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Abstract 

The results reported in this research study are part of a larger EU RFCS (Research Fund for Coal and Steel) project where the aim 
is to study the fatigue behavior of improved welds in high strength steels by utilizing different improvement techniques. In this 
particular study LTT (Low Transformation Temperature) weld filler material have been investigated and their possibility to 
improve the fatigue strength. The characteristic of these filler material is that they undergo phase transformation at temperature 
close to room temperature which will reduce the tensile residual stress in the weld and in some cases result in compressive 
residual stresses. Two different LTT alloy compositions have been developed, with different Ms (Martensite Start) temperatures 
in order to study the amount of tensile/compressive residual stresses produced by these wires. Welding residual stress 
measurements were carried out by X-ray diffraction technique. Plates with welded longitudinal attachments were fabricated in 
700 MPa and 960 MPa steel grades using different LTT filler materials. These specimens were fatigue tested in constant and 
variable amplitude loading and the fatigue test results were compared with results from specimen welded with conventional weld 
filler material. 
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1. Introduction 

The fatigue strength of a welded joint is less than virgin base material and also, it does not increase with the 
increase in the yield strength of the base material. It is because of high tensile welding residual stresses due to the 
thermal shrinkage of the weld metal, weld toe/root defects and small notch radii at local weld toe geometry. The 
weld toe/root defects can be controlled to large extent by optimizing the welding process specifications. The local 
weld toe geometry can be improved by different post-weld treatments, including TIG dressing, laser re-melting and 
burr grinding etc. And, the tensile welding residual stresses which are considered as detrimental for fatigue loaded 
structures since they combine with applied loading conditions and increase the mean loading stresses can be reduced 
or even modified into beneficial compressive residual stresses by using HFMI (High Frequency Mechanical Impact) 
treatment. HFMI treatment not only induces the compressive residual stresses but also it improves the local weld toe 
geometry. But, being a post weld treatment is its only disadvantage as it will increase the production cost of the 
component. Moreover, the significant reduction in the tensile welding residual stresses can also be achieved by 
using LTT (Low Transformation Temperature) filler wires instead of the conventional ones.  

Phase transformation plays a prominent part in the formation of welding residual stresses in high-strength steels. 
During welding, phase transformations are affected by the chemical composition and the cooling rate in regions that 
are being austenized during the heat cycle. And depending on these two variables different transformation 
temperatures are yielded. The characteristic of LTT filler material is that it undergoes austenite to martensite phase 
transformation at temperature close to room temperature which will reduce the tensile residual stress in the weld and 
in some cases result in compressive residual stresses. Up to now different approaches of alloys with special adjusted 
martensite start temperatures have been published. The research group around Ohta et al [1] has introduced an iron-
based alloy using chromium and nickel as main alloying elements. Martinez-Diez [2] has published an alternative 
composition substituting nickel by manganese. Another approach with only nickel serving as main alloying element 
was recently proposed in [3].  

Many publications have reported the significant reduction in tensile welding residual stresses and improvement in 
fatigue strength by using LTT filler material as compared to the joints welded with conventional filler wires [4-9]. 
Barsoum et al [10] has reported compressive residual stresses at the weld toe of out of plane gusset fillet joint when 
welded with LTT filler wires. Furthermore, significant improvement in mean fatigue strength is obtained under 
constant amplitude loading. And, less significant improvement in mean fatigue strength is achieved under variable 
amplitude loadings due to stress relaxations. Eckerlid et al [11] has shown an improvement in mean fatigue strength 
of the joint welded with LTT filler wires by 20-95% at 2 million cycles when tested under constant amplitude 
loadings. Machida et al [12] carried out constant amplitude fatigue testing on box welds and an improvement of 
12% in fatigue strength at 2 million cycles is achieved when compared with the joints welded with conventional 
filler wires. Ohta et al [13] carried out additional welds around horizontal gusset of box weld specimen which was 
already welded with conventional filler wire and found compressive residual stresses near the weld toe and also 
observed 2 times increase in the fatigue strength. 

In the present study two different LTT alloy compositions have been developed, with different Martensite Start 
(Ms) temperature. The main aim is to study the amount of tensile/compressive residual stresses produced by these 
wires and also their effect on the fatigue strength of the joint under constant amplitude loadings at R-ratio (minimum 
stress/maximum stress) 0.1 and 0.5 and also under variable amplitude loadings. 

2. Development of LTT filler wires 

In order to investigate the influence of weld filler properties on the enhancement of the fatigue strength of the 
welded joint, two LTT- filler metals have been designed in a few iterating steps based on theoretical as well as 
practical considerations. In a first step chemical compositions leading to appropriate Ms-temperatures are identified 
from literature. Possible candidates are selected and manufactured in form of metal cored wires with a diameter of 
1.6 mm. Additional to Ms the overall cracking behavior comprising cold as well as solidification cracking is 
evaluated due to numerous welding tests. The application of LTT for welding high strength steels calls for 
appropriate strength and toughness. Tensile as well as charpy impact tests revealed that LTT fillers may fulfill these 
requirements. After evaluation of possible LTT concepts the final compositions have been selected. They are 
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manufactured as metal cored wires with a diameter of 1.2 mm. The wires are both iron based showing on the one 
hand a modified chromium nickel ratio leading to Ms below 250°C.  On the other hand a chemical composition was 
designed showing chromium and manganese as main alloying elements. Ms of the latter is situated below 150°C.  

In the present study the chromium nickel based filler wire is identified as ‘S’ and chromium manganese based 
wire is named as ‘C’.  

3. Experimental Details 

3.1. Specimen 

Steel grades having minimum yield strength of 700MPa and 960MPa are used as the parent material for the 
fabrication of longitudinal stiffener fillet welded joints. The base plate and stiffener have the same thicknesses and 
the specimens are prepared in 5mm and 10mm thicknesses. The complete design and dimensions of the joint with 
base plate and stiffener having thickness 5mm is shown in figure 1. 

 

Fig. 1. Design and dimensions of longitudinal stiffener fillet welded joint 

3.2. Welding setup 

Conventional as well as newly developed LTT filler wires are used for welding of longitudinal stiffener joint by 
means of a welding robot. Identical welding process is utilized for the preparation of the specimens using all weld 
filler wires, but with different welding parameters. The welding of joint is carried out in such a way that, firstly, the 
stiffener on side 1 is welded to the base plate and cooled down to ambient room temperature. Then, the stiffener on 
side 2 is welded to the base plate and joint is then again cooled down to ambient room temperature. The welding 
direction and start/stop location used during the welding of longitudinal stiffener joint is shown in figure 2.  

Table 1. Welding parameters 

Weld filler wire Steel grade 

 

Thickness  

 (mm) 

Current 

 (A) 

Voltage 

(V) 

Welding 
speed (mm/min) 

LTT C S960MC and S700MC 5 165 27.2 247 

LTT S S960MC and S700MC 5 179 26.9 247 

Conventional S700MC 5 185 26.5 295 

 
 

Side 1 

Side 2 
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Different trails of welding experiments are carried out to attain the optimized welding parameters which result in 
acceptable weld quality and full root penetrated joint. The final parameters used for the welding of some of the 
longitudinal stiffener joints of thicknesses 5mm using different filler wires are shown in table 1. These parameters 
are an average value over the single completed weld. 

 

Fig. 2. Welding start/stop location, direction and sequences for the joint 

3.3. Residual stress measurements 

In order to study the influence of the welding residual stress on the fatigue strength of the longitudinal stiffener 
joint welded with different filler wires, X-ray diffraction method is used to measure longitudinal residual stresses 
along four different paths (A-D) on a few specimens.  

 

 

Fig. 3.Residual stress measurement points along four different paths (A-D) 
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The diameter of collimator used in the measurements is 2mm and, standard Cr-Ka radiation is used to measure 
the ferrite interference line (211). In order to avoid the collision of the X-ray detectors with the stiffener the first 
measurement point is measured at a distance of 1mm from the weld toe of the joint and the subsequent measurement 
points are 1mm apart as shown in figure 3. In case of the joint welded with conventional filler wire the first two 
measurement points are 1mm and the subsequent measurement points are 2mm apart. 

A comparison of measured welding residual stresses along all four paths (A-D) in S700MC 5mm joint welded 
with LTT C and conventional filler wire is shown in figure 4. Moreover, the comparison of measured welding 
residual stresses along all four paths (A-D) in S960MC 5mm joint welded with LTT C and S filler wires is shown in 
figure 5. 

 
 

 

Fig. 4.Distribution of residual stresses in S700MC steel along four different paths (A-D) welded with LTT C and conventional filler  

 

 

Fig. 5. Distribution of residual stresses in S960MC steel along four different paths (A-D) welded with LTT C and LTT S filler wires   
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3.4. Fatigue testing 

The fatigue testing is performed at CAL (Constant Amplitude Loading) as well as at VAL (Variable Amplitude 
Loading). Under CAL the specimen are tested at two different R-ratios i.e. at R=0.1 and R=0.5. The maximum stress 
level is 388.8MPa for R=0.1 and 700MPa for R=0.5. The spectrum for VAL consists of random sequences within a 
block of 100000 cycles. This spectrum is a tension/compression spectrum i.e. the mean stress is zero as shown in 
figure 6. The maximum stress level used in VAL is 624MPa. The equivalent stress range σeqv is calculated as 
reported by [10] see table 3.  

 

 

Fig. 6. Variable amplitude load spectrum 

The IIW (International Institute of Welding) recommends fatigue strength of 71MPa for longitudinal stiffener 
joint at 2 million cycles with 95% probability of survival in as welded conditions. This value is called characteristic 
fatigue strength or FAT class. The fatigue testing results at CAL is shown in figures 7-9 and at VAL in figure 10-11. 
The achieved fatigue strength at 2 million cycles and slope of the curves are tabulated in table 2. 

 

Fig. 7. Fatigue testing of specimen tested under CAL at R=0.1 (a) welded with LTT C filler wire; (b) welded with LTT S filler wire. 

Table 2.Fatigue strength at 2 million cycles and slope of the curve 

 

 

Weld filler  R  Mean fatigue strength(MPa) Characteristic fatigue strength(MPa) m 

LTT C 0.1 133 89 3.6 

LTT S 0.1 134 110 4.2 

LTT C and S 0.1 155 124 4.9 

LTT C 

LTT S 

LTT C and S 

0.5 

0.5 

0.5 

86 

85 

86 

70 

67 

69 

3 

3.2 

3.1 
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Fig. 8. Fatigue testing of specimen tested under CAL at R=0.5 (a) welded with LTT C filler wire; (b) welded with LTT S filler wire. 

 

 

Fig. 9. Fatigue testing of specimen welded with LTT C and LTT S wires (a) tested under CAL at R=0.1; (b) tested under CAL at R=0.5. 

 

Fig. 10. Comparison of specimen tested under CAL at R=0.1 and VAL 



199 A.A. Bhatti et al.  /  Procedia Engineering   66  ( 2013 )  192 – 201 

 

Fig. 11. Comparison of specimen tested under CAL at R=0.5 and VAL 

Table 3.Estimation of equivalent stress range, testing specifications and results 

Weld filler Steel 

grade 

Thickness  

(mm) 

Max σR in  

spectrum (MPa) 

Equivalent stress  

range σeqv(MPa) 

Cycles at failure 

LTT C S700MC 10 910 

770 

 

910 

219 

186 

 

219 

165 214 

1 214 582 

1 256 536 

2 799 97 

LTT C S690QL 10 759 183 2 210 776 

861 972 

LTT C S960QL 10 1152 

1056 

 

960 

 

864 

278 

254 

 

231 

 

208 

402 140 

1 196 259 

514 582 

440 769 

497 769 

2 448 729 

 

4. Discussion 

The reduction in the final state of tensile welding residual stresses is observed for S700MC 5mm longitudinal 
stiffener joint welded with LTT C filler wire as shown in figure 4. The reduction is not significant when compared 
with other results [7-10] where compressive residual stresses are observed. Moreover, almost identical welding 
residual stress distribution is observed for S960MC 5mm specimen welded with LTT C and LTT S filler wires as 
shown in figure 5.The residual stress measurements are carried out on only two specimens therefore it is difficult to 
conclude that the both wires have the similar effects on the reduction and distribution of welding residual stress. 

The main aim in this work is to study the influence of newly developed LTT filler wires on the fatigue strength of 
the longitudinal stiffener joint when tested under CAL (at different R-ratios) and VAL. The fatigue testing results 
are presented in the form of logΔσ-logN curves in figures 7-11. During the testing few specimen failed in the base 
plate near the clamping location, hence those results are not included here. All tested specimen were failed from the 
weld toe (at the end of stiffener). 
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In figures 7-8, the fatigue testing results under CAL (at R=0.1 and 0.5) for specimens welded with LTT C and 
LTT S wires are shown separately. And, the results are compared with the IIW recommended fatigue strength of 
such type of joint at 2 million cycles in as welded conditions. 

At R=0.1 it can be seen that a fatigue strength improvement of 20% and 36% is achieved with LTT C and S  
joints respectively when compared with IIW recommend fatigue strength of 71MPa. However, no improvement in 
fatigue strength at 2 million cycles is observed for LTT welded joints tested at R=0.5. The most probable reason for 
this behavior could be the stress rearrangements at high mean stress levels. Also, the main purpose of welding with 
LTT material is to reduce the tensile welding residual stress, which it has done as seen in figure 4, but it has no 
contribution in improvement of the local weld toe geometry which can give very high stress concentrations due to 
smaller notch radii. Barsoum et al [10] has reported smaller weld toe notch radii and angle for the specimen welded 
with LTT filler wire when compared with the conventional one. 

Since, not very significant difference in fatigue strengths of LTT C and LTT S welded joints is observed 
therefore in order to increase the sample size, the fatigue testing results under CAL (at R=0.1 and 0.5) are put 
together as shown in figure 9. An overall improvement of 42% in fatigue strength is achieved with LTT welded 
joints when tested at R=0.1. The slope of the curve obtained is 4.9, which is steeper than the IIW recommended 
slope of 3. The steep slope of 4.9 also shows that the improvement in the fatigue strength of LTT welded joints will 
be more significant at lower level of nominal stresses. At higher stress levels no improvement in the fatigue strength 
is observed. Similar results are also reported by [11]. No improvement in fatigue strength is observed for the LTT 
joints tested at R=0.5. 

The fatigue testing is also carried out at variable amplitude loadings. Figure 10 shows the fatigue testing results 
under CAL (at R=0.1) for the specimens welded with LTT (filled marks) and conventional filler wires (cross marks) 
and the fatigue testing results under VAL for some LTT welded joints (broken unfilled marks).An improvement in 
the fatigue strength can be seen for joints welded with LTT filler wires when compared to the joints welded with 
conventional wire. This improvement can be accredited to the reduction of residual stresses due to LTT filler wires. 
Also, in figure 10 it can be seen that almost identical mean fatigue strength at 2 million cycles is observed for LTT 
joints when tested under VAL and CAL. If the mean stress effects are to be taken into account only then, the VAL 
testing must have higher mean fatigue strength because of zero mean stress but as reported by [10] the residual 
stresses can get relaxed in variable amplitude loadings. The figure 11 shows the fatigue testing results under CAL 
(at R=0.5) for the specimens welded with LTT and conventional filler wires and the variable amplitude fatigue 
testing results for LTT welded joints. Much higher mean fatigue strength at 2 million cycles is observed for LTT 
welded specimen tested at VAL as compared to LTT specimen tested at CAL. This difference in the mean fatigue 
strength can be attributed to mean stress effects. And also, due to high stress concentrations at weld toe notch radii at 
very higher stress levels. 

5. Conclusions 

In the present study two different LTT alloy compositions have been developed, with different Martensite Start 
(Ms) temperature. The main aim is to study the amount of tensile/compressive residual stresses produced by these 
wires and also their effect on the fatigue strength of the joint under constant amplitude loadings at R-ratio 0.1 and 
0.5 and variable amplitude loadings. From the study following conclusions can be made 

Reduction in the tensile residual stress near the weld toe area of the longitudinal stiffener joint is achieved when 
welded with LTT filler wire. Both of the newly developed LTT wires have shown same distribution of the residual 
stresses on S960MC 5mm thick longitudinal stiffener joint. 

An increase in the fatigue strength is observed for LTT welded specimens when compared with the specimen 
welded with conventional filler wire. The increase in the fatigue strength is noticeable when specimens are tested at 
R=0.1. Also the improvement is more significant for low nominal stress levels. However, no improvement is 
observed when LTT welded specimen are tested at R=0.5. 

The difference in the mean fatigue strength of LTT specimen tested under CAL at R=0.5 and VAL can be 
attributed to mean stress effects. And also, due to high stress concentrations at weld toe notch radii at very higher 
stress levels. 
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Further investigations are required regarding measurement of weld toe radii and residual stress relaxation and 
also more fatigue testing is required since these presented results are just an indication of the behavior of the joint 
under different loading conditions. 
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