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Abstract

Let X be a zero-dimensional compact space such that all non-empty clopen subsets ofX are
homeomorphic to each other, and let AutX be the group of all self-homeomorphisms ofX, equipped
with the compact-open topology. We prove that the Roelcke compactification of AutX can be
identified with the semigroup of all closed relations onX whose domain and range are equal to
X. We use this to prove that the group AutX is topologically simple and minimal. 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Let G be a topological group. There are at least four natural uniform structures onG

which are compatible with the topology [4]: the left uniformityL, the right uniformityR,
their least upper boundL∨R and their greatest lower boundL∧R. In [4] the uniformity
L∧R is called thelower uniformityonG; we shall call it theRoelcke uniformity, as in [6].
Let N (G) be the filter of neighborhoods of unity inG. WhenU runs overN (G), the
covers of the form{xU : x ∈ G}, {Ux: x ∈ G}, {xU ∩ Ux: x ∈ G} and{UxU : x ∈ G}
are uniform forL, R, L ∨R andL ∧R, respectively, and generate the corresponding
uniformity.

All topological groups are assumed to be Hausdorff. A uniform spaceX is precompactif
its completion is compact or, equivalently, if every uniform cover ofX has a finite subcover.
For any topological groupG the following are equivalent:

(1) G isL-precompact;
(2) G isR-precompact;

E-mail address:uspensk@math.ohiou.edu (V.V. Uspenskij).

0166-8641/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0166-8641(99)00185-6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82475994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


196 V.V. Uspenskij / Topology and its Applications 111 (2001) 195–205

(3) G isL∨R-precompact;
(4) G is a topological subgroup of a compact group.

If these conditions are satisfied,G is said to beprecompact. Let us say thatG is Roelcke-
precompactif G is precompact with respect to the Roelcke uniformity. A groupG is
precompact if and only if for everyU ∈ N (G) there exists a finite setF ⊂ G such that
UF = FU = G. A groupG is Roelcke-precompact if and only if for everyU ∈ N (G)
there exists a finiteF ⊂ G such thatUFU = G. Every precompact group is Roelcke-
precompact, but not vice versa. For example, the unitary group of a Hilbert space or
the group Symm(E) of all permutations of a discrete setE, both with the pointwise
convergence topology, are Roelcke-precompact but not precompact [6,4]. Unlike the usual
precompactness, the property of being Roelcke-precompact is not inherited by subgroups.
(If H is a subgroup ofG, in general the Roelcke uniformity ofH is finer than the
uniformity induced onH by the Roelcke uniformity ofG.) Moreover, every topological
group is a subgroup of a Roelcke-precompact group [7].

TheRoelcke completionof a topological groupG is the completion of the uniform space
(G,L∧R). If G is Roelcke-precompact, the Roelcke completion ofG will be called the
Roelcke compactificationof G.

A topological group isminimal if it does not admit a strictly coarser Hausdorff group
topology. Let us say that a groupG is topologically simpleif G has no closed normal
subgroups besidesG and{1}. It was shown in [6,7] that the Roelcke compactification of
some important topological groups has a natural structure of an ordered semigroup with
an involution, and that the study of this structure can be used to prove that a given group
is minimal and topologically simple. In the present paper we apply this method to some
groups of homeomorphisms.

A semigroupis a set with an associative binary operation. LetS be a semigroup with
the multiplication(x, y) 7→ xy. We say that a self-mapx 7→ x∗ of S is an involution if
x∗∗ = x and(xy)∗ = y∗x∗ for all x, y ∈ S. Every group has a natural involutionx 7→ x−1.
An elementx ∈ S is symmetricalif x∗ = x, and a subsetA⊂ S is symmetricalif A∗ =A.
An ordered semigroupis a semigroup with a partial order6 such that the conditionsx 6 x ′
andy 6 y ′ imply xy 6 x ′y ′. An elementx ∈ S is idempotentif x2= x.

LetK be a compact space. Aclosed relationonK is a closed subset ofK2. LetE(K)
be the compact space of all closed relations onK, equipped with the Vietoris topology. If
R,S ∈ E(K), then thecompositionof R andS is the relationRS = {(x, y): ∃z((x, z) ∈
S and(z, y) ∈ R)}. The relationRS is closed, since it is the image of the closed subset
{(x, z, y): (x, z) ∈ S, (z, y) ∈ R} of K3 under the projectionK3→K2 which is a closed
map. IfR ∈E(K), then theinverse relation{(x, y): (y, x) ∈ R} will be denoted byR∗ or
by R−1; we prefer the first notation, since we are interested in the algebraic structure on
E(K), and in generalR−1 is not an inverse ofR in the algebraic sense. The setE(K) has
a natural partial order. ThusE(K) is an ordered semigroup with an involution. In general
the map(R,S) 7→ RS fromE(K)2 toE(K) is not (even separately) continuous.

ForR ∈E(K) let DomR = {x: ∃y((x, y) ∈ R)} and RanR = {y: ∃x((x, y) ∈ R)}. Put
E0(K) = {R ∈ E(K): DomR = RanR = K}. The setE0(K) is a closed symmetrical
subsemigroup ofE(K).
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Denote by Aut(K) the group of all self-homeomorphisms ofK, equipped with the
compact-open topology. For everyh ∈ Aut(K) letΓ (h)= {(x,h(x)): x ∈K} be the graph
of h. The maph 7→ Γ (h) from Aut(K) to E0(K) is a homeomorphic embedding and a
morphism of semigroups with an involution. Identifying every self-homeomorphism ofK

with its graph, we consider the group Aut(K) as a subspace ofE0(K).
We say that a compact spaceX is h-homogeneousif X is zero-dimensional and all non-

empty clopen subsets ofX are homeomorphic to each other.

Main Theorem 1.1. LetX be anh-homogeneous compact space, and letG= Aut(X) be
the topological group of all self-homeomorphisms ofX. Then:

(1) G is Roelcke-precompact; the Roelcke compactification ofG can be identified with
the semigroupE0(X) of all closed relationsR onX such thatDomR =RanR =X;

(2) G is minimal and topologically simple.

In the case whenX = 2ω is the Cantor set, the minimality of Aut(X) was proved by
Gamarnik [3].

Let us explain how to deduce the second part of Theorem 1.1 from the first. Let
G = Aut(X) be such as in Theorem 1.1, and letf :G → G′ be a continuous onto
homomorphism. We must prove that eitherf is a topological isomorphism or|G′| = 1.
Let Θ = E0(X). The first part of Theorem 1.1 implies thatf can be extended to a map
F :Θ→ Θ ′, whereΘ ′ is the Roelcke compactification ofG′. Let e′ be the unity ofG′,
and letS = F−1(e′). ThenS is a closed symmetrical subsemigroup ofΘ. Let ∆ be the
diagonal inX2. The set{r ∈ S: ∆⊂ r} has a largest element. Denote this element byp.
Thenp is a symmetrical idempotent inΘ and hence an equivalence relation onX. The
semigroupS is invariant under inner automorphisms ofΘ, and so is the relationp. But
there are only twoG-invariant closed equivalence relations onX, namely∆ andX2. If
p =∆, thenS ⊂G, G= F−1(G′) andf is perfect. SinceG has no non-trivial compact
normal subgroups, we conclude thatf is a homeomorphism. Ifp = X2, thenS =Θ and
G′ = {e′}.

A similar argument was used in [7] to prove that every topological group is a subgroup
of a Roelcke-precompact topologically simple minimal group, and in [6] to yield an
alternative proof of Stoyanov’s theorem asserting that the unitary group of a Hilbert space
is minimal [5,2]. For more information on minimal groups, see the recent survey by
Dikranjan [1].

We prove the first part of Theorem 1.1 in Section 2, and the second part in Section 4.

2. Proof of Main Theorem, part 1

Let X be anh-homogeneous compact space, and letG = Aut(X). Let Θ = E0(X) be
the semigroup of all closed relationsR onX such that DomR = RanR =X. We identify
G with the set of all invertible elements ofΘ. We prove in this section thatΘ can be
identified with the Roelcke compactification ofG.
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The spaceΘ, being compact, has a unique compatible uniformity. LetU be the
uniformity thatG has as a subspace ofΘ. The first part of Theorem 1.1 is equivalent
to the following:

Theorem 2.1. LetX be anh-homogeneous compact space,Θ =E0(X), andG= Aut(X).
IdentifyG with the set of all invertible elements ofΘ. Then:

(1) G is dense inΘ;
(2) the uniformityU induced by the embedding ofG intoΘ coincides with the Roelcke

uniformityL∧R onG.

Let us first introduce some notation. Letγ = {Uα: α ∈A} be a finite clopen partition of
X. A γ -rectangleis a set of the formUα ×Uβ , α,β ∈ A. Given a relationR ∈Θ, denote
byM(γ,R) the set of all pairs(α,β) ∈ A×A such thatR meets the rectangleUα × Uβ .
Let V(γ,R) be the family{Uα × Uβ : (α,β) ∈M(γ,R)} of all γ -rectangles which meet
R. If r is a subset ofA×A, put

Oγ,r =
{
R ∈Θ: M(γ,R)= r}.

The sets of the formOγ,r constitute a base ofΘ. Denote byE0(A) the set of all relations
r onA such that Domr =Ranr =A. A setOγ,r is non-empty if and only ifr ∈E0(A).

LetOγ (R) be the set of all relationsS ∈Θ which meet the sameγ -rectangles asR. We
haveOγ (R)=Oγ,r , wherer =M(γ,R). The sets of the formOγ (R) constitute a base at
R. If λ is another clopen partition ofX which refinesγ , thenOλ(R)⊂Oγ (R).

Proof of Theorem 2.1. Our proof proceeds in three parts.
(a) We prove thatG is dense inΘ.
Let γ = {Uα: α ∈ A} be a finite clopen partition ofX andr ∈ E0(A). We must prove

thatOγ,r meetsG. Decomposing eachUα into a suitable number of clopen pieces, we
can find a clopen partition{Wα,β : (α,β) ∈ r} of X such thatUα =⋃{Wα,β : (α,β) ∈ r}
for everyα ∈ A. Similarly, there exists a clopen partition{W ′α,β : (α,β) ∈ r} of X such
thatUβ =⋃{W ′α,β : (α,β) ∈ r} for everyβ ∈A. Let f ∈G be a self-homeomorphism of
X such thatf (Wα,β) =W ′α,β for every(α,β) ∈ r. The graph off meets each rectangle
of the formWα,β ×W ′α,β , (α,β) ∈ r, and is contained in the union of such rectangles. It
follows thatM(γ,f )= r andf ∈G∩Oγ,r 6= ∅.

(b) We prove that the uniformityU is coarser thanL∧R.
This is a special case of the following:

Lemma 2.2. For every compact spaceK the maph 7→ Γ (h) from Aut(K) to E0(K) is
L∧R-uniformly continuous.

Proof. It suffices to prove that the map under consideration isL-uniformly continuous
andR-uniformly continuous. Letd be a continuous pseudometric onK. Let d2 be the
pseudometric onK2 defined byd2((x, y), (x

′, y ′)) = d(x, x ′) + d(y, y ′), and letdH be
the corresponding Hausdorff pseudometric onE0(K). If R,S ∈ E0(K) anda > 0, then
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dH(R,S) 6 a if and only if each of the relationsR andS is contained in the closeda-
neighbourhood of the other with respect tod2. The pseudometrics of the formdH generate
the uniformity ofE0(K).

Letds be the right-invariant pseudometric on Aut(K) defined byds(f, g)= sup{d(f (x),
g(x)): x ∈ K}. The pseudometrics of the formds generate the right uniformityR
on Aut(K). Since dH (Γ (f ),Γ (g)) 6 ds(f, g), the mapΓ : Aut(K)→ E0(K) is R-
uniformly continuous. For the left uniformityL we can either use a similar argument,
or note that the involution on Aut(K) is an isomorphism betweenL andR, and use the
formulaΓ (f )= Γ (f−1)∗ to reduce the case ofL to the case ofR. 2

(c) We prove thatU is finer thanL∧R.
Let γ = {Uα: α ∈ A} be a finite clopen partition ofX. PutVγ = {f ∈ G: f (Uα) =

Uα for everyα ∈ A}. The open subgroups of the formVγ constitute a base at unity ofG.
We must show that iff,g ∈G are close enough inΘ, thenf ∈ Vγ gVγ .

The set of all pairs(R,S) ∈ Θ2 such thatM(γ,R) =M(γ,S) is a neighbourhood of
the diagonal inΘ2 and therefore an entourage for the unique compatible uniformity on
Θ. It suffices to prove that for everyf,g ∈G the conditionM(γ,f ) =M(γ,g) implies
that f ∈ Vγ gVγ . Suppose thatM(γ,f ) = M(γ,g) = r. The following conditions are
equivalent for everyα,β ∈A:

(1) f (Uα)∩Uβ 6= ∅;
(2) g(Uα)∩Uβ 6= ∅;
(3) (α,β) ∈ r.

Pick u ∈ G such thatu(f (Uα) ∩ Uβ) = g(Uα) ∩ Uβ for every (α,β) ∈ r. Such a
self-homeomorphismu of X exists, since all non-empty clopen subsets ofX are
homeomorphic. Since for a fixedβ ∈A the setsf (Uα) ∩Uβ coverUβ , we haveu(Uβ)=
Uβ . Thusu ∈ Vγ . It follows thatuf (Uα) ∩ Uβ = u(f (Uα) ∩ Uβ) = g(Uα) ∩ Uβ for all
α,β ∈ A and henceuf (Uα) = g(Uα) for everyα ∈ A. Putv = g−1uf . Sinceuf (Uα) =
g(Uα), we havev(Uα)=Uα for everyα ∈A. Thusv ∈ Vγ andf = u−1gv ∈ Vγ gVγ . 2

3. Continuity-like properties of composition

We preserve all the notation of the previous section. In particular,X is anh-homogene-
ous compact space,G= Aut(X), Θ =E0(X).

Recall that is a non-empty collectionF of non-empty subsets of a setY is afilter base
onY if for everyA,B ∈F there isC ∈F such thatC ⊂A∩B. If Y is a topological space,
F is a filter base onY andx ∈ Y , thenx is acluster pointof F if every neighbourhood of
x meets every member ofF , andF convergesto x if every neighbourhood ofx contains a
member ofF . If F andG are two filter bases onG, letFG = {AB: A ∈F , B ∈ G}.

For everyR ∈Θ let

FR =
{
G∩ V : V is a neighbourhood ofR in Θ

}
.

In other words,FR is the trace onG of the filter of neighborhoods ofR in Θ. We have
noted that the multiplication onΘ is not continuous. IfR,S ∈Θ, it is not true in general
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thatFRFS converges toRS. However,RS is a cluster point ofFRFS . This fact will be
used in the next section.

Proposition 3.1. If R,S ∈Θ, thenRS is a cluster point of the filter baseFRFS .

We need some lemmas. First we note that for any compact spaceK the composition of
relations is upper-semicontinuous onE(K) in the following sense:

Lemma 3.2. LetK be a compact space,R,S ∈ E(K). LetO be an open set inK2 such
thatRS ⊂O . Then there exist open setsV1,V2 in K2 such thatR ⊂ V1, S ⊂ V2, and for
everyR′, S′ ∈E(K) such thatR′ ⊂ V1, S′ ⊂ V2 we haveR′S′ ⊂O .

Proof. Consider the following three closed sets inK3:

F1 =
{
(x, z, y): (z, y) ∈ R},

F2 =
{
(x, z, y): (x, z) ∈ S},

F3 =
{
(x, z, y): (x, y) /∈O}.

The intersection of these three sets is empty. There exist neighborhoods of these sets with
empty intersection. We may assume that the neighborhoods ofF1 andF2 are of the form
{(x, z, y): (z, y) ∈ V1} and{(x, z, y): (x, z) ∈ V2}, respectively, whereV1 andV2 are open
in K2. The setsV1 andV2 are as required.2
Lemma 3.3. Let γ = {Uα : α ∈ A} be a finite clopen partition ofX. For everyR,S ∈Θ
we haveM(γ,RS) ⊂M(γ,R)M(γ,S) (the product on the right means the composition
of relations onA).

Proof. Let (α,β) ∈ M(γ,RS). ThenRS meets the rectangleUα × Uβ . Pick (x, y) ∈
RS ∩ (Uα ×Uβ). There existsz ∈X such that(x, z) ∈ S and(z, y) ∈ R. Pick δ ∈ A such
thatz ∈ Uδ . Then(x, z) ∈ S ∩ (Uα ×Uδ), (z, y) ∈R ∩ (Uδ ×Uβ), hence(α, δ) ∈M(γ,S)
and(δ,β) ∈M(γ,R). It follows that(α,β) ∈M(γ,R)M(γ,S). 2
Lemma 3.4. Let λ= {Uα: α ∈ A} be a finite clopen partition ofX, and letr, s ∈ E0(A).
There existf,g ∈G such thatM(λ,f )= r,M(λ,g)= s andM(λ,fg)= rs.

Proof. We modify the proof of Theorem 2.1. For everyγ ∈ A take a clopen partition
{Vα,γ,β: (α, γ ) ∈ s, (γ,β) ∈ r} ofUγ . For every(γ,β) ∈ r putWγ,β =⋃{Vα,γ,β : (α, γ ) ∈
s}. For every (α, γ ) ∈ s put Y ′α,γ =

⋃{Vα,γ,β : (γ,β) ∈ r}. Take a clopen partition
{W ′γ,β : (γ,β) ∈ r} of X such that for everyβ ∈ A we haveUβ =⋃{W ′γ,β : (γ,β) ∈ r}.
Take a clopen partition{Yα,γ : (α, γ ) ∈ s} of X such that for everyα ∈ A we have
Uα = ⋃{Yα,γ : (α, γ ) ∈ s}. There existf ∈ G such thatf (Wγ,β) = W ′γ,β for every
(γ,β) ∈ r. There existsg ∈ G such thatg(Yα,γ ) = Y ′α,γ for every(α, γ ) ∈ s. The graph
of f meets every rectangleWγ,β × W ′γ,β , (γ,β) ∈ r, and is contained in the union of
such rectangles. SinceWγ,β ×W ′γ,β ⊂ Uγ × Uβ , it follows thatM(λ,f ) = r. Similarly,
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M(λ,g)= s. We claim thatM(λ,fg) = rs. Let (α,β) ∈ rs. There existsγ ∈A such that
(α, γ ) ∈ s and (γ,β) ∈ r. We haveg(Uα) ⊃ g(Yα,γ ) = Y ′α,γ ⊃ Vα,γ,β and f−1(Uβ) ⊃
f−1(W ′γ,β) = Wγ,β ⊃ Vα,γ,β . ThusVα,γ,β ⊂ g(Uα) ∩ f−1(Uβ) 6= ∅. It follows that the
graph offg meets the rectangleUα × Uβ . This means that(a,β) ∈M(λ,fg). We have
proved thatrs ⊂M(λ,fg). The reverse inclusion follows from Lemma 3.3. 2
Proof of Proposition 3.1. Let U1, U2, U3 be neighborhoods inΘ of R, S and RS,
respectively. We must show thatU3 meets the set(U1 ∩G)(U2 ∩G).

Fix a clopen partitionλ of X such thatOλ(RS) ⊂ U3. Lemma 3.2 implies that there
exists a clopen partitionγ of X such that for everyR′ ∈ Oγ (R) and S′ ∈ Oγ (S) we
haveR′S′ ⊂ ⋃V(λ,RS) (recall thatV(λ,RS) is the family of all λ-rectangles that
meetRS). We may assume thatγ refinesλ and thatOγ (R) ⊂ U1, Oγ (S) ⊂ U2. Put
r = M(γ,R), s = M(γ,S). According to Lemma 3.4, there existf,g ∈ G such that
M(γ,f )= r,M(γ,g)= s andM(γ,fg)= rs. Thenf ∈G∩Oγ (R) andg ∈G∩Oγ (S).
Lemma 3.3 implies thatM(γ,RS) ⊂ rs =M(γ,fg). This means that (the graph of)fg
meets every member of the familyV(γ,RS). Then every member ofV(λ,RS) meetsfg,
since every member ofV(λ,RS) contains a member ofV(γ,RS). On the other hand, by
the choice ofγ we havefg ⊂⋃V(λ,RS). It follows thatM(λ,fg) =M(λ,RS). Thus
fg ∈Oλ(RS)⊂U3 and hencefg ∈ (U1∩G)(U2 ∩G)∩U3 6= ∅. 2

4. Proof of Main Theorem, part 2

Let X, as before, be a compacth-homogeneous space,G = Aut(X), Θ = E0(X).
We saw thatG is Roelcke-precompact and thatΘ can be identified with the Roelcke
compactification ofG. In this section we prove thatG is minimal and topologically simple.

If H is a group andg ∈H , we denote bylg (respectively,rg) the left shift ofH defined
by lg(h)= gh (respectively, the right shift defined byrg(h)= hg).

Proposition 4.1. LetH be a topological group, and letK be the Roelcke completion of
H . Letg ∈H . Each of the following self-maps ofH extends to a self-homeomorphism of
K:

(1) the left shiftlg ;
(2) the right shiftrg ;
(3) the inversiong 7→ g−1.

Proof. LetL andR be the left and the right uniformity onH , respectively. In each of the
cases (1)–(3) the mapf :H →H under consideration is an automorphism of the uniform
space(H,L∧R). This is obvious for the case (3). For the cases (1) and (2), observe that
the uniformitiesL andR are invariant under left and right shifts, hence the same is true for
their greatest lower boundL∧R. It follows that in all casesf extends to an automorphism
of the completionK of the uniform space(H,L∧R). 2
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Forg ∈G define self-mapsLg :Θ→Θ andRg :Θ→Θ byLg(R)= gR andRg(R)=
Rg.

Proposition 4.2. For everyg ∈G the mapsLg :Θ→Θ andRg :Θ→Θ are continuous.

Proof. We havegR = {(x, g(y)): (x, y) ∈ R}. Let λ = {Uα: α ∈ A} be a clopen
partition ofX. Let r =M(λ,gR), and letOλ(gR) = {S ∈ Θ: M(λ,S) = r} be a basic
neighbourhood ofgR. LetU be the set of allT ∈Θ such thatT meets every member of
the family {Uα × g−1(Uβ): (α,β) ∈ r} and is contained in the union of this family. Then
U is a neighbourhood ofR andLg(U)=Oλ(gR). ThusLg is continuous. The argument
for Rg is similar. 2

Let∆ be the diagonal inX2.

Proposition 4.3. Let S be a closed subsemigroup ofΘ, and letT be the set of allp ∈ S
such thatp ⊃∆. If T 6= ∅, thenT has a greatest elementp, andp is an idempotent.

Proof. We claim that every non-empty closed subset ofΘ has a maximal element. Indeed,
if C is a non-empty linearly ordered subset ofΘ, thenC has a least upper boundb =⋃C

in Θ, andb belongs to the closure ofC in Θ. Thus our claim follows from Zorn’s lemma.
The setT is a closed subsemigroup ofΘ. Let p be a maximal element ofT . For every

q ∈ T we havepq ⊃ p∆= p, whencepq = p. It follows thatp is an idempotent and that
p = pq ⊃∆q = q . Thusp is the greatest element ofT . 2

An inner automorphismof Θ is a map of the formp 7→ gpg−1, g ∈G.

Proposition 4.4. There are precisely two elements inΘ which are invariant under all
inner automorphisms ofΘ, namely∆ andX2.

Proof. A relationR ∈ Θ is invariant under all inner automorphisms if and only if the
following holds: if x, y ∈ X and (x, y) ∈ R, then (f (x), f (y)) ∈ R for every f ∈ G.
Suppose thatR ∈ Θ has this property and∆ 6= R. Pick (x, y) ∈ R such thatx 6= y. We
claim that the setB = {(f (x), f (y)): f ∈G} is dense inX2. Indeed, pick disjoint clopen
neighborhoodsU1 andU2 of x andy, respectively, such thatX is not covered byU1 and
U2. Given disjoint clopen non-empty setsV1 andV2, by h-homogeneity ofX we can find
anf ∈G such thatf (Ui)⊂ Vi , i = 1,2. It follows thatV1×V2 meetsB, henceB is dense
in X2. SinceB ⊂R, it follows thatR =X2. 2
Proposition 4.5. The groupG has no compact normal subgroups other than{1}.

We shall prove later that actuallyG has no non-trivial closed normal subgroups.

Proof. LetH 6= {1} be a normal subgroup ofG. We show thatH is not compact.
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Let Y be the collection of all non-empty clopen sets inX. ConsiderY as a discrete
topological space. The groupG has a natural continuous action onY . Pickf ∈H , f 6= 1.
PickU ∈ Y such thatf (U)∩U = ∅ andX\(f (U)∪U) 6= ∅. LetY1 be the set of allV ∈ Y
such thatV is a proper subset ofX \U . If V ∈ Y1, there existsh ∈G such thath(U)=U
andh(f (U))= V . Putg = hf h−1. Theng(U)= V . SinceH is a normal subgroup ofG,
we haveg ∈H . It follows that theH -orbit ofU containsY1. SinceY1 is infinite,H cannot
be compact. 2
Proposition 4.6. For every topological groupH the following conditions are equivalent:

(1) H is minimal and topologically simple;
(2) if f :H → H ′ is a continuous onto homomorphism of topological groups, then

eitherf is a homeomorphism, or|H ′| = 1. 2
We are now ready to prove Theorem 1.1, part 2:

For every compacth-homogeneous spaceX the topological groupG = Aut(X) is
minimal and topologically simple.

Proof. Let f :G→ G′ be a continuous onto homomorphism. According to Proposi-
tion 4.6, we must prove that eitherf is a homeomorphism or|G′| = 1.

SinceG is Roelcke-precompact, so isG′. LetΘ ′ be the Roelcke compactification ofG′.
The homomorphismf extends to a continuous mapF :Θ→Θ ′. Let e′ be the unity ofG′,
and letS = F−1(e′)⊂Θ.

Claim 1. S is a subsemigroup ofΘ.

Let p,q ∈ S. In virtue of Proposition 3.1, there exist filter basesFp andFq on G
such thatFp converges top (in Θ), Fq converges toq and pq is a cluster point of
the filter baseFpFq . The filter basesF ′p = F(Fp) andF ′q = F(Fq) onG′ converge to
F(p)= F(q)= e′, hence the same is true for the filter baseF ′pF ′q = F(FpFq). Sincepq
is a cluster point ofFpFq , F(pq) is a cluster point of the convergent filter baseF(FpFq).
A convergent filter on a Hausdorff space has only one cluster point, namely the limit. Thus
F(pq)= e′ and hencepq ∈ S.

Claim 2. The semigroupS is closed under involution.

In virtue of Proposition 4.1, the inversion onG′ extends to an involutionx 7→ x∗ of Θ ′.
SinceF(p∗)= F(p)∗ for everyp ∈G, the same holds for everyp ∈Θ. Let p ∈ S. Then
F(p∗)= F(p)∗ = e′ and hencep∗ ∈ S.

Claim 3. If g ∈G andg′ = f (g), thenF−1(g′)= gS = Sg.

We saw that the left shifth 7→ gh of G extends to a continuous self-mapL= Lg of Θ
defined byL(p) = gp (Proposition 4.2). According to Proposition 4.1, the self-mapx 7→
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g′x of G′ extends to self-homeomorphismL′ of Θ ′. The mapsFL andL′F fromΘ toΘ ′
coincide onG and hence everywhere. Replacingg by g−1, we see thatFL−1= (L′)−1F .
ThusF−1(g′)= F−1L′(e′)= LF−1(e′)= gS. Using right shifts instead of left shifts, we
similarly conclude thatF−1(g′)= Sg.

Claim 4. S is invariant under inner automorphisms ofΘ.

We have just seen thatgS = Sg for everyg ∈G, hencegSg−1 = S.
LetT = {r ∈ S: r ⊃∆}. According to Proposition 4.3, there is a greatest elementp in T .

Claim 4 implies thatp is invariant under inner automorphisms. In virtue of Proposition 4.4,
eitherp = ∆ or p = X2. We shall show that eitherf is a homeomorphism or|G′| = 1,
according to which of the casesp =∆ or p =X2 holds.

First assume thatp =∆.

Claim 5 (p =∆). All elements ofS are invertible inΘ.

Let r ∈ S. Then r∗r ∈ S and rr∗ ∈ S, sinceS is a symmetrical semigroup. Since
Domr = Ranr =X, we haver∗r ⊃∆ andrr∗ ⊃∆. The assumptionp =∆ implies that
every relations ∈ S such thats ⊃ ∆ must be equal to∆. Thusrr∗ = r∗r = ∆ andr is
invertible.

Claim 6 (p =∆). |S| = 1.

Claim 5 implies thatS is a subgroup ofG. This subgroup is normal (Claim 4) and
compact, sinceS is closed inΘ. Proposition 4.5 implies that|S| = 1.

Claim 7 (p =∆). f :G→G′ is a homeomorphism.

Claims 6 and 3 imply thatG = F−1(G′) and that the mapf :G→ G′ is bijective.
Since F is a map between compact spaces, it is perfect, and hence so is the map
f :G= F−1(G′)→G′. Thusf , being a perfect bijection, is a homeomorphism.

Now consider the casep =X2.

Claim 8. If p =X2 ∈ S, thenG′ = {e′}.

Let g ∈G andg′ = f (g). We havegp = p ∈ S. On the other hand, Claim 3 implies that
gp ∈ gS = F−1(g′). Thusg′ = F(gp)= F(p)= e′. 2

5. Remarks

The group Aut(K) is Roelcke-precompact also for some compact spacesK which are
not zero-dimensional. For example, letI = [0,1] andG = Aut(I). Identify G with a
subspace ofE(I), as above. The Roelcke compactification ofG can be identified with
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the closure ofG in E(I). LetG0 be the subgroup of allf ∈G which leave the end-points
of the intervalI fixed. The closure ofG0 in E(I) is the set of all curvesc in the squareI2

such thatc connects the points(0,0) and(1,1) and has the following property: there are
no points(x, y) ∈ c and(x ′, y ′) ∈ c such thatx < x ′ andy > y ′. This can be used to yield
an alternative proof of D. Gamarnik’s theorem saying thatG is minimal [3].

Let K = Iω be the Hilbert cube andG = Aut(K). I do not know ifG is minimal or
Roelcke-precompact in this case.
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