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Abstract 

An optimization paradigm based on genetic algorithms (GA) for the determination of the cutting parameters in machining 
operations is proposed. In metal cutting processes, cutting conditions have an influence on reducing the production cost and time 
and deciding the quality of a final product. In order to find optimal cutting parameters during a turning process, the genetic 
algorithm has been used as an optimal solution finder. Process optimization has to yield minimum production time, while 
considering technological and material constrains. 
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1. Introduction 

production systems, many industries have 
made an effort to introduce flexibility as their strategy to 
adapt to the ever-changing competitive market 
requirements. To ensure the quality of machining 
products, and to reduce the machining costs and increase 
the machining effectiveness, it is very important to select 
the machining parameters when the process parameters 
are selected in CNC machining. The traditional methods 
for solving this class of optimization problem include 
dynamic programming, random searches, and gradient 
methods whereas modern heuristic methods include, 
cognitive paradigms as artificial neural networks, 
simulated annealing [1] and Lagrangian relaxation 
approaches [2]. Some of these methods are successful in 
detecting the optimal solution, but they are usually slow 
in convergence and require much computing time.  

Genetic algorithms (GA) approach, based on the 
principles of natural biological evolution will be used to 
tackle this kind of problem. Compared to traditional 
optimization paradigms, a GA is robust, global and may 
be applied generally without recourse to domain-specific 
heuristics. It can be used not only for general 

optimization problems, but also in indifferent 
optimization problems and unconventional optimization 
problems. So GAs are widely used for machine learning, 
function optimizing and system modeling [3 - 7]. 
Although GA is an effective optimization algorithm, it 
usually takes a long time to optimize machining 
parameters because of its slow convergence speed.  

The main objective of this paper is to determine the 
optimal machining parameters during a turning process 
that minimize the production time without violating any 
imposed cutting constraints. 

2. Genetic Algorithm 

A GA is a paradigm that tries to mimic the genetic 
evolution of a species. Specifically, GA simulates the 
biological processes that allow the consecutive 
generations in a population to adapt to their 
environment. The adaptation process is mainly applied 
through genetic inheritance from parents to children and 
through survival of the fittest. Therefore, GA is a 
population-based search methodology [8, 9].  

The GA starts with a randomly generated population 
of individuals, each one made by strings of the design 
variables, representing a set of points spanning the 
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search space. Each individual is suitably coded into a 
chromosome made by a string of genes: each gene 
encodes one of the design parameters, by means of a 
string of bits, a real number or other alphabets.  

In order to evaluates and rank chromosomes in a 
population, a fitness function based on the objective 
function should be defined. New individuals are then 
generated by using some genetic operators, the classical 
ones being the crossover, the selection and the mutation. 

The selection operator cares with selecting an 
intermediate population from the current one in order to 
be used by the other operators, crossover and mutation. 
In this selection process, chromosomes with higher 
fitness function values have a greater chance to be 
chosen than those with lower fitness function values. 
Pairs of parents in the intermediate population of the 
current generation are probabilistically chosen to be 
mated in order to reproduce new individuals. In order to 
increase the variability structure, the mutation operator is 
applied to alter one or more genes of a probabilistically 
chosen chromosome. Finally, another type of selection 
mechanism is applied to copy the survival members 
from the current generation to the next one.  

The crossover operator aims to interchange the 
information and genes between chromosomes. 
Therefore, crossover operator combines two or more 
parents to reproduce new children, then, one of these 
children may hopefully collect all good features that 
exist in his parents. Crossover operator is not typically 
applied for all parents but it is applied with probability 
which is normally set equal to 0.6.  

The mutation operator alters one or more gene in a 
chromosome. Mutation operator aims to achieve some 
stochastic variability of GA in order to get a quicker 
convergence. The probability of applying the mutation 
operator is usually set to be small, normally 0.01.  

The fitness function is a designed function that 
measures the goodness of a solution. It should be 
designed in the way that better solutions will have a 
higher fitness function value than worse solutions. The 
fitness function plays a major role in the selection 
process. 

3. GA based optimization of turning parameters  

3.1. Production model design 

Intelligent manufacturing achieves substantial savings 
in terms of money and time if it integrates an efficient 
automated process-planning module with other 
automated systems such as production, transportation, 
assembly, etc.  

Process planning involves determination of 
appropriate machines, tools for machining parts, cutting 
fluid to reduce the average temperature within the 

cutting zone and machining parameters under certain 
cutting conditions for each operation of a given 
machined part.  

The machining economics problem consists in 
determining the process parameter, usually cutting 
speed, feed rate and depth of cut, in order to optimize an 
objective function.  

A number of objective functions by which to measure 
the optimality of machining conditions include minimum 
unit production cost, maximum production rate, 
maximum profit rate.  

Several cutting constraints that should be considered 
in machining economics include: tool-life, cutting force, 
power, stable cutting region, chip-tool interface 
temperature, surface finish, and roughing and finishing 
parameter relations. 

The main objective of the present paper is to 
determine the optimal machining parameters that 
minimize the production time without violating any 
imposed cutting constraints. The entire development of 
planning of the machine processes is based on the 
optimization of the economic criteria by taking into 
account the technical and organizational limitations.  

Several practical cutting constraints that were 
considered in the optimization of the production time in 
machining economics include: tool-life constraint, 
cutting force constraint, power, stable cutting region 
constraint, chip-tool interface temperature constraint, 
surface finish constraint, roughing and finishing 
parameter relations, and the number of passes. 

Usually, the production time is measured as the time 
necessary for the fabrication of a product, Tp:  

 
Tp = Ts + V(1 + Tc/T)/MRR + Ti (1) 
 

where Ts, Tc, Ti, V and MRR are the tool set-up time, the 
tool change time, the time during which the tool does not 
cut, the volume of the removed material and the material 
removal rate. In some operations, the Ts; Tc, Ti and V are 
constants so that Tp is the function of MRR and T. 

The material removal rate MRR is expressed by 
analytical starting point as the product of the cutting 
speed, v, feed rate, f, and depth of cut, a: 

  
MRR = 1000*v*f*a (2) 
 
The tool life, T, is measured as the average time 

between the tool changes or tool sharpenings. The 
relation between the tool life and the parameters is 

 
 
T = KT/v *f *a   (3) 

 
where KT, 1, 2 and 3, which are always positive 
constant parameters, are determined statistically. 
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The most important criterion for the assessment of the 

surface quality is roughness, Ra, calculated according to: 
 

Ra = k*vx1*fx2*ax3
 (4) 

 
where x1, x2, x3 and k are the constants relevant to a 
specific tool-workpiece combination. 

Due to the limitations on the machine and cutting tool 
and due to the safety of machining, the cutting 
parameters are limited with the bottom and top allowable 
limit. 

Allowable range of cutting conditions are: 
 
vmin  <  v  < vmax,  fmin < f < fmax, amin < a < amax

  
There are some other constraints related to the 

machine features. The cutting force, F, must not be 
greater than a certain maximum value, Fmax, given by the 
strength and stability of the machine and the cutting tool. 
The cutting force is computed from empirical 
expressions in the form: 

 
F (v, f, a)   Fmax 
 
Another constraint related to machine is the 

maximum permissible value for cutting power, W, 
which must not exceed the machine motor power, Wmax: 

 
W (v, f, a)   Wmax  
   
The problem of the optimization of cutting 

parameters can be formulated by defining the goal 
function as the minimum production time, Tp: 

 
min Tp(v, f, a)   
 
The mathematical model has been programmed in 

MATHLAB. As basis for GA development, Matlab's 
GA toolbox was used. For GA implementation, standard 
settings have been taken [10]. 

For each depth of cutting optimization process, the 
optimal cutting parameters have been given. GA 
converges until the stopping criteria are met. 

Model output is presented with cutting parameters 
which satisfy constrain functions at the end of 
optimization process and give optimal value of goal 
function, which is a global minimum. 

3.2. Illustrative example and results 

On the NC lathe, the machining of a cast steel blank 
by means of the tool made from HSS was performed. 
The goal is to find optimum cutting conditions for the 
process of turning. The values of coefficients are 

statistically determined on the basis of the data measured 
experimentally: 

 
Ts = 0.12 min   
Tc = 0.26 min   
Ti = 0.04 min 
K = 1.001   
KT = 1686145.34 
x1 = 0.0088   
x2 = 0.3232   
x3 = 0.3144 

1 = 1.70   
2 = 1.55    
3 = 1.22 
1 = 0   
2 = 1.18    
3 = 1.26 

V = 251378 mm3   
W = 4420,5 
 
The objective function is fixed as the minimum 

production time, Tp: 
 

min Tp = Ts + V/(1000*v*f*a) + (V*Tc*(v(1/n-1) * f(m/n-

1) * a(r/n-1) ))) / 1000*W(1/n)) + T 
 
where: 

 
m = 0,9117 n = 0,5882 r = 0,7176 

 
 The limitation functions are: 
 
vmin < v  < vmax,  fmin < f < fmax, amin < a < amax  
 
The basic GA setup properties are: population size = 

20 -100 individuals; genetic operators - those individuals 
that survive the selection step, undergo alteration by two 
genetic operators, crossover and mutation;  probability 
for crossover = 0,8; mutation rate = 0,1.  

The first step in the proposed GA is the generation of 
the individuals for the initial population.  

The cutting conditions are generated at random inside 
the specific limits. The cutting conditions are generated 
at random inside the specified limits. The other values 
are calculated according to Eqs. 1  4 with selected 
cutting conditions. Initial population is produced either 
by making random changes to a single parent using the 
mutation operator or by combining the vector entries of 
a pair of parents using the crossover operator. 

Table 1 contains the 10 initial individuals obtained by 
GA with 10 generations using (a) the crossover operator 
and (b) the mutation operator. In Fig. 1, the selected 
genes from the individuals in the initial population of Tp, 
v, f and a are plotted vs. # of generations using (a) 
crossover operator; (b) mutation operator.  
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Table 1. GA optimal cutting parameters for 10 generations and initial population = 20, obtained using (a) the crossover operator and (b) the 
mutation operator 
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Fig. 1. GA optimal cutting parameters, from the individuals in the initial population = 20, plotted vs. # of generations using (a) crossover and (b) 
mutation operators  

# of 
generations 

v (m/min) f (mm/rev) a (mm) Tp (s) 

1 72 1,8 3,2 0,724 

2 75 1,5 2,3 1,364 

3 88 1,1 4,1 0,744 

4 71 1,4 2,1 1,195 

5 87 1,8 4,1 0,521 

6 88 1,1 4,1 0,744 

7 87 1,8 1,9 0,885 

8 70,6 1,1 3,8 0,930 

9 88 1,1 4,1 0,744 

10 87 1,8 1,9 0,883 

# of 
generations 

v (m/min) f (mm/rev) a (mm) Tp (s) 

1 76 1,8 4,6 0,516 

2 71 1,4 2,1 1,174 

3 83 1,8 3,8 0,550 

4 71 1,7 4,6 0,574 

5 88 1,1 4,1 0,744 

6 86 1,7 4,1 0,530 

7 87 1,8 4,3 0,487 

8 88 1,1 4,1 0,744 

9 88 1,1 4,1 0,744 

10 86 1,7 4,1 0,538 
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In Fig. 1a, it can be seen how the GA works when 

there is no mutation, set all individuals in the 
population are the same, namely, the best individual. 

In this case, the algorithm selects genes from the 
individuals in the initial population and recombines 
them. The algorithm cannot create any new genes 
because there is no mutation and cannot generate the 
best individual as shown by plots that does not become 
level.  

Fig. 1b shows the results of the application of 
mutation without crossover. While it improves the 
individual genes of other individuals, these improved 
genes are never combined with the genes of the best 
individual because there is no crossover. It can be seen 
that the best fitness plot is not level and the algorithm 
does not stall at generation number 10.  

From Fig. 1, it can be seen that the initial value of 
the minimum production time, Tp, obtained by 
crossover operator is higher than the Tp values 
obtained applying the mutation operator. It can be note 
that the algorithm does not stall, but there is 
immediate improvement in the fitness function after 
generation 3 using the mutation operator. 

It is worth noting that while the crossover enables 
the algorithm to extract the best genes from different 
individuals and recombine them into potentially 
superior children, the mutation adds to the diversity of 
a population and thereby increases the likelihood that 
the algorithm will generate individuals with better 
fitness values. 

As result, both processes are essential to the GA. 
To optimize the selected GA, the crossover 

operation is performed on the population obtained 
after selection. A two point crossover has been used 
with a high crossover probability = 0,8.  

A two point crossover with the high crossover 
probability is used as it helps the diversity 
preservation better than the single point one.  

After crossover, mutation of the population is 
performed. Bit wise mutation operator has been used 
with a mutation probability = 0,1.  

Table 2 shows the minimum production time, Tp, 
for each iteration of the proposed GA and contains the 
10 obtained optimal cutting parameters with 10 
generations combining the crossover operator and the 
mutation operator and starting from an initial 
population = 100. 

In Fig. 2, the GA optimal cutting parameters 
(cutting speed, feed rate, depth of cut) and the best 
fitness values (production time, Tp) are plotted vs. # of 
generations.  

Table 2 and Fig. 2 show that the production time 
function is quasi-constant as from the 4th generation. 

 

Table 2. GA optimal cutting parameters obtained for 10 generations 
and initial population = 100 

# of 
generations 

v 
(m/min) 

f  
(mm/rev) 

a  
(mm) 

Tp  
(s) 

1 86 1,1 4,8 0,663 

2 86 1,5 4,1 0,584 

3 86 1,6 4,1 0,571 

4 86 1,7 4,6 0,496 

5 86 1,6 4,6 0,520 

6 86 2,0 5,0 0,430 

7 87 1,8 4,1 0,498 

8 71 2,0 5,0 0,487 

9 98 1,2 4,5 0,572 

10 70 1,6 5,0 0,555 
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Fig. 2. GA optimal cutting parameters from the individuals in the 
initial population  = 100  plotted vs. # of generations  
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4. Conclusion 

This paper deals with a novel approach to optimize 
the machining parameters during turning process, by 
basing on the use of cognitive paradigms.  

In metal cutting processes, cutting conditions have an 
influence on reducing the production cost and time and 
deciding the quality of a final product. In order to find 
optimal cutting parameters during a turning process, the 
genetic algorithm has been used as an optimal solution 
finder.  

Process optimization has to yield minimum 
production time, while considering technological and 
material constrains. 

Since the genetic algorithm-based approach can 
obtain near optimal solution, it can be used for 
machining parameter selection of complex machined 
parts that require many machining constraints. 
Integration of the proposed approach with an intelligent 
manufacturing system will lead to reduction in 
production cost, reduction in production time, flexibility 
in machining parameter selection, and improvement of 
product quality. 

The main advantage of proposed methodology is the 
capability to perform multi-object optimization, 
minimum machining time while considering 
technological and material constrains. The results 
obtained from the simulation model have presented a 
fast and suitable solution for automatic selection of the 
machining parameters.  

This research definitely indicates some directions for 
future work. The first priority is the application of the 
genetic algorithm-based approach in complex machining 
systems and automated process planning system. The 
second is comparing the genetic algorithm based 
approach with a number of other emerging optimization-
techniques. 
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