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Although tumor-infiltrating lymphocytes (TILs) of primary cutaneous melanoma (PCM) include cytolytic T cells
able to exert anti-PCM immunity, progression of PCM most frequently occurs, raising the hypothesis that the
PCM microenvironment may also exert suppressive forces, for example, possibly developed by regulatory T
(TREG) lymphocytes. The aim of this study was to investigate whether TILs of PCMs include lymphocytes bearing
the transcription factor forkhead box protein P3 (FOXP3), which is the TREG lineage specification molecule in
mice, and is debated to have a similar role in humans. Fourteen patients with PCM were selected, of which four
had radial growth phase (RGP) stage I melanoma, five had vertical growth phase (VGP) stage I melanoma, and
five had VGP stage III–IV melanoma. Formalin-fixed, paraffin-embedded sections were utilized for
immunohistochemical single and double stainings. TILs of PCMs included FOXP3-bearing lymphocytes, which
predominantly were CD20- and CD8-negative, but CD3-, CD4-, and CD25-positive, thus consistent with the
standard immunophenotypical characteristics of ‘‘natural’’ TREG cells. Further, the proportions of FOXP3-bearing
lymphocytes were higher in vertical than in RGP (P¼ 0.001), as well as in late than in early melanoma stages
(Po0.001). Should these FOXP3-bearing lymphocytes actually exert regulatory capabilities within the PCM
microenvironment, they may suppress ‘‘in vivo’’ the local anti-PCM immune response, thus favoring melanoma
progression.
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INTRODUCTION
It is well established that primary cutaneous melanoma
(PCM) is nearly always associated with a chronic inflamma-
tory infiltrate including various amounts of tumor-infiltrating
lymphocytes (TILs) (Yazdi et al., 2006). Melanoma, in fact,
can induce immune responses that include the activation of
melanoma-specific T cells (Romero et al., 1998), which can
interfere with the growth of melanoma (Yee et al., 2000). On
the other hand, ‘‘ex vivo’’ analysis of TILs revealed T-cell
anergy (Guilloux et al., 1994) and lack of cytolytic activity by
CD8þ TILs (Mortarini et al., 2003; Zippelius et al., 2004),
suggesting that factors in the PCM microenvironment can

lead to dysfunction of melanoma-specific activated TILs and
to melanoma escape from immune-mediated destruction: this
concept has led to a renewed search for immune resistance
mechanisms in the PCM microenvironment (reviewed in
Gajewski, 2006). To this respect, although such ‘‘antitumor
lymphocyte quiescence’’ may have a lot of causes, an
important role can be played by regulatory T (TREG) cells
(Coulie and Connerotte, 2005; Gajewski, 2006).

Indeed, ‘‘natural’’ that is, naturally arising TREG cells,
contrary to ‘‘adaptive’’ TREG cells (Liu et al., 2006), are a
small subpopulation of T cells, canonically coexpressing the
CD4 and the CD25 molecules, critically able to prevent
autoimmunity against ‘‘self’’ antigens (Sakaguchi et al., 1995,
2001; Asano et al., 1996; Roncarolo and Levings, 2000;
Shevach, 2000). Since antitumor immune responses are
elicited to ‘‘quasi-self’’ antigens (Sakaguchi, 2005), natural
TREG cells can inhibit antitumor immunity (Onizuka et al.,
1999; Shimizu et al., 1999).

In the function of CD4þCD25þ TREG cells, an important
involvement is currently agreed of the transcription factor
forkhead box protein P3 (FOXP3) (reviewed in Fontenot and
Rudensky, 2005). In fact, FOXP3 belongs to a large family of
functionally diverse transcription factors based on its winged
helix-forkhead DNA-binding domain (Kaestner et al., 2000).
Murine CD4þCD25þ TREG cell development is critically
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dependent on FOXP3 expression (Fontenot et al., 2003).
Moreover, FOXP3 overexpression in mice results in the
acquisition of suppressive properties even by CD4þ CD25�

and by CD8þ T cells (Fontenot et al., 2003; Hori et al., 2003;
Khattri et al., 2003): thus, FOXP3 functions as the TREG

lineage specification factor in mice (Fontenot and Rudensky,
2005). Whether FOXP3 can function as the TREG lineage
specification factor even in man, is currently a matter
of debate: in fact, not all patients diagnosed with an
autoimmune pathology analogous to a FOXP3 mutation-
linked murine pathology have FOXP3 mutations (Owen
et al., 2003). In addition, induction of FOXP3 expression can
occur ‘‘in vitro’’ following antigen stimulation in humans
(Walker et al., 2003; Morgan et al., 2005; Roncador et al.,
2005), but not in mice (Fontenot et al., 2003; Hori et al.,
2003), and such induced FOXP3 can either activate a TREG

program (Walker et al., 2003; Morgan et al., 2005; Roncador
et al., 2005) or not (Gavin et al., 2006). It is still clear,
however, that, as in the mouse, even in man FOXP3 appears
to be a good marker for CD4þ T cells with regulatory
functions (reviewed in Ziegler, 2006).

The aim of this study was to investigate whether the TIL
population infiltrating PCMs, scrutinized at the single-cell
level in radial growth phase (RGP) versus vertical growth
phase (VGP), as well as in early versus late melanoma stages,
includes T lymphocytes expressing the molecules CD4,
CD25, and especially the transcription factor FOXP3, namely
a putative TREG subset possibly negatively controlling
‘‘in vivo’’ the local immune response against PCMs.

RESULTS
TILs in the PCM microenvironment consist of different
subpopulations of t cells

As expected, T cells constituted the vast majority of the TIL
population of PCMs. Specifically, CD3þ cells represented
92.3671.09 (mean7SD) of the lymphocytic population
infiltrating PCMs. In fact, CD20þ B lymphocytes were
virtually absent. On the other hand, the percentage of
CD4þ TILs was 53.5575.85 (mean7SD) in CD3þ TILs;
CD25þ TILs were 14.5876.49 (mean7SD) in CD3þ TILs.

TILs in the PCM microenvironment include a subset of FOXP3-
positive lymphocytes

The transcription factor FOXP3 was revealed immunohisto-
chemically at the single-cell level by intracellular, mainly
nuclear (Lopes et al., 2006), staining (Figure 1a). The overall
proportion of FOXP3þ lymphocytes in CD3þ TIL (Figure 1b)
was 13.3971.65 (mean7SD) (Figure 1c) (Lombardi M,
Campanini N, Ricci R, Tognetti E, Maestri R, De Panfilis G.
Primary cutaneous melanoma is infiltrated by a T-cell popula-
tion which includes FOXP3-bearing lymphocytes (abstr.).
International Meeting ‘‘Molecular targets in cancer therapy:
mechanism and therapeutic reversal of immune suppression in
cancer’’, Clearwater Beach, FL, USA, January 25–28, 2007).

Characterization of FOXP3-positive TIL

Double staining experiments also showed that virtually 100%
tumor-infiltrating FOXP3þ lymphocytes coexpressed CD3

(Figure 1d), CD4 (Figure 2a), and CD25 (Figure 2b); by contrast,
FOXP3þ cells did not coexpress CD8 (Figure 2c) and CD20.

A subset of TIL with the ‘‘natural’’ TREG lymphocyte phenotype
infiltrate PCMs

Double labeling experiments also identified 25.6471.96
(mean7SD) CD4þCD25þ cells in CD4þ lymphocytes
infiltrating PCMs. Since the CD4þCD25þ population is well
known, as mentioned above, to include CD4þCD25þ

FOXP3þ cells, which act as TREG (Ziegler, 2006), we directly
compared by double stainings the CD25 versus FOXP3, as
well as the CD4 versus FOXP3, expressions within the TIL
population. A large subset (89.6171.64, mean7SD) of
infiltrating CD25þ T cells coexpressed FOXP3 (Figure 1c),
whereas the remaining CD25þ cells were FOXP3�; on the
other hand, merely occasional CD25� T cells expressed
FOXP3 in the examined samples. In the context of the CD4þ

TIL subpopulation, a subset (23.4870.53, mean7SD) coex-
pressed FOXP3 (Figure 1c), whereas CD8þ TIL did not
virtually express FOXP3 (Figure 1c). Since, FOXP3þ cells
almost exclusively were both CD4þ and CD25þ , rather than
CD8þ and CD25�, these results strongly suggest that a subset
of CD4þ CD25þ TIL infiltrating PCMs coexpresses FOXP3,
thus showing the canonical phenotype of ‘‘natural’’ TREG
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Figure 1. TILs in the PCM microenvironment include a subset of FOXP3-

bearing T lymphocytes. (a) PCM infiltration of FOXP3-bearing cells.

PCM tissue was taken and stained with anti-FOXP3 mAb. Bar¼ 25mm.

(b) Percentages of CD3þFOXP3þ cells (’) in CD3þ lymphocytes

infiltrating 14 PCMs. Tissues were stained with mAb to CD3 and to FOXP3,

and CD3þFOXP3þ double stained cells were scored as a

percentage of CD3þ (single plus double stained) cells.

(c) Percentages of FOXP3-bearing lymphocytes, infiltrating 14 PCMs,

in the considered T subpopulations. The percentages of FOXP3-bearing

lymphocytes infiltrating PCMs were quantified by double staining analysis

of FOXP3þCD3þ cells in CD3þ population, FOXP3þCD4þ cells in

CD4þ subpopulation, FOXP3þ CD25þ cells in CD25þ subpopulation

(mean7SD). (d) FOXP3-bearing cells infiltrating PCMs are also CD3-positive.

Tissue was stained with mAb to CD3 (red positivity) and to

FOXP3 (brown nuclear positivity). Note that all the lymphocytes bearing

FOXP3 within the nucleus are also CD3-positive at the periphery (arrows),

whereas many CD3-positive cells are FOXP3-negative. Bar¼25 mm.
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lymphocytes (Campanini N, Lombardi M, Ferrari D, Maestri
R, Tognetti E, Ricci R, De Panfilis G. A consistent proportion
of the melanoma cellular microenvironment is represented by
FOXP3þ lymphocytes coexpressing CD4 and CD25 (abstr.).
‘‘4th international conference on tumor microenvironment:
progression, therapy and prevention’’, Florence, Italy, March
6–10, 2007). Considering that no functional data are
presented in this study, it is possible to refer to these
lymphocytes as phenotypic TREG cells.

The proportions of FOXP3þ TILs are higher in PCMs with VGP
than in PCMs with RGP

The proportions of FOXP3þ T lymphocytes infiltrating PCMs
in different melanoma phases (Balch et al., 2004) are shown
in Figure 3a. PCMs with RGP of stage I melanoma patients
were infiltrated by 9.9674.45 (mean7SD) FOXP3þ cells in
CD3þTIL, whereas PCMs with VGP of stage I melanoma
patients were infiltrated by 12.5373.59 (mean7SD)
FOXP3þ cells in CD3þ TIL, and such a difference was
significant (P¼0.001).

The proportions of FOXP3þ lymphocytes infiltrating PCMs are
higher in stages III–IV than in stage I melanoma

PCMs of stage I melanoma patients (n¼9) were infiltrated by
a lower number of FOXP3þ TIL than that infiltrating PCMs of

a b

c

Figure 2. FOXP3-bearing cells harbored within the PCM microenvironment

show a ‘‘natural’’ TREG lymphocyte phenotype. (a) FOXP3-bearing cells

infiltrating PCMs are also CD4-positive. PCM tissue was stained with mAb to

CD4 (red membrane positivity) and to FOXP3 (brown nuclear positivity). Note

that all the lymphocytes bearing FOXP3 within the nucleus are also CD4-

positive at the periphery (arrows), whereas some CD4-positive cells are

FOXP3-negative. Bar¼ 25mm. (b) FOXP3-bearing cells infiltrating PCMs are

also CD25-positive. PCM tissue was stained with mAb to CD25 (red positivity)

and to FOXP3 (brown nuclear positivity). Note that all the lymphocytes

bearing FOXP3 within the nucleus are also CD25-positive at the periphery

(arrows), whereas scarce CD25-positive cells are FOXP3-negative.

Bar¼25 mm. (c) FOXP3-bearing cells infiltrating PCMs are CD8-negative.

PCM tissue was stained with mAb to CD8 (red membrane positivity) and to

FOXP3 (brown nuclear positivity). Note that all the lymphocytes bearing

FOXP3 within the nucleus are negative at the periphery, whereas all the

CD8-positive cells at the periphery are not immunostained within the

nucleus. Bar¼ 25mm.

I, RGP
(n=4)

I, RGP
(n=5)

III–IV, VGP
(n=5)

S
ta

ge
, p

ha
se

(n
o.

 o
f p

at
ie

nt
s)

0 10 20 30

Percentages of FOX P3+ lymphocytes in CD3+ TIL of PCM

40 50

Stage III–IV
(n=5)

Stage I
(n=9)

M
el

an
om

a 
st

ag
es

(n
o.

 o
f p

at
ie

nt
s)

0 5 10 15 20 25

Percentages of FOXP3+ lymphocytes
in CD3+ TIL of PCM

P<0.001

VGP
(n=5)

P
ha

se
s 

of
 s

ta
ge

 I 
m

el
an

om
a

(n
o.

 o
f p

at
ie

nt
s)

RGP
(n=4)

0 5 10 15 20

Percentages of FOXP3+ lymphocytes
in CD3+ TIL of PCM

P=0.001

25

Figure 3. The proportions of FOXP3-bearing TILs are higher in VGP than

RGP, as well as in late- than in early-stage melanoma. (a) The proportions of

FOXP3-bearing cells infiltrating PCMs are higher in VGP melanoma than in

RGP melanoma. The percentages of FOXP3-bearing lymphocytes in CD3þ

lymphocytes were quantified by CD3/FOXP3 double staining analysis

performed on tissue sections of nine stage I PCMs, five of them showing VGP,

and four showing RGP (mean7SD). Fifty-six microscopic fields were counted

for five VGP specimens, and 48 microscopic fields for four RGP specimens.

P¼ 0.001 VGP versus RGP. (b) The proportions of FOXP3-bearing cells

infiltrating PCMs are higher in late-stage melanoma than in early-stage

melanoma. The percentages of FOXP3-bearing cells in CD3-positive

lymphocytes were quantified by CD3/FOXP3 double staining analysis

performed on tissue sections of 14 PCM, nine of them stage I melanoma, and

five stage III–IV melanoma (mean7SD). One hundred and four microscopic

fields were counted for nine stage I melanoma specimens, and 57

microscopic fields for five stage III–IV melanoma specimens. Po0.001 stage I

versus stages III–IV. (c) Synthetic overview of the data obtained in this study,

showing that phase- and stage-related proportions of FOXP3-positive TILs

occur within the PCM microenvironment. Box and Whisker plot of the

percentages of FOXP3-positive lymphocytes in CD3-positive TILs of the

samples of the three considered PCM groups are shown. The two dots on the

right of the whisker correspond to two points that are more than 3/2 times the

interquartile range from the end of the box (Weisstein, 1999). The level of

significance comparing RGP stage I melanoma (n¼4) versus VGP stage I

melanoma (n¼ 5) was P¼ 0.001; the level of significance comparing VGP

stage I melanoma (n¼5) versus VGP stage III–IV melanoma (n¼ 5) was

Po0.001; the level of significance comparing pooled data of stage I

melanoma (n¼ 9) versus stage III–IV melanoma (n¼ 5) was Po0.001.
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stage III–IV melanoma patients (n¼5). When CD3/FOXP3
double stained specimens of stage I melanoma patients
(n¼9) were compared with that of stage III–IV patients
(n¼5), stage I melanoma patients had PCMs infiltrated
by 11.3574.19 (mean7SD) FOXP3þ cells in CD3þ TIL,
whereas stage III–IV melanoma patients had PCMs infiltrated
by17.1275.78 (mean7SD) FOXP3þ cells in CD3þ TIL,
and such a difference was highly significant (Po0.001)
(Figure 3b). Even when only the stage I melanoma patients
having PCM with VGP (n¼5) were considered, the number
of FOXP3þ TIL in CD3þ TIL of this population (12.5373.59,
mean7SD) was highly significantly (Po0.001) lower when
compared to that of stage III–IV melanoma patients.

DISCUSSION
The present results show several new findings. Up to
13.3975.54 (mean7SD) lymphocytes in CD3þ TIL within
the microenvironment of 14 PCMs were represented by T
cells bearing the transcription factor FOXP3. These FOXP3-
bearing lymphocytes were predominantly CD20�, CD3þ ,
CD4þ , CD8�, and CD25þ , thus showing a phenotype
analogous to that of ‘‘natural’’ TREG cells (Fontenot et al.,
2005; Roncador et al., 2005). In nine PCM of stage I
melanoma patients (Clark et al., 1989), VGP was associated
to a significantly (P¼0.001) higher number of FOXP3þ TILs
as compared with RGP. In a series of 10 PCMs showing VGP
and having a ‘‘brisk’’ infiltrate (Elder et al., 1985; Clark et al.,
1989; Clemente et al., 1996), the percentage of FOXP3-
bearing lymphocytes was highly significantly (Po0.001)
higher in late melanoma stages than in early melanoma
stages.

This study shows that a subset of TIL in the PCM
microenvironment expresses the transcription factor FOXP3,
which is both necessary and sufficient for the development
and function of naturally arising CD4þ CD25þ TREG in mice,
and in men is expressed by CD4þ CD25þ T cells that act as
suppressors (reviewed in Ziegler, 2006). Moreover, recent
results show that FOXP3 dictates the program of TREG

differentiation (Gavin et al., 2007), and down-modulates
responses to TCR-mediated stimulation (Wang et al., 2007;
Ziegler, 2007). Indeed, other TREG markers, such as CD25,
CTLA-4, CD45RB, CD62L, NRP1, LAG-3, CD103, and GITR,
are less specific than FOXP3 (Nakajima et al., 2005; Banham,
2006); moreover, FOXP3þ cells may show regulatory activity
irrespective of their CD25 expression (Banham, 2006;
Liu et al., 2006; Seddiki et al., 2006).

On the other hand, although in humans, FOXP3 is
predominantly expressed in CD4þ CD25þ TREG cells,
smaller FOXP3þ CD25� and FOXP3þ CD8þ subpopula-
tions may also be identified (Roncador et al., 2005; Banham,
2006). In this study, however, FOXP3þ lymphocytes were
virtually excluded from both CD25� and CD8þ subsets;
rather, they were entirely included in the CD3þ , CD4þ , and
CD25þ subpopulations. Thus, present results strongly suggest
that FOXP3-bearing lymphocytes infiltrating PCMs herein
observed, are included within a subset of the CD4þ CD25þ

population, analogous to the canonical ‘‘natural’’ TREG cells
(Sakaguchi et al., 1995; Shevach, 2002; Fontenot et al., 2003;

Hori et al., 2003; Khattri et al., 2003; Roncador et al., 2005).
If this was the case, these FOXP3þ lymphocytes, although
functional experiments were not performed in this study,
might have regulatory activity, because CD4þ CD25þ

T cells expressing FOXP3 act as suppressors (Ziegler, 2006).
Although this study provides early evidence of the

presence of FOXP3þ TIL in the human PCM microenviron-
ment, previous studies have already shown TREG (i) in mice
affected with melanoma, (ii) in lymph node metastases,
ascites fluid, and/or blood of patients with melanoma, and
(iii) in the microenvironment of human primary tumors other
than melanoma. (i) In transplantable murine melanoma
models, melanoma rejection was increased upon elimination
of CD4þ CD25þ TREG cells (Onizuka et al., 1999; Shimizu
et al., 1999; Sutmuller et al., 2001). Moreover, elimination of
CD25þ T cells from bulk T cells in adoptive transfer systems
‘‘in vivo’’ could lead to improved control of B16 melanoma
(Nagai et al., 2004; Gajewski, 2006), including poorly
immunogenic B16 melanoma (Turk et al., 2004). Even more
intriguing, in an ‘‘in vivo’’ model of B16 melanoma, is that
TIL were recently shown to contain CD4þ FOXP3þ TREG

cells within the melanoma mass (Quezada et al., 2006),
analogous to the present demonstration of such cells within
human PCM mass. (ii) After pioneer studies demonstrating
CD4þ T-cell clones with suppressive activity from metastatic
melanoma lymph nodes (Mukherji et al., 1986, 1989),
CD4þCD25þ FOXP3þ TREG cells were shown to be
overexpressed in metastatic lymph nodes of patients with
melanoma (Viguier et al., 2004), and variable expression of
FOXP3 was observed in melanoma metastases by real-time
reverse transcription-PCR (Gajewski, 2006). In a patient with
metastatic melanoma and ascites, the ascites fluid showed
abundant CD4þCD25þ FOXP3þ T cells (Harlin et al.,
2006). CD4þCD25þ T cells were shown in the blood of
patients with melanoma undergoing tumor antigen immuni-
zation (Javia and Rosenberg, 2003); the number of CD4þ

CD25þ T cells was markedly increased in the circulation of
melanoma patients as compared with age-matched controls
(Gray et al., 2003), and CD4þCD25þFOXP3þ CTLA-4þ

TREG cells were significantly elevated in melanoma patients
as compared with normal donors (Cesana et al., 2006). (iii)
The prevalence of TREG was increased within the tumor
microenvironment in several cancers, such as lung cancer
(Woo et al., 2001), pancreas or breast carcinoma (Liyanage
et al., 2002), gastric or esophageal cancers (Ichihara et al.,
2003), Hodgkin lymphoma (Marshall et al., 2004), ovarian
carcinoma (Woo et al., 2001; Curiel et al., 2004), colorectal
cancer (Loddenkemper et al., 2006), nasopharyngeal carci-
noma (Lau et al., 2007), and hepatocellular carcinoma
(Kobayashi et al., 2007).

The role played in human melanoma by the herein
demonstrated FOXP3-bearing T cells, also expressing CD4
and CD25, infiltrating PCM is not known at present, because
the presence of FOXP3-positive T cells without suppressive
functions cannot be excluded (Gavin et al., 2006). It is
possible to hypothesize, however, that these TILs, since
show, as above mentioned, an immunophenotype analogous
to that of natural TREG, may mediate suppression of
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melanoma-associated antigen-reactive cytolytic TIL, thus
downregulating melanoma-specific T-cell immunity and
contributing to PCM growth. Interestingly, melanoma-speci-
fic human TREG clones with anti-LAGE-1 (Wang et al., 2004)
or ARTC1 (Wang et al., 2005) specificity, derived from TIL
into a PCM, had potent suppressive activities, because
they strongly inhibited both proliferation and cytokine
secretion by autologous indicator T-cell clones. Further,
CD4þCD25þFOXP3þ TREG cells overrepresented in mela-
noma metastatic lymph nodes inhibited ‘‘in vitro’’ the
proliferation and cytokine production of infiltrating CD4þ

and CD8þ T cells (Viguier et al., 2004).
In this study, we demonstrated that the proportions of

FOXP3-bearing T cells in CD3þ TIL of the PCM microenvir-
onment were higher in VGP stage I melanoma than in RGP
stage I melanoma, as well as in late melanoma stages than in
early melanoma stages (Figure 3c). In fact, it is well
established that VGP melanomas may metastasize, whereas
RGP melanomas are associated to a 100% survival (Clark
et al., 1989). On the other hand, survival rates of patients
with stage I–IV melanoma are strongly different, because the
differences between survival curves comparing localized
melanoma (stages I and II) versus metastatic melanoma
(stages III and IV) are highly significant (Balch et al., 2004).
Interestingly, in a recent study investigating metastatic
melanoma patients, clinical post-therapy responses were
associated to the frequency of TREG cells in circulation, and
TREG frequency was suggested as a method for monitoring
patients after initial positive response to immunotherapy
(Cesana et al., 2006). Even more intriguing, in a study of 70
patients affected with ovarian cancer, not only a stage-related
difference in the numbers of TREG TIL was demonstrated, but
also a significant inverse correlation between the number of
such TREG TIL and survival (Curiel et al., 2004). Although this
aspect is debated for colorectal cancer (Clarke et al., 2006;
Loddenkemper et al., 2006; Garajova et al., 2007 (Garajova I,
Fabian P, Svoboda M, Nenutil R. Colorectal carcinoma is
infiltrated by FOXP3-positive lymphocytes (abstr.). Interna-
tional Meeting ‘‘Molecular targets in cancer therapy:
mechanism and therapeutic reversal of immune suppression
in cancer’’, Clearwater Beach, FL, USA, January 25–28,
2007)), the patient group with a high prevalence of FOXP3þ

TREG infiltrating hepatocellular carcinoma showed a signifi-
cantly lower survival rate (Kobayashi et al., 2007). To this
respect, in the present series of 14 PCMs, no conclusions
are possible, because only one patient died up to date
(15.04% CD3þFOXP3þ cells in CD3þ lymphocytes infil-
trating PCM: case number 12); nevertheless, studies are in
progress in our laboratory to determine whether the propor-
tions of FOXP3-bearing lymphocytes infiltrating PCM might
even be used as a prognostic marker of reduced survival for
melanoma patients.

In conclusion, the present results, showing that phase- and
stage-related proportions of TIL bearing the transcription
factor FOXP3 occur within the PCM microenvironment
(Figure 3c), may favor the hypothesis, as above anticipated,
that such infiltrating putative TREG cells can suppress
‘‘in vivo’’ the local effector antimelanoma immune response.

To this respect, immunotherapeutic strategies aimed to
counteract ‘‘in vivo’’ the action of TREG cells, might provide
important answers to this hypothesis, and, as already
envisioned (Viguier et al., 2004), could have crucial impacts
on the design of efficient vaccination protocols for the
treatment of melanoma patients. This in fact seems to be the
case (Lüpez et al., 2006), as suggested not only in
experimental murine melanoma (Shimizu et al., 1999; Steitz
et al., 2001; Sutmuller et al., 2001, Nagai et al., 2004; Antony
et al., 2005; Li et al., 2006; Quezada et al., 2006; Nair et al.,
2007), but also in human melanoma patients (Chakraborty
et al., 2004; Dudley et al., 2005; Cesana et al., 2006; Geng
et al., 2006).

MATERIALS AND METHODS
Patients

We studied 14 patients affected with PCM. All of them were

previously untreated. Experiments had institutional approval and

patient consent. The study was conducted in adherence to Helsinki

Principles. Excision of PCM was made at the Section of Dermato-

logy, Department of Surgical Sciences, Parma University.

Samples

Skin specimens were collected at the time of surgery and treated as

described (Ferrari et al., 2007) at the Pathology Section of the

Department of Pathology and Laboratory Medicine, Parma Uni-

versity. Diagnosis was assessed by histopathological examination of

formalin-fixed, paraffin-embedded, hematoxylin and eosin-stained

tissue samples.

Melanoma staging

Details of the melanoma staging, gathered according to the

Melanoma Staging Committee of the American Joint Committee on

Cancer (Balch et al., 2004), are given in Table 1. Nine out of the 14

PCMs were stage I melanoma, four of these having ‘‘RGP’’ and five

having ‘‘VGP’’ (Clark et al., 1989), while the remaining five cases

were stage III–IV melanoma, according to Balch et al. (2004). On the

other hand, the five VGP stage I and the five stage III–IV melanomas

histopathologically showed not only VGP but also ‘‘brisk’’ infiltrate

(Elder et al., 1985; Clark et al., 1989; Clemente et al., 1996).

Dermato- and clinico-pathological characterizations of PCMs

Histopathological assessments concerning the investigated PCMs are

summarized in Table 1. Specifically, the characterization concerned

growth phase, Breslow thickness, ulceration, Clark’s level, mitoses/

mm2, regression, cellular type, pigmentation, and TILs.

Antibodies

The following monoclonal antibodies (mAbs), able to identify

different lymphocyte subpopulations, were used: anti-CD3 mAb

(Neomarkers, Fremont, CA); anti-CD4 mAb (Dako, Glostrup, Den-

mark); anti-CD8 mAb (Neomarkers); anti-CD25 (IL-2 receptor) mAb

(Novocastra, Newcastle, UK); anti-FOXP3 mAb (Novus Biologicals,

Littleton, CO); anti-CD20 mAb (Dako).

Immunohistochemistry

First, paraffin-embedded serial sections were treated for immuno-

histology to reveal, in single labeling experiments, positive TILs of
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different lymphocyte subsets infiltrating the PCM mass. For such a

purpose, a previously described technique (Ferrari et al., 2007) was

performed, with minor modifications. Briefly, the deparaffinized

sections were first treated with 3% hydrogen peroxide to block

endogenous peroxidase, thereafter were incubated with the primary

mAbs anti-CD20, -CD3, -CD4, -CD8, -CD25, and -FOXP3. For

antigen retrieval, sections were treated with pH 9 Tris-EDTA buffer

for 30 minutes in a water bath at 981C. The sections were

immunostained with HRP Polymer (Ultravision LP Large Volume

Detection System, Lab Vision, Fremont, CA) in accordance with the

manufacturer’s specifications. Diaminobenzidine was used for

staining development, and part of the sections was counterstained

with Harris hematoxylin.

Double labeling experiments

Serial sections were thereafter treated by a double staining

technique, in order to establish the percentages of FOXP3-positive

cells in the context of the CD3-, CD4-, CD8-, and CD25-positive

subpopulations. For such a purpose, after labeling of FOXP3 as

mentioned above, and after a blocking step, the second mAb was

immunostained with streptavidin–biotin complex (LSAB2 System,

AP, Dako), in accordance with the manufacturer’s specifications.

Permanent red chromogen was used for staining development. A

similar double labeling technique was used for CD4/CD25 double

labeling.

Morphometric cell analysis

Quantitative evaluation of positively stained cells, either single or

double labeled, was performed by cell analysis of TIL-infiltrated

PCM microenvironment. Specifically, the lymphoid component was

morphometrically evaluated on images acquired with a videocamera

(JVC, Yokoama, Japan), through a light microscope (Olympus BX 51,

Tokyo, Japan) (magnification � 25), using an image analyzer (Image

Pro Plus ver. 4.5, Media Cybernetics Inc., Silver Spring, MD).

The number of immunostained cells within a microscopic field

(0.04 mm2) was recorded, and a mean of 13 such fields from each

sample was calculated, thus giving an observed total tissue area of

1.38 mm2. The percentages of the different lymphocyte subsets were

calculated by dividing the number of each cell type by the total

number of immunostained cells, and multiplying the value by 100.

Statistical analysis

Statistical analysis has been performed with Statgraphics Centurion

software (Herndorn, VA).

A preliminary statistical analysis has been carried out on the total

FOXP3þCD3þ cell counts and CD3þ cell counts in all the

microscopic fields for the three considered melanoma groups,

namely, (i) RGP stage I melanoma, (ii) VGP stage I melanoma, (iii)

VGP stage III–IV melanoma (Table 2). Data have been treated by the

w2-test. The three groups resulted in a w2 value of 150.3,

corresponding to a Po0.001%. The same P-value has been obtained

by comparing both the frequencies of (i) with (ii) (w2¼ 20.1), and

pooled frequencies of (i) plus (ii) with (iii) (w2¼ 133.1). This

demonstrates that in melanoma, the proportions of FOXP3þ cells

strongly depend on the phase and on the stage of melanoma.

A further statistical analysis of data has been carried out on the

percentages of FOXP3þCD3þ cells in CD3þ cells in single

microscopic fields. They were compared by non-parametric tests.

At first, a non-parametric analysis of variance (Kruskaal–Wallis) has

been accomplished, using the three considered PCM groups, as a

Table 1. Clinicopathological parameters of 14 PCMs, including four PCMs of stage I with RGP (numbers 1–4), five
PCMs of stage I with VGP (numbers 5–9), and five PCMs of stages III–IV (numbers 10–14)

PCM case number AJCC staging Dermatopathological parameters

TNM Stage

Growth

phase

Breslow

thickness Ulceration

Clark’s

level Mitoses/mm2 Regression

Cellular

type Pigmentation TIL

1 T1bN0M0 IB RGP 0.30 Yes II 1 No Epit Yes Brisk

2 T1aN0M0 IA RGP 0.69 No II 1 No Epit Yes Brisk

3 T1aN0M0 IA RGP 0.53 No II 0 No Spin Yes Brisk

4 T1aN0M0 IA RGP 0.69 No II 0 No Epit Yes Brisk

5 T1bN0M0 IB VGP 0.93 Yes III 13 No Epit Yes Brisk

6 T2aN0M0 IB VGP 1.25 No III 1 No Epit Yes Brisk

7 T1aN0M0 IA VGP 0.68 No III 1 Yes Epit Yes Brisk

8 T2aN0M0 IB VGP 1.95 No V 2 No Epit No Brisk

9 T1aN0M0 IA VGP 0.90 No III 2 Yes Spin Yes Brisk

10 T3bNxM1b IV VGP 3.60 Yes IV 5 No Epit Yes Brisk

11 T2bN2cM0 IIIB VGP 1.30 Yes III 3 No Epit Yes Brisk

12 T1aNxM1c IV VGP 0.90 No III 1 Yes Spin Yes Brisk

13 T2aN2cM0 IIIB VGP 1.38 No III 5 No Spin Yes Brisk

14 T2aN2aM0 IIIA VGP 1.4 No II 10 No Epit Yes Brisk

AJCC, American Joint Committee on Cancer; Epit, epithelioid cells; PCM, primary cutaneous melanoma; RGP, radial growth-phase; Spin, spindle cells; TIL,
tumor-infiltrating lymphocyte; TNM, tumor node metastasis; VGP, vertical growth phase.
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classification factor. The significance level resulted Po0.1%.

Wilcoxon test was employed as ‘‘post-hoc’’ test. It showed

significant difference between (i) and (ii) (P¼ 0.1%), and between

(ii) and (iii) (Po0.1%). Analogous result was obtained comparing

pooled data of (i) and (ii) versus those of (iii) (Po0.1%). This

demonstrates that, with a P-value of 0.1%, also in single microscopic

fields, the proportions of FOXP3þ cells are significantly higher in

VGP versus RGP, and in late versus early melanoma stages.
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