : : ; Xn).

Corollary 2.4. With high probability every Voronoi cell in the Voronoi diagram on
{X1; : : : ; Xn} has at most C(�; �; )log n edges.

Proof. With high probability, by Lemma 2.3 only points within a distance of C(�)√
log n=�n may generate an edge in a given Voronoi cell. Since fX is bounded above by

, it follows that with high probability there are at most C(�; �; )log n such
points.

We now have the tools to establish that V satis�es subadditivity (1.9) and super-
additivity (1.10) for the i.i.d. random variables Xi; i¿1:

Lemma 2.5. The Voronoi functional V is subadditive (1:9) and superadditive (1:10).

Proof. We will only prove subadditivity; superadditivity is proved similarly. To prove
subadditivity it su�ces to show for �xed n

EV (X1; : : : ; Xn)6
m2∑
j=1

EV ({X1; : : : ; Xn} ∩ Qj; Qj) + C log n: (2.2)

Indeed, replacing n by the Poisson random variable N (n) and taking expectations with
respect to N (n) gives subadditivity (1.9).
We show (2.2) as follows. For all 16j6m2, let V(j) be the Voronoi diagram

on {X1; : : : ; Xn} ∩ Qj. Let �¿ 2 and let C :=C(�) be as in Lemma 2.3. For all
16j6m2, construct a subsquare Sj of edge length 1=m − 4C√log n=�n at the center
of Qj. Let Gj :=Qj\Sj and G :=

⋃m2

j=1Gj denote the “grating” of width 4C
√
log n=�n.

Lemma 2.3 implies that with high probability the restrictions of V(X1; : : : ; Xn) and
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V(j) to Sj coincide. Thus with high probability

V(X1; : : : ; Xn)⊂
m2⋃
j=1

V(j) ∪ E;

where the inclusion is in the sense of edges and where E denotes V(X1; : : : ; Xn) ∩ G.
Therefore, on a high probability set En we have

V (X1; : : : ; Xn)6
m2∑
j=1

V ({X1; : : : ; Xn} ∩ Qj; Qj) + |E|;

where |E| is the sum of the edge lengths in E. The expected product of V (X1; : : : ; Xn)
and 1Ecn is, by Cauchy–Schwarz and Lemma 2.1, bounded above by a constant. Taking
expectations in the above inequality yields

EV (X1; : : : ; Xn)6
m2∑
j=1

EV ({X1; : : : ; Xn} ∩ Qj; Qj) + E|E|+ C: (2.3)

We complete the proof by showing E|E|6C(�; �; ; m)log n, where C(�; �; ; m) is a
constant depending on �; �; ; and m. The number of points in G is with high probability
bounded above by C(�; �; ; m)(n log n)1=2 and by Euler’s formula the number of edges
in E is bounded by 3C(�; �; ; m)(n log n)1=2 with high probability. Lemma 2.2 shows
that with high probability the length of each edge is at most C(�)

√
log n=�n and thus

E|E|6C log n as desired.

Subadditivity (1.9) and superadditivity (1.10) will play major roles in the proof of
(1.2) as will smoothness (1.11). The following lemma establishes smoothness (1.11)
for random variables having densities of the form (2.1); its involved proof is deferred
to section four.

Lemma 2.6. The Voronoi length functional is smooth in mean for random variables
X satisfying the density condition (2:1). Thus; if W1; W2; : : : are i.i.d. random variables
on [0; 1]2 and independent of X1; X2; : : : then for all 16k6n=2

|EV (X1; : : : ; Xn)− EV (X1; : : : ; Xn;W1; : : : ; Wk)|6C(�; )k1=2: (2.4)

Using Lemma 2.6 we can prove the following smoothness estimate relating the
Voronoi functional on random variables X1; : : : ; XN (n) to the Voronoi functional on
random variables Y1; : : : ; YN (n) when the respective densities satisfy pfX6fY a.s.,
where 3

4¡p¡ 1.

Lemma 2.7. If the density of X satis�es condition (2:1) and the laws of X and Y
are related by

L(Y ) = pL(X ) + (1− p)�;
where � is a probability measure and 3

4¡p¡ 1; then there exists a positive constant
C(�; ) depending only on � and  such that

|EV (X1; : : : ; XN (n))− EV (Y1; : : : ; YN (n))|6C(�; )(n(1− p))1=2: (2.5)
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Proof. If Wi; i¿1, are i.i.d. with law �, then the superposition principle for Poisson
point processes tells us that

{Y1; : : : ; YN (n)} d={X1; : : : ; XN (pn); W1; : : : ; WN (qn)};
where N (pn) and N (qn) are independent Poisson random variables with parameters
pn and qn, respectively, with q := 1− p. Now

|EV ({Yi}N (n)i=1 )− EV ({Xi}N (n)i=1 )|
= |EV (X1; : : : ; XN (pn); W1; : : : ; WN (qn))− EV (X1; : : : ; XN (pn)+N (qn))|
6|EV (X1; : : : ; XN (pn); W1; : : : ; WN (qn))− EV (X1; : : : ; XN (pn))|
+ |EV (X1; : : : ; XN (pn)+N (qn))− EV (X1; : : : ; XN (pn))|:

Each of the above terms may be bounded by C(qn)1=2. To see this, on the set {N (qn)6
N (pn)=2} we may use (2.4) and Jensen’s inequality and on the set {N (qn)¿N (pn)=2}
we may use the bounds V (X1; : : : ; XN (n))6CN (n); 34¡p¡ 1, and the exponential
decay of N (qn).

The following smoothness result is a consequence of smoothness (2.4) and the
exponential tails of a Poisson random variable.

Lemma 2.8. Let N (n) be an independent Poisson random variable with mean n. Then

|EV ({Xi}N (n)i=1 )− EV ({Xi}ni=1)|6Cn1=4:

Proof. Let EN; X denote expectation with respect to (N; X ) and let EN and EX be
de�ned similarly. Consider the following four events: A1 := {2n=36N (n)6n};
A2 := {n6N (n)63n=2}; A3 := {N (n)¡ 2n=3}, and A4 := {N (n)¿ 3n=2}:
By independence and Fubini’s Theorem,

|EN; X V ({Xi}N (n)i=1 )− EN; X V ({Xi}ni=1)|
6EN |EX V ({Xi}N (n)i=1 )− EX V ({Xi}ni=1)|

6
4∑
j=1

EN | (EX V ({Xi}N (n)i=1 )− EX V ({Xi}ni=1)) · 1Aj |:

Using smoothness (2.4), the de�nition of variance for a Poisson random variable, and
Jensen’s inequality, the �rst two summands may be bounded by Cn1=4. By Lemma
2.1 and the exponential decay of N (n), the last two summands are also bounded by
Cn1=4.

3. Proof of main results

Equipped with the lemmas of section two we now prove our main result. The �rst
step is to prove that (1.2) holds in expectation, that is,

lim
n→∞

EV (Y1; : : : ; Yn)
n1=2

= 2
∫
[0;1]2

(fY (x))1=2 dx: (3.1)
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We then use a modi�cation of Azuma’s inequality (Azuma, 1967) to establish complete
convergence.

Proof of (3.1). The proof of (3.1) has two parts. We show that (3.1) holds when the
density fY is (i) a step density bounded away from 0 and ∞, and (ii) continuous and
bounded away from 0 and ∞ .
Part (i): We show that

lim
n→∞

EV (Y1; : : : ; YN (n))
n1=2

= 2
∫
[0;1]2

(’Y (x))1=2 dx (3.2)

whenever {Yi}N (n)i=1 are i.i.d. random variables with a step density

’Y :=
m2∑
j=1

�j1Qj ; �6�j6:

Notice that card{i6N (n):Yi ∈Qj}; 16j6m2; is a Poisson random variable
N (n�jm−2). Let Ui; i¿1, be i.i.d. uniform random variables on [0; 1]2. By subadditivity
(1.9) and scaling (1.4)

EV (Y1; : : : ; YN (n))6
1
m

m2∑
j=1

EV ({Ui}N (n�jm
−2)

i=1 ) + c1(m)c2(n):

Therefore by (1.1)

lim
n→∞

EV (Y1; : : : ; YN (n))
n1=2

6
m2∑
j=1

lim
n→∞

EV ({Ui}N (n�jm
−2)

i=1 )

n1=2�1=2j m−1 �1=2j m
−2

= 2
∫
[0;1]2

(’Y (x))1=2 dx:

Similarly by superadditivity (1.10) and scaling (1.4) we see that

lim
n→∞

EV (Y1; : : : ; YN (n))
n1=2

¿2
∫
[0;1]2

(’Y (x))1=2 dx:

Therefore

lim
n→∞

EV (Y1; : : : ; YN (n))
n1=2

= 2
∫
[0;1]2

(’Y (x))1=2 dx: (3.3)

Part (ii): Assume that fY is a continuous density, 0¡�6fY6. In this case, for all
0¡�¡ 1

4 we know by the continuity of fY that there is a random variable X :=X (�)
having a step density of the form

’X :=
m2∑
j=1

�j1Qj ; �6�j6;

and whose law is related to that of Y by

L(Y ) = pL(X ) + (1− p)�; (3.4)
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where 1− p6� and where � is a probability measure. By (2.5) we obtain
|EV (X1; : : : ; XN (n))− EV (Y1; : : : ; YN (n))|6C(�; )(�n)1=2: (3.5)

By the triangle inequality∣∣∣∣EV (Y1; : : : ; YN (n))n1=2
− 2

∫
[0;1]2

(’X (x))1=2 dx
∣∣∣∣

6
∣∣∣∣EV (Y1; : : : ; YN (n))n1=2

− EV (X1; : : : ; XN (n))
n1=2

∣∣∣∣
+
∣∣∣∣EV (X1; : : : ; XN (n))n1=2

− 2
∫
[0;1]2

(’X (x))1=2 dx
∣∣∣∣ : (3.6)

Letting n→ ∞ in (3.6) gives by (3.2) and (3.5)

lim
n→∞

∣∣∣∣EV (Y1; : : : ; YN (n))n1=2
− 2

∫
[0;1]2

(’X (x))1=2 dx
∣∣∣∣6C(�; )�1=2: (3.7)

Since |a1=2 − b1=2|6|a− b|1=2 for all a; b¿ 0 it follows that∫
[0;1]2

|(fY (x))1=2 − (’X (x))1=2| dx6
∫
[0;1]2

|fY (x)− ’X (x)|1=2 dx:

Moreover, by (3.4) it follows that∫
[0;1]2

|fY (x)− ’X (x)| dx62(1− p)62�:

Combining the last two estimates with Jensen’s inequality shows that∣∣∣∣
∫
[0;1]2

’X (x)1=2 dx −
∫
[0;1]2

fY (x)1=2 dx
∣∣∣∣6

∫
[0;1]2

|fY (x)− ’X (x)|1=2 dx6(2�)1=2:
(3.8)

By (3.7), (3.8), and the arbitrariness of � we obtain

lim
n→∞

EV (Y1; : : : ; YN (n))
n1=2

= 2
∫
[0;1]2

(fY (x))1=2 dx:

This last limit may be de-Poissonized via Lemma 2.8. This �nishes the proof of Part
(ii) and completes the proof of (3.1).

Next we show that (1.2) holds in the sense of complete convergence. By the de�-
nition of complete convergence it will su�ce to show that for all �¿ 0,

∞∑
n=1

P{|V (Y1; : : : ; Yn)− EV (Y1; : : : ; Yn)|¿�n1=2}¡∞: (3.9)

Consider

|V (Y1; : : : ; Yi; : : : ; Yn)− V (Y1; : : : ; Ŷ i ; : : : ; Yn)|;
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where the hat symbol signals a missing variable. By Corollary 2.4 the deletion of Yi
a�ects at most C log n edges, which by Lemma 2.2 each have length at most C

√
log n=n

with high probability. Thus the displayed di�erence is with high probability bounded
by C(log n)3=2=n1=2. The same estimates hold if Yi is replaced by Y ′

i , where Y
′
i is an

independent copy of Yi. The triangle inequality shows therefore that

|V (Y1; : : : ; Yi; : : : ; Yn)− V (Y1; : : : ; Y ′
i ; : : : ; Yn)|6C

(log n)3=2

n1=2
; 16i6n; (3.10)

on a high probability set An; i.
To show (3.9) we will use a modi�cation of Azuma’s inequality. Consider the

martingale di�erence representation

V (Y1; : : : ; Yn)− E(V (Y1; : : : ; Yn)) =
n∑
i=1

di;

where di := E(V (Y1; : : : ; Yn) |Fi) − E(V (Y1; : : : ; Yn) |Fi−1); and where Fi denotes the
�-�eld generated by the random variables Y1; : : : ; Yi.
Notice that

|di|= |E(V (Y1; : : : ; Yn)|Fi)− E(V (Y1; : : : ; Y ′
i ; : : : ; Yn)|Fi)|;

where Y ′
i is an independent copy of Yi. Thus by the conditional Jensen inequality and

(3.10) we have for all 16i6n,

|di|6 E(|V (Y1; : : : ; Yn)− V (Y1; : : : ; Y ′
i ; : : : ; Yn)| |Fi)

6C(log n)3=2n−1=2 (3.11)

on some high probability set. Now for any martingale di�erence sequence di; i¿1,
and for all sequences wi; i¿1, of positive numbers we have for all t ¿ 0,

P

{∣∣∣∣∣
n∑
i=1

di

∣∣∣∣∣¿t

}
6 2 exp

( −t2
32

∑n
i=1 w

2
i

)

+
(
1 + 2t−1 sup

16i6n
||di||∞

) n∑
i=1

P(|di|¿wi): (3.12)

See e.g. Lemma 1 of Chalker et al. (1999). Letting wi = C(log n)3=2n−1=2; t = �n1=2,
using (3.11–3.12), and noting that ‖�i‖∞6Cn, we obtain (3.9) as desired. The proof
of Theorem 1.2 is complete.

4. Regularity of Voronoi tessellations

This section veri�es the smoothness (2.4) of the Voronoi length functional V . Our
approach centers on the following two deterministic lemmas which describe the reg-
ularity properties of the Voronoi length functional when generators are added and
deleted.
Let {xi}∞i=1 and {yi}∞i=1 be two collections of points on [0; 1]2. Lemma 4.1 bounds

the length of the Voronoi tessellation on k + l points by the length of the Voronoi
tessellation on a “pruned” set of k points plus an error term.
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Lemma 4.1. For all k; l∈N

V (x1; : : : ; xk ; y1; : : : ; yl)6V (x1; : : : ; xk) +
l∑
j=1

E(yj; {xi}ki=1); (4.1)

where E(yj; {xi}ki=1) denotes the sum of the edge lengths of the cell C(yj) in
V(x1; : : : ; xk ; yj).

Proof. Consider the Voronoi diagram V(x1; : : : ; xk) on x1; : : : ; xk . Given y1 ∈ [0; 1]2,
construct V(x1; : : : ; xk ; y1) by deleting portions of edges in V(x1; : : : ; xk) and inserting
the edges E(y1; {xi}ki=1) of the cell C(y1) in V(x1; : : : ; xk ; y1). That is,

V(x1; : : : ; xk ; y1)⊂V(x1; : : : ; xk) ∪ E(y1; {xi}ki=1);
where the inclusion is in the sense of edges. Therefore, for all x1; : : : ; xk ; y1 ∈ [0; 1]2

V (x1; : : : ; xk ; y1)6V (x1; : : : ; xk) + E(y1; {xi}ki=1); (4.2)

where E(y1; {xi}ki=1) denotes the sum of the edge lengths of the cell C(y1) in
V(x1; : : : ; xk ; y1).
Iterating (4.2) yields with the obvious notation

V (x1; : : : ; xk ; y1; : : : ; yl)6 V (x1; : : : ; xk) +
l∑
j=1

E(yj; {x1; : : : ; xk ; y1; : : : ; yj−1}):

(4.3)

Since additional generators can only decrease the sum of the edge lengths of the cell
around yj; 16j6l; we deduce from (4.3) that

V (x1; : : : ; xk ; y1; : : : ; yl)6V (x1; : : : ; xk) +
l∑
j=1

E(yj; {xi}ki=1)

which completes the proof of Lemma 4.1.

The following lemma is a companion to Lemma 4.1. It bounds the length of the
Voronoi diagram on k points by the length of the Voronoi diagram on k + l points
plus an error term.

Lemma 4.2. For every k; l∈N

V (x1; : : : ; xk)6V (x1; : : : ; xk ; y1; : : : ; yl) +
l∑
j=1

Ê(yj; {xi}ki=1); (4.4)

where Ê(yj; {xi}ki=1) denotes the combined lengths of the edges in the intersection of
the interior of the Voronoi cell in V(x1; : : : ; xk ; yj) around yj and the Voronoi graph
V(x1; : : : ; xk).

Proof. For all 16j6l, let C(yj) denote the Voronoi cell in V(x1; : : : ; xk ; y1; : : : ; yl)
around yj. Notice that the intersection

V(x1; : : : ; xk) ∩
l⋃
j=1

C(yj)
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de�nes precisely those edges (or subsets thereof) in V(x1; : : : ; xk) which are modi�ed
by the insertion of additional generators {y1; : : : ; yl} and thus

V(x1; : : : ; xk)⊂V(x1; : : : ; xk ; y1; : : : ; yl) ∪
l⋃
j=1

(C(yj) ∩V(x1; : : : ; xk)):

Clearly

C(yj)⊂C(yj; {xi}ki=1);
where C(yj; {xi}ki=1) denotes the Voronoi cell in V(x1; : : : ; xk ; yj) around yj. Consider
the edge set

Ê(yj; {xi}ki=1) :=C(yj; {xi}ki=1) ∩V(x1; : : : ; xk): (4.5)

We obtain the relation

V(x1; : : : ; xk)⊂V(x1; : : : ; xk ; y1; : : : ; yl) ∪
l⋃
j=1

Ê(yj; {xi}ki=1)

which shows that

V (x1; : : : ; xk)6V (x1; : : : ; xk ; y1; : : : ; yl) +
l∑
j=1

Ê(yj; {xi}ki=1):

This completes the proof of (4.4).

We turn now to the

Proof of smoothness (2.4). We assume that Xi; i¿1; are i.i.d. random variables with
densities satisfying (2.1) and that Wi; i¿1; are i.i.d. on [0; 1]2 independent of Xi; i¿1.
We will show that

|EV (X1; : : : ; Xn;W1; : : : ; Wk)− EV (X1; : : : ; Xn)|6C(�; )k1=2; (4.6)

for all 16k6n=2. By Lemma 4.1 V (X1; : : : ; Xn;W1; : : : ; Wk) is bounded by

V (X1; : : : ; Xn) +
k∑
j=1

E(Wj; {Xi}ni=1); (4.7)

where E(Wj; {Xi}ni=1); 16j6k; denotes the combined lengths of the edges of the cell
consisting of points closer to Wj than to X1; : : : ; Xn and where

∑0
j=1 E( ; ) := 0.

Taking expectations in (4.7) gives

EV (X1; : : : ; Xn;W1; : : : ; Wk)6 EV (X1; : : : ; Xn) + E


 k∑

j=1

E(Wj; {Xi}ni=1)



6 EV (X1; : : : ; Xn) + kEE(W1; {Xi}ni=1): (4.8)

Next we bound EV (X1; : : : ; Xn) in terms of EV (X1; : : : ; Xn;W1; : : : ; Wk). By Lemma 4.2

V (X1; : : : ; Xn)6V (X1; : : : ; Xn;W1; : : : ; Wk) +
k∑
j=1

Ê(Wj; {Xi}ni=1); (4.9)
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where
∑k

j=1 Ê(Wj; {Xi}ni=1) represents the sum of the lengths of the edges in the in-
tersection of the interior of the Voronoi cell in V(X1; : : : ; Xn;Wj) around Wj and the
Voronoi diagram V(X1; : : : ; Xn).
Take expectations in (4.9) to obtain

EV (X1; : : : ; Xn)6EV (X1; : : : ; Xn;W1; : : : ; Wk) + kE Ê(W1; {Xi}ni=1): (4.10)

Considering (4.8) and (4.10) it is clear that to complete the proof of (4.6) we need to
show

EE(W1; {Xi}ni=1)6C(�; )n−1=2 (4.11)

and

E Ê(W1; {Xi}ni=1)6C(�; )n−1=2: (4.12)

We now prove (4.11) and (4.12).
De�ne for all x; y1; : : : ; yl ∈ [0; 1]2

D(x; {yi}li=1) := diameter of the cell containing x in the

Voronoi diagram on x; y1; : : : ; yl (4.13)

and

K(x; {yi}li=1) := number of sides in the cell containing x

in the Voronoi diagram on x; y1; : : : ; yl: (4.14)

E(W1; {Xi}ni=1) is bounded by the product of D(W1; {Xi}ni=1) and K(W1; {Xi}ni=1) and
to show (4.11) it su�ces to show

E{D(W1; {Xi}ni=1) · K(W1; {Xi}ni=1)}6C(�; )n−1=2: (4.15)

Next, concerning Ê(W1; {Xi}ni=1), we notice that it is bounded by the product of
D(W1; {Xi}ni=1) and the number � of edges in the intersection of the Voronoi cell C(W1)
in V(X1; : : : ; Xn;W1) and the Voronoi diagram V(X1; : : : ; Xn). Let K :=K(W1; {Xi}ni=1)
and let g1; : : : ; gK denote the generators of the cells adjacent to C(W1). C(W1) is
contained in the union of the cells in V(g1; : : : ; gK) and so � is bounded by the number
of edges in V(g1; : : : ; gK). Thus, by Euler’s formula, � is bounded by 3·K(W1; {Xi}ni=1):
Thus to show (4.12) it also su�ces to show (4.15).
We show (4.15) as follows. We will use the fact that the density of X is bounded

away from 0. Fix x∈ [0; 1]2. Construct 12 disjoint congruent isosceles triangles Tj(t) :=
Tj(x; t); 16j612; such that x is a vertex of each Tj(t) and thus Tj(t) has two edges
of length t. The union of the Tj(t) is a regular 12-sided polygonal region which may
not lie entirely inside [0; 1]2. Let the random variable T0 :=T0(x) be the minimum t
such that each triangle Tj(t); 16j612; lying wholly in [0; 1]2 contains at least one
point from X1; : : : ; Xn. There are some con�gurations for which T0 does not exist and
in this case we set T0=1. Simple geometric considerations show that for all x∈ [0; 1]2,
including those near the boundary of [0; 1]2, we have

D :=D(x; {Xi}ni=1)62T0: (4.16)

Let N be the total number of points in the region given by the union of the 12 trian-
gles Tj(3T0); 16j612. Then E(N |T0)6C()T 20 n. Since points farther than 3T0 away
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from x do not contribute edges to the cell around x, we have K :=K(x; {Xi}ni=1)6N .
Thus, for a �xed x∈ [0; 1]2 we have by (4.16)

E(DK) = E(E(DK |T0))6EE(2T0N |T0) = E(2T0E(N |T0))6CE(nT 30 ):
We now claim that E(T 30 )6Cn−3=2: Indeed, since

{T0¿t}⊂
⋃

j:Tj(t)⊂ [0;1]2

({Xi}ni=1 ∩ Tj(t) = ∅)

we have

P(T0¿t)6
∑

j:Tj(t)⊂ [0;1]2

P({Xi}ni=1 ∩ Tj(t) = ∅)6max(12(1− C�t2)n; 0); (4.17)

since ’X¿�¿ 0, Tj(t)⊂ [0; 1]2, and the area of Tj(t) is Ct2. Therefore, by (4.17)

ET 3063
∫ ∞

0
t2P(T0¿t) dt636

∫ (�C)−1=2

0
t2(1− C�t2)n dt:

Letting v = C�t2, and noting that the function v → v1=2(1 − v)n=2 is decreasing on
[1=n; 1], the above integral equals

= C
∫ 1=n

0
v1=2(1− v)n dv+ C

∫ 1

1=n
v1=2(1− v)n=2(1− v)n=2 dv

6C(1=n)3=2 + C
∫ 1

1=n
(1=n)1=2(1− v)n=2 dv

6C(1=n)3=2:

Thus we have for the �xed x

E(DK)6Cn−1=2

as desired. Taking x = W1 and integrating over W1 gives (4.15). This completes the
proof of Lemma 2.6.

5. Concluding remarks

As indicated earlier, the methods of this paper have the potential for describing the
total surface area of Voronoi tessellations of point sets in the unit cube. Further likely
extensions and modi�cations include:

1. Delaunay triangulations. Much of this paper represents a simpli�cation and general-
ization of McGivney (1997). We anticipate that further modi�cations show that the
total edge length of the Delaunay triangulation satis�es subadditivity (1.9), superad-
ditivity (1.10), and smoothness (1.11). In this way we would obtain asymptotics for
the total edge length of a Delaunay triangulation on [0; 1]2-valued random variables
X1; : : : ; Xn.
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2. Rates of convergence. We also anticipate that the error term in (2.2) can be improved
to C1(m) = O(m). This would lead to rates of convergence for EV (U1; : : : ; Un) of
the form

|EV (U1; : : : ; Un)− 2n1=2|6C:
3. General densities. It is unclear whether Theorem 1.2 holds without boundedness
assumptions on the underlying density fY .
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