

brought to you by

Topology and its Applications 111 (2001) 195–205 www.elsevier.com/locate/topol

The Roelcke compactification of groups of homeomorphisms

V.V. Uspenskij

Department of Mathematics, 321 Morton Hall, Ohio University, Athens, OH 45701, USA Received 24 December 1998

Abstract

Let *X* be a zero-dimensional compact space such that all non-empty clopen subsets of *X* are homeomorphic to each other, and let Aut *X* be the group of all self-homeomorphisms of *X*, equipped with the compact-open topology. We prove that the Roelcke compactification of Aut *X* can be identified with the semigroup of all closed relations on *X* whose domain and range are equal to *X*. We use this to prove that the group Aut *X* is topologically simple and minimal. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Topological group; Uniformity; Semigroup; Relation; Compactification

AMS classification: Primary 22A05, Secondary 22A15; 54H15

1. Introduction

Let *G* be a topological group. There are at least four natural uniform structures on *G* which are compatible with the topology [4]: the left uniformity \mathcal{L} , the right uniformity \mathcal{R} , their least upper bound $\mathcal{L} \vee \mathcal{R}$ and their greatest lower bound $\mathcal{L} \wedge \mathcal{R}$. In [4] the uniformity $\mathcal{L} \wedge \mathcal{R}$ is called the *lower uniformity* on *G*; we shall call it the *Roelcke uniformity*, as in [6]. Let $\mathcal{N}(G)$ be the filter of neighborhoods of unity in *G*. When *U* runs over $\mathcal{N}(G)$, the covers of the form $\{xU: x \in G\}$, $\{Ux: x \in G\}$, $\{xU \cap Ux: x \in G\}$ and $\{UxU: x \in G\}$ are uniform for \mathcal{L} , \mathcal{R} , $\mathcal{L} \vee \mathcal{R}$ and $\mathcal{L} \wedge \mathcal{R}$, respectively, and generate the corresponding uniformity.

All topological groups are assumed to be Hausdorff. A uniform space X is *precompact* if its completion is compact or, equivalently, if every uniform cover of X has a finite subcover. For any topological group G the following are equivalent:

- (1) G is \mathcal{L} -precompact;
- (2) G is \mathcal{R} -precompact;

E-mail address: uspensk@math.ohiou.edu (V.V. Uspenskij).

^{0166-8641/01/\$ –} see front matter $\, \odot$ 2001 Elsevier Science B.V. All rights reserved. PII: S0166-8641(99)00185-6

- (3) *G* is $\mathcal{L} \vee \mathcal{R}$ -precompact;
- (4) *G* is a topological subgroup of a compact group.

If these conditions are satisfied, *G* is said to be *precompact*. Let us say that *G* is *Roelckeprecompact* if *G* is precompact with respect to the Roelcke uniformity. A group *G* is precompact if and only if for every $U \in \mathcal{N}(G)$ there exists a finite set $F \subset G$ such that UF = FU = G. A group *G* is Roelcke-precompact if and only if for every $U \in \mathcal{N}(G)$ there exists a finite $F \subset G$ such that UFU = G. Every precompact group is Roelckeprecompact, but not vice versa. For example, the unitary group of a Hilbert space or the group Symm(*E*) of all permutations of a discrete set *E*, both with the pointwise convergence topology, are Roelcke-precompact but not precompact [6,4]. Unlike the usual precompactness, the property of being Roelcke-precompact is not inherited by subgroups. (If *H* is a subgroup of *G*, in general the Roelcke uniformity of *H* is finer than the uniformity induced on *H* by the Roelcke uniformity of *G*.) Moreover, every topological group is a subgroup of a Roelcke-precompact group [7].

The *Roelcke completion* of a topological group *G* is the completion of the uniform space $(G, \mathcal{L} \land \mathcal{R})$. If *G* is Roelcke-precompact, the Roelcke completion of *G* will be called the *Roelcke compactification* of *G*.

A topological group is *minimal* if it does not admit a strictly coarser Hausdorff group topology. Let us say that a group G is *topologically simple* if G has no closed normal subgroups besides G and {1}. It was shown in [6,7] that the Roelcke compactification of some important topological groups has a natural structure of an ordered semigroup with an involution, and that the study of this structure can be used to prove that a given group is minimal and topologically simple. In the present paper we apply this method to some groups of homeomorphisms.

A *semigroup* is a set with an associative binary operation. Let *S* be a semigroup with the multiplication $(x, y) \mapsto xy$. We say that a self-map $x \mapsto x^*$ of *S* is an *involution* if $x^{**} = x$ and $(xy)^* = y^*x^*$ for all $x, y \in S$. Every group has a natural involution $x \mapsto x^{-1}$. An element $x \in S$ is *symmetrical* if $x^* = x$, and a subset $A \subset S$ is *symmetrical* if $A^* = A$. An *ordered semigroup* is a semigroup with a partial order \leq such that the conditions $x \leq x'$ and $y \leq y'$ imply $xy \leq x'y'$. An element $x \in S$ is *idempotent* if $x^2 = x$.

Let *K* be a compact space. A *closed relation* on *K* is a closed subset of K^2 . Let E(K) be the compact space of all closed relations on *K*, equipped with the Vietoris topology. If $R, S \in E(K)$, then the *composition* of *R* and *S* is the relation $RS = \{(x, y): \exists z((x, z) \in S \text{ and } (z, y) \in R)\}$. The relation *RS* is closed, since it is the image of the closed subset $\{(x, z, y): (x, z) \in S, (z, y) \in R\}$ of K^3 under the projection $K^3 \to K^2$ which is a closed map. If $R \in E(K)$, then the *inverse relation* $\{(x, y): (y, x) \in R\}$ will be denoted by R^* or by R^{-1} ; we prefer the first notation, since we are interested in the algebraic structure on E(K), and in general R^{-1} is not an inverse of *R* in the algebraic sense. The set E(K) has a natural partial order. Thus E(K) is an ordered semigroup with an involution. In general the map $(R, S) \mapsto RS$ from $E(K)^2$ to E(K) is not (even separately) continuous.

For $R \in E(K)$ let $\text{Dom } R = \{x : \exists y((x, y) \in R)\}$ and $\text{Ran } R = \{y : \exists x((x, y) \in R)\}$. Put $E_0(K) = \{R \in E(K): \text{ Dom } R = \text{Ran } R = K\}$. The set $E_0(K)$ is a closed symmetrical subsemigroup of E(K).

196

Denote by Aut(*K*) the group of all self-homeomorphisms of *K*, equipped with the compact-open topology. For every $h \in Aut(K)$ let $\Gamma(h) = \{(x, h(x)): x \in K\}$ be the graph of *h*. The map $h \mapsto \Gamma(h)$ from Aut(*K*) to $E_0(K)$ is a homeomorphic embedding and a morphism of semigroups with an involution. Identifying every self-homeomorphism of *K* with its graph, we consider the group Aut(*K*) as a subspace of $E_0(K)$.

We say that a compact space X is *h*-homogeneous if X is zero-dimensional and all nonempty clopen subsets of X are homeomorphic to each other.

Main Theorem 1.1. Let X be an h-homogeneous compact space, and let G = Aut(X) be the topological group of all self-homeomorphisms of X. Then:

- (1) *G* is Roelcke-precompact; the Roelcke compactification of *G* can be identified with the semigroup $E_0(X)$ of all closed relations *R* on *X* such that Dom R = Ran R = X;
- (2) *G* is minimal and topologically simple.

In the case when $X = 2^{\omega}$ is the Cantor set, the minimality of Aut(X) was proved by Gamarnik [3].

Let us explain how to deduce the second part of Theorem 1.1 from the first. Let $G = \operatorname{Aut}(X)$ be such as in Theorem 1.1, and let $f: G \to G'$ be a continuous onto homomorphism. We must prove that either f is a topological isomorphism or |G'| = 1. Let $\Theta = E_0(X)$. The first part of Theorem 1.1 implies that f can be extended to a map $F: \Theta \to \Theta'$, where Θ' is the Roelcke compactification of G'. Let e' be the unity of G', and let $S = F^{-1}(e')$. Then S is a closed symmetrical subsemigroup of Θ . Let Δ be the diagonal in X^2 . The set $\{r \in S: \Delta \subset r\}$ has a largest element. Denote this element by p. Then p is a symmetrical idempotent in Θ and hence an equivalence relation on X. The semigroup S is invariant under inner automorphisms of Θ , and so is the relation p. But there are only two G-invariant closed equivalence relations on X, namely Δ and X^2 . If $p = \Delta$, then $S \subset G$, $G = F^{-1}(G')$ and f is perfect. Since G has no non-trivial compact normal subgroups, we conclude that f is a homeomorphism. If $p = X^2$, then $S = \Theta$ and $G' = \{e'\}$.

A similar argument was used in [7] to prove that every topological group is a subgroup of a Roelcke-precompact topologically simple minimal group, and in [6] to yield an alternative proof of Stoyanov's theorem asserting that the unitary group of a Hilbert space is minimal [5,2]. For more information on minimal groups, see the recent survey by Dikranjan [1].

We prove the first part of Theorem 1.1 in Section 2, and the second part in Section 4.

2. Proof of Main Theorem, part 1

Let *X* be an *h*-homogeneous compact space, and let $G = \operatorname{Aut}(X)$. Let $\Theta = E_0(X)$ be the semigroup of all closed relations *R* on *X* such that $\operatorname{Dom} R = \operatorname{Ran} R = X$. We identify *G* with the set of all invertible elements of Θ . We prove in this section that Θ can be identified with the Roelcke compactification of *G*.

The space Θ , being compact, has a unique compatible uniformity. Let \mathcal{U} be the uniformity that G has as a subspace of Θ . The first part of Theorem 1.1 is equivalent to the following:

Theorem 2.1. Let X be an h-homogeneous compact space, $\Theta = E_0(X)$, and G = Aut(X). Identify G with the set of all invertible elements of Θ . Then:

- (1) G is dense in Θ ;
- (2) the uniformity U induced by the embedding of G into Θ coincides with the Roelcke uniformity L ∧ R on G.

Let us first introduce some notation. Let $\gamma = \{U_{\alpha} : \alpha \in A\}$ be a finite clopen partition of *X*. A γ -rectangle is a set of the form $U_{\alpha} \times U_{\beta}$, $\alpha, \beta \in A$. Given a relation $R \in \Theta$, denote by $M(\gamma, R)$ the set of all pairs $(\alpha, \beta) \in A \times A$ such that *R* meets the rectangle $U_{\alpha} \times U_{\beta}$. Let $\mathcal{V}(\gamma, R)$ be the family $\{U_{\alpha} \times U_{\beta} : (\alpha, \beta) \in M(\gamma, R)\}$ of all γ -rectangles which meet *R*. If *r* is a subset of $A \times A$, put

$$O_{\gamma,r} = \{ R \in \Theta \colon M(\gamma, R) = r \}.$$

The sets of the form $O_{\gamma,r}$ constitute a base of Θ . Denote by $E_0(A)$ the set of all relations r on A such that Dom r = Ran r = A. A set $O_{\gamma,r}$ is non-empty if and only if $r \in E_0(A)$.

Let $O_{\gamma}(R)$ be the set of all relations $S \in \Theta$ which meet the same γ -rectangles as R. We have $O_{\gamma}(R) = O_{\gamma,r}$, where $r = M(\gamma, R)$. The sets of the form $O_{\gamma}(R)$ constitute a base at R. If λ is another clopen partition of X which refines γ , then $O_{\lambda}(R) \subset O_{\gamma}(R)$.

Proof of Theorem 2.1. Our proof proceeds in three parts.

(a) We prove that G is dense in Θ .

Let $\gamma = \{U_{\alpha}: \alpha \in A\}$ be a finite clopen partition of *X* and $r \in E_0(A)$. We must prove that $O_{\gamma,r}$ meets *G*. Decomposing each U_{α} into a suitable number of clopen pieces, we can find a clopen partition $\{W_{\alpha,\beta}: (\alpha, \beta) \in r\}$ of *X* such that $U_{\alpha} = \bigcup \{W_{\alpha,\beta}: (\alpha, \beta) \in r\}$ for every $\alpha \in A$. Similarly, there exists a clopen partition $\{W'_{\alpha,\beta}: (\alpha, \beta) \in r\}$ of *X* such that $U_{\beta} = \bigcup \{W'_{\alpha,\beta}: (\alpha, \beta) \in r\}$ for every $\beta \in A$. Let $f \in G$ be a self-homeomorphism of *X* such that $f(W_{\alpha,\beta}) = W'_{\alpha,\beta}$ for every $(\alpha, \beta) \in r$. The graph of *f* meets each rectangle of the form $W_{\alpha,\beta} \times W'_{\alpha,\beta}$, $(\alpha, \beta) \in r$, and is contained in the union of such rectangles. It follows that $M(\gamma, f) = r$ and $f \in G \cap O_{\gamma,r} \neq \emptyset$.

(b) We prove that the uniformity \mathcal{U} is coarser than $\mathcal{L} \wedge \mathcal{R}$.

This is a special case of the following:

Lemma 2.2. For every compact space K the map $h \mapsto \Gamma(h)$ from Aut(K) to $E_0(K)$ is $\mathcal{L} \wedge \mathcal{R}$ -uniformly continuous.

Proof. It suffices to prove that the map under consideration is \mathcal{L} -uniformly continuous and \mathcal{R} -uniformly continuous. Let d be a continuous pseudometric on K. Let d_2 be the pseudometric on K^2 defined by $d_2((x, y), (x', y')) = d(x, x') + d(y, y')$, and let d_H be the corresponding Hausdorff pseudometric on $E_0(K)$. If $R, S \in E_0(K)$ and a > 0, then

 $d_H(R, S) \leq a$ if and only if each of the relations R and S is contained in the closed a-neighbourhood of the other with respect to d_2 . The pseudometrics of the form d_H generate the uniformity of $E_0(K)$.

Let d_s be the right-invariant pseudometric on Aut(*K*) defined by $d_s(f, g) = \sup\{d(f(x), g(x)): x \in K\}$. The pseudometrics of the form d_s generate the right uniformity \mathcal{R} on Aut(*K*). Since $d_H(\Gamma(f), \Gamma(g)) \leq d_s(f, g)$, the map Γ : Aut(*K*) $\rightarrow E_0(K)$ is \mathcal{R} -uniformly continuous. For the left uniformity \mathcal{L} we can either use a similar argument, or note that the involution on Aut(*K*) is an isomorphism between \mathcal{L} and \mathcal{R} , and use the formula $\Gamma(f) = \Gamma(f^{-1})^*$ to reduce the case of \mathcal{L} to the case of \mathcal{R} . \Box

(c) We prove that \mathcal{U} is finer than $\mathcal{L} \wedge \mathcal{R}$.

Let $\gamma = \{U_{\alpha}: \alpha \in A\}$ be a finite clopen partition of *X*. Put $V_{\gamma} = \{f \in G: f(U_{\alpha}) = U_{\alpha} \text{ for every } \alpha \in A\}$. The open subgroups of the form V_{γ} constitute a base at unity of *G*. We must show that if $f, g \in G$ are close enough in Θ , then $f \in V_{\gamma}gV_{\gamma}$.

The set of all pairs $(R, S) \in \Theta^2$ such that $M(\gamma, R) = M(\gamma, S)$ is a neighbourhood of the diagonal in Θ^2 and therefore an entourage for the unique compatible uniformity on Θ . It suffices to prove that for every $f, g \in G$ the condition $M(\gamma, f) = M(\gamma, g)$ implies that $f \in V_{\gamma}gV_{\gamma}$. Suppose that $M(\gamma, f) = M(\gamma, g) = r$. The following conditions are equivalent for every $\alpha, \beta \in A$:

- (1) $f(U_{\alpha}) \cap U_{\beta} \neq \emptyset;$
- (2) $g(U_{\alpha}) \cap U_{\beta} \neq \emptyset$;
- (3) $(\alpha, \beta) \in r$.

Pick $u \in G$ such that $u(f(U_{\alpha}) \cap U_{\beta}) = g(U_{\alpha}) \cap U_{\beta}$ for every $(\alpha, \beta) \in r$. Such a self-homeomorphism u of X exists, since all non-empty clopen subsets of X are homeomorphic. Since for a fixed $\beta \in A$ the sets $f(U_{\alpha}) \cap U_{\beta}$ cover U_{β} , we have $u(U_{\beta}) = U_{\beta}$. Thus $u \in V_{\gamma}$. It follows that $uf(U_{\alpha}) \cap U_{\beta} = u(f(U_{\alpha}) \cap U_{\beta}) = g(U_{\alpha}) \cap U_{\beta}$ for all $\alpha, \beta \in A$ and hence $uf(U_{\alpha}) = g(U_{\alpha})$ for every $\alpha \in A$. Put $v = g^{-1}uf$. Since $uf(U_{\alpha}) = g(U_{\alpha})$, we have $v(U_{\alpha}) = U_{\alpha}$ for every $\alpha \in A$. Thus $v \in V_{\gamma}$ and $f = u^{-1}gv \in V_{\gamma}gV_{\gamma}$. \Box

3. Continuity-like properties of composition

We preserve all the notation of the previous section. In particular, X is an h-homogeneous compact space, G = Aut(X), $\Theta = E_0(X)$.

Recall that is a non-empty collection \mathcal{F} of non-empty subsets of a set Y is a *filter base* on Y if for every $A, B \in \mathcal{F}$ there is $C \in \mathcal{F}$ such that $C \subset A \cap B$. If Y is a topological space, \mathcal{F} is a filter base on Y and $x \in Y$, then x is a *cluster point* of \mathcal{F} if every neighbourhood of x meets every member of \mathcal{F} , and \mathcal{F} converges to x if every neighbourhood of x contains a member of \mathcal{F} . If \mathcal{F} and \mathcal{G} are two filter bases on G, let $\mathcal{FG} = \{AB: A \in \mathcal{F}, B \in \mathcal{G}\}$.

For every $R \in \Theta$ let

 $\mathcal{F}_R = \{ G \cap V \colon V \text{ is a neighbourhood of } R \text{ in } \Theta \}.$

In other words, \mathcal{F}_R is the trace on *G* of the filter of neighborhoods of *R* in Θ . We have noted that the multiplication on Θ is not continuous. If $R, S \in \Theta$, it is not true in general

that $\mathcal{F}_R \mathcal{F}_S$ converges to *RS*. However, *RS* is a cluster point of $\mathcal{F}_R \mathcal{F}_S$. This fact will be used in the next section.

Proposition 3.1. If $R, S \in \Theta$, then RS is a cluster point of the filter base $\mathcal{F}_R \mathcal{F}_S$.

We need some lemmas. First we note that for any compact space K the composition of relations is upper-semicontinuous on E(K) in the following sense:

Lemma 3.2. Let K be a compact space, $R, S \in E(K)$. Let O be an open set in K^2 such that $RS \subset O$. Then there exist open sets V_1, V_2 in K^2 such that $R \subset V_1, S \subset V_2$, and for every $R', S' \in E(K)$ such that $R' \subset V_1, S' \subset V_2$ we have $R'S' \subset O$.

Proof. Consider the following three closed sets in K^3 :

$$F_{1} = \{(x, z, y): (z, y) \in R\},\$$

$$F_{2} = \{(x, z, y): (x, z) \in S\},\$$

$$F_{3} = \{(x, z, y): (x, y) \notin O\}.$$

The intersection of these three sets is empty. There exist neighborhoods of these sets with empty intersection. We may assume that the neighborhoods of F_1 and F_2 are of the form $\{(x, z, y): (z, y) \in V_1\}$ and $\{(x, z, y): (x, z) \in V_2\}$, respectively, where V_1 and V_2 are open in K^2 . The sets V_1 and V_2 are as required. \Box

Lemma 3.3. Let $\gamma = \{U_{\alpha} : \alpha \in A\}$ be a finite clopen partition of X. For every $R, S \in \Theta$ we have $M(\gamma, RS) \subset M(\gamma, R)M(\gamma, S)$ (the product on the right means the composition of relations on A).

Proof. Let $(\alpha, \beta) \in M(\gamma, RS)$. Then *RS* meets the rectangle $U_{\alpha} \times U_{\beta}$. Pick $(x, y) \in RS \cap (U_{\alpha} \times U_{\beta})$. There exists $z \in X$ such that $(x, z) \in S$ and $(z, y) \in R$. Pick $\delta \in A$ such that $z \in U_{\delta}$. Then $(x, z) \in S \cap (U_{\alpha} \times U_{\delta}), (z, y) \in R \cap (U_{\delta} \times U_{\beta})$, hence $(\alpha, \delta) \in M(\gamma, S)$ and $(\delta, \beta) \in M(\gamma, R)$. It follows that $(\alpha, \beta) \in M(\gamma, R)M(\gamma, S)$. \Box

Lemma 3.4. Let $\lambda = \{U_{\alpha} : \alpha \in A\}$ be a finite clopen partition of X, and let $r, s \in E_0(A)$. There exist $f, g \in G$ such that $M(\lambda, f) = r$, $M(\lambda, g) = s$ and $M(\lambda, fg) = rs$.

Proof. We modify the proof of Theorem 2.1. For every $\gamma \in A$ take a clopen partition $\{V_{\alpha,\gamma,\beta}: (\alpha,\gamma) \in s, (\gamma,\beta) \in r\}$ of U_{γ} . For every $(\gamma,\beta) \in r$ put $W_{\gamma,\beta} = \bigcup \{V_{\alpha,\gamma,\beta}: (\alpha,\gamma) \in s\}$. For every $(\alpha,\gamma) \in s$ put $Y'_{\alpha,\gamma} = \bigcup \{V_{\alpha,\gamma,\beta}: (\gamma,\beta) \in r\}$. Take a clopen partition $\{W'_{\gamma,\beta}: (\gamma,\beta) \in r\}$ of X such that for every $\beta \in A$ we have $U_{\beta} = \bigcup \{W'_{\gamma,\beta}: (\gamma,\beta) \in r\}$. Take a clopen partition $\{Y_{\alpha,\gamma}: (\alpha,\gamma) \in s\}$ of X such that for every $\alpha \in A$ we have $U_{\alpha} = \bigcup \{Y_{\alpha,\gamma}: (\alpha,\gamma) \in s\}$. There exist $f \in G$ such that $f(W_{\gamma,\beta}) = W'_{\gamma,\beta}$ for every $(\gamma,\beta) \in r$. There exists $g \in G$ such that $g(Y_{\alpha,\gamma}) = Y'_{\alpha,\gamma}$ for every $(\alpha,\gamma) \in s$. The graph of f meets every rectangle $W_{\gamma,\beta} \times W'_{\gamma,\beta}$, $(\gamma,\beta) \in r$, and is contained in the union of such rectangles. Since $W_{\gamma,\beta} \times W'_{\gamma,\beta} \subset U_{\gamma} \times U_{\beta}$, it follows that $M(\lambda, f) = r$. Similarly,

 $M(\lambda, g) = s$. We claim that $M(\lambda, fg) = rs$. Let $(\alpha, \beta) \in rs$. There exists $\gamma \in A$ such that $(\alpha, \gamma) \in s$ and $(\gamma, \beta) \in r$. We have $g(U_{\alpha}) \supset g(Y_{\alpha,\gamma}) = Y'_{\alpha,\gamma} \supset V_{\alpha,\gamma,\beta}$ and $f^{-1}(U_{\beta}) \supset f^{-1}(W'_{\gamma,\beta}) = W_{\gamma,\beta} \supset V_{\alpha,\gamma,\beta}$. Thus $V_{\alpha,\gamma,\beta} \subset g(U_{\alpha}) \cap f^{-1}(U_{\beta}) \neq \emptyset$. It follows that the graph of fg meets the rectangle $U_{\alpha} \times U_{\beta}$. This means that $(\alpha, \beta) \in M(\lambda, fg)$. We have proved that $rs \subset M(\lambda, fg)$. The reverse inclusion follows from Lemma 3.3. \Box

Proof of Proposition 3.1. Let U_1 , U_2 , U_3 be neighborhoods in Θ of R, S and RS, respectively. We must show that U_3 meets the set $(U_1 \cap G)(U_2 \cap G)$.

Fix a clopen partition λ of X such that $O_{\lambda}(RS) \subset U_3$. Lemma 3.2 implies that there exists a clopen partition γ of X such that for every $R' \in O_{\gamma}(R)$ and $S' \in O_{\gamma}(S)$ we have $R'S' \subset \bigcup \mathcal{V}(\lambda, RS)$ (recall that $\mathcal{V}(\lambda, RS)$ is the family of all λ -rectangles that meet RS). We may assume that γ refines λ and that $O_{\gamma}(R) \subset U_1$, $O_{\gamma}(S) \subset U_2$. Put $r = M(\gamma, R)$, $s = M(\gamma, S)$. According to Lemma 3.4, there exist $f, g \in G$ such that $M(\gamma, f) = r, M(\gamma, g) = s$ and $M(\gamma, fg) = rs$. Then $f \in G \cap O_{\gamma}(R)$ and $g \in G \cap O_{\gamma}(S)$. Lemma 3.3 implies that $M(\gamma, RS) \subset rs = M(\gamma, fg)$. This means that (the graph of) fg meets every member of the family $\mathcal{V}(\gamma, RS)$. Then every member of $\mathcal{V}(\lambda, RS)$ meets fg, since every member of $\mathcal{V}(\lambda, RS)$ contains a member of $\mathcal{V}(\gamma, RS)$. On the other hand, by the choice of γ we have $fg \subset \bigcup \mathcal{V}(\lambda, RS)$. It follows that $M(\lambda, fg) = M(\lambda, RS)$. Thus $fg \in O_{\lambda}(RS) \subset U_3$ and hence $fg \in (U_1 \cap G)(U_2 \cap G) \cap U_3 \neq \emptyset$.

4. Proof of Main Theorem, part 2

Let X, as before, be a compact h-homogeneous space, G = Aut(X), $\Theta = E_0(X)$. We saw that G is Roelcke-precompact and that Θ can be identified with the Roelcke compactification of G. In this section we prove that G is minimal and topologically simple.

If *H* is a group and $g \in H$, we denote by l_g (respectively, r_g) the left shift of *H* defined by $l_g(h) = gh$ (respectively, the right shift defined by $r_g(h) = hg$).

Proposition 4.1. Let H be a topological group, and let K be the Roelcke completion of H. Let $g \in H$. Each of the following self-maps of H extends to a self-homeomorphism of K:

(1) the left shift l_g ;

- (2) the right shift r_g ;
- (3) the inversion $g \mapsto g^{-1}$.

Proof. Let \mathcal{L} and \mathcal{R} be the left and the right uniformity on H, respectively. In each of the cases (1)–(3) the map $f: H \to H$ under consideration is an automorphism of the uniform space $(H, \mathcal{L} \land \mathcal{R})$. This is obvious for the case (3). For the cases (1) and (2), observe that the uniformities \mathcal{L} and \mathcal{R} are invariant under left and right shifts, hence the same is true for their greatest lower bound $\mathcal{L} \land \mathcal{R}$. It follows that in all cases f extends to an automorphism of the completion K of the uniform space $(H, \mathcal{L} \land \mathcal{R})$. \Box

For $g \in G$ define self-maps $L_g : \Theta \to \Theta$ and $R_g : \Theta \to \Theta$ by $L_g(R) = gR$ and $R_g(R) = Rg$.

Proposition 4.2. For every $g \in G$ the maps $L_g : \Theta \to \Theta$ and $R_g : \Theta \to \Theta$ are continuous.

Proof. We have $gR = \{(x, g(y)): (x, y) \in R\}$. Let $\lambda = \{U_{\alpha}: \alpha \in A\}$ be a clopen partition of *X*. Let $r = M(\lambda, gR)$, and let $O_{\lambda}(gR) = \{S \in \Theta: M(\lambda, S) = r\}$ be a basic neighbourhood of gR. Let *U* be the set of all $T \in \Theta$ such that *T* meets every member of the family $\{U_{\alpha} \times g^{-1}(U_{\beta}): (\alpha, \beta) \in r\}$ and is contained in the union of this family. Then *U* is a neighbourhood of *R* and $L_g(U) = O_{\lambda}(gR)$. Thus L_g is continuous. The argument for R_g is similar. \Box

Let Δ be the diagonal in X^2 .

Proposition 4.3. Let *S* be a closed subsemigroup of Θ , and let *T* be the set of all $p \in S$ such that $p \supset \Delta$. If $T \neq \emptyset$, then *T* has a greatest element *p*, and *p* is an idempotent.

Proof. We claim that every non-empty closed subset of Θ has a maximal element. Indeed, if *C* is a non-empty linearly ordered subset of Θ , then *C* has a least upper bound $b = \overline{\bigcup C}$ in Θ , and *b* belongs to the closure of *C* in Θ . Thus our claim follows from Zorn's lemma.

The set *T* is a closed subsemigroup of Θ . Let *p* be a maximal element of *T*. For every $q \in T$ we have $pq \supset p\Delta = p$, whence pq = p. It follows that *p* is an idempotent and that $p = pq \supset \Delta q = q$. Thus *p* is the greatest element of *T*. \Box

An *inner automorphism* of Θ is a map of the form $p \mapsto gpg^{-1}, g \in G$.

Proposition 4.4. There are precisely two elements in Θ which are invariant under all inner automorphisms of Θ , namely Δ and X^2 .

Proof. A relation $R \in \Theta$ is invariant under all inner automorphisms if and only if the following holds: if $x, y \in X$ and $(x, y) \in R$, then $(f(x), f(y)) \in R$ for every $f \in G$. Suppose that $R \in \Theta$ has this property and $\Delta \neq R$. Pick $(x, y) \in R$ such that $x \neq y$. We claim that the set $B = \{(f(x), f(y)): f \in G\}$ is dense in X^2 . Indeed, pick disjoint clopen neighborhoods U_1 and U_2 of x and y, respectively, such that X is not covered by U_1 and U_2 . Given disjoint clopen non-empty sets V_1 and V_2 , by h-homogeneity of X we can find an $f \in G$ such that $f(U_i) \subset V_i$, i = 1, 2. It follows that $V_1 \times V_2$ meets B, hence B is dense in X^2 . Since $B \subset R$, it follows that $R = X^2$. \Box

Proposition 4.5. *The group G has no compact normal subgroups other than* {1}*.*

We shall prove later that actually G has no non-trivial closed normal subgroups.

Proof. Let $H \neq \{1\}$ be a normal subgroup of G. We show that H is not compact.

Let *Y* be the collection of all non-empty clopen sets in *X*. Consider *Y* as a discrete topological space. The group *G* has a natural continuous action on *Y*. Pick $f \in H$, $f \neq 1$. Pick $U \in Y$ such that $f(U) \cap U = \emptyset$ and $X \setminus (f(U) \cup U) \neq \emptyset$. Let *Y*₁ be the set of all $V \in Y$ such that *Y* is a proper subset of $X \setminus U$. If $V \in Y_1$, there exists $h \in G$ such that h(U) = U and h(f(U)) = V. Put $g = hfh^{-1}$. Then g(U) = V. Since *H* is a normal subgroup of *G*, we have $g \in H$. It follows that the *H*-orbit of *U* contains *Y*₁. Since *Y*₁ is infinite, *H* cannot be compact. \Box

Proposition 4.6. For every topological group H the following conditions are equivalent:

- (1) *H* is minimal and topologically simple;
- (2) if $f: H \to H'$ is a continuous onto homomorphism of topological groups, then either f is a homeomorphism, or |H'| = 1. \Box

We are now ready to prove Theorem 1.1, part 2:

For every compact h-homogeneous space X the topological group G = Aut(X) is minimal and topologically simple.

Proof. Let $f: G \to G'$ be a continuous onto homomorphism. According to Proposition 4.6, we must prove that either f is a homeomorphism or |G'| = 1.

Since *G* is Roelcke-precompact, so is *G'*. Let Θ' be the Roelcke compactification of *G'*. The homomorphism *f* extends to a continuous map $F : \Theta \to \Theta'$. Let *e'* be the unity of *G'*, and let $S = F^{-1}(e') \subset \Theta$.

Claim 1. S is a subsemigroup of Θ .

Let $p, q \in S$. In virtue of Proposition 3.1, there exist filter bases \mathcal{F}_p and \mathcal{F}_q on G such that \mathcal{F}_p converges to p (in Θ), \mathcal{F}_q converges to q and pq is a cluster point of the filter base $\mathcal{F}_p\mathcal{F}_q$. The filter bases $\mathcal{F}'_p = F(\mathcal{F}_p)$ and $\mathcal{F}'_q = F(\mathcal{F}_q)$ on G' converge to F(p) = F(q) = e', hence the same is true for the filter base $\mathcal{F}'_p\mathcal{F}'_q = F(\mathcal{F}_p\mathcal{F}_q)$. Since pq is a cluster point of $\mathcal{F}_p\mathcal{F}_q$, F(pq) is a cluster point of the convergent filter base $F(\mathcal{F}_p\mathcal{F}_q)$. A convergent filter on a Hausdorff space has only one cluster point, namely the limit. Thus F(pq) = e' and hence $pq \in S$.

Claim 2. The semigroup S is closed under involution.

In virtue of Proposition 4.1, the inversion on G' extends to an involution $x \mapsto x^*$ of Θ' . Since $F(p^*) = F(p)^*$ for every $p \in G$, the same holds for every $p \in \Theta$. Let $p \in S$. Then $F(p^*) = F(p)^* = e'$ and hence $p^* \in S$.

Claim 3. *If* $g \in G$ *and* g' = f(g)*, then* $F^{-1}(g') = gS = Sg$ *.*

We saw that the left shift $h \mapsto gh$ of G extends to a continuous self-map $L = L_g$ of Θ defined by L(p) = gp (Proposition 4.2). According to Proposition 4.1, the self-map $x \mapsto$

g'x of G' extends to self-homeomorphism L' of Θ' . The maps FL and L'F from Θ to Θ' coincide on G and hence everywhere. Replacing g by g^{-1} , we see that $FL^{-1} = (L')^{-1}F$. Thus $F^{-1}(g') = F^{-1}L'(e') = LF^{-1}(e') = gS$. Using right shifts instead of left shifts, we similarly conclude that $F^{-1}(g') = Sg$.

Claim 4. *S* is invariant under inner automorphisms of Θ .

We have just seen that gS = Sg for every $g \in G$, hence $gSg^{-1} = S$.

Let $T = \{r \in S : r \supset \Delta\}$. According to Proposition 4.3, there is a greatest element p in T. Claim 4 implies that p is invariant under inner automorphisms. In virtue of Proposition 4.4, either $p = \Delta$ or $p = X^2$. We shall show that either f is a homeomorphism or |G'| = 1, according to which of the cases $p = \Delta$ or $p = X^2$ holds.

First assume that $p = \Delta$.

204

Claim 5 $(p = \Delta)$. All elements of *S* are invertible in Θ .

Let $r \in S$. Then $r^*r \in S$ and $rr^* \in S$, since S is a symmetrical semigroup. Since Dom $r = \operatorname{Ran} r = X$, we have $r^*r \supset \Delta$ and $rr^* \supset \Delta$. The assumption $p = \Delta$ implies that every relation $s \in S$ such that $s \supset \Delta$ must be equal to Δ . Thus $rr^* = r^*r = \Delta$ and r is invertible.

Claim 6 $(p = \Delta)$. |S| = 1.

Claim 5 implies that *S* is a subgroup of *G*. This subgroup is normal (Claim 4) and compact, since *S* is closed in Θ . Proposition 4.5 implies that |S| = 1.

Claim 7 $(p = \Delta)$. $f: G \to G'$ is a homeomorphism.

Claims 6 and 3 imply that $G = F^{-1}(G')$ and that the map $f: G \to G'$ is bijective. Since F is a map between compact spaces, it is perfect, and hence so is the map $f: G = F^{-1}(G') \to G'$. Thus f, being a perfect bijection, is a homeomorphism. Now consider the case $p = X^2$.

Claim 8. If $p = X^2 \in S$, then $G' = \{e'\}$.

Let $g \in G$ and g' = f(g). We have $gp = p \in S$. On the other hand, Claim 3 implies that $gp \in gS = F^{-1}(g')$. Thus g' = F(gp) = F(p) = e'. \Box

5. Remarks

The group $\operatorname{Aut}(K)$ is Roelcke-precompact also for some compact spaces K which are not zero-dimensional. For example, let I = [0, 1] and $G = \operatorname{Aut}(I)$. Identify G with a subspace of E(I), as above. The Roelcke compactification of G can be identified with

the closure of *G* in E(I). Let G_0 be the subgroup of all $f \in G$ which leave the end-points of the interval *I* fixed. The closure of G_0 in E(I) is the set of all curves *c* in the square I^2 such that *c* connects the points (0, 0) and (1, 1) and has the following property: there are no points $(x, y) \in c$ and $(x', y') \in c$ such that x < x' and y > y'. This can be used to yield an alternative proof of D. Gamarnik's theorem saying that *G* is minimal [3].

Let $K = I^{\omega}$ be the Hilbert cube and G = Aut(K). I do not know if G is minimal or Roelcke-precompact in this case.

References

- [1] D. Dikranjan, Recent advances in minimal topological groups, Topology Appl. 85 (1998) 53-91.
- [2] D. Dikranjan, I. Prodanov, L. Stoyanov, Topological Groups: Characters, Dualities and Minimal Group Topologies, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 130, Marcel Dekker, New York, 1989.
- [3] D. Gamarnik, Minimality of the group Aut(*C*), Serdika 17 (4) (1991) 197–201.
- [4] W. Roelcke, S. Dierolf, Uniform Structures on Topological Groups and Their Quotients, McGraw-Hill, New York, 1981.
- [5] L. Stoyanov, Total minimality of the unitary groups, Math. Z. 187 (1984) 273-283.
- [6] V.V. Uspenskij, The Roelcke compactification of unitary groups, in: D. Dikranjan, L. Salce (Eds.), Abelian Group, Module Theory, and Topology: Proceedings in Honor of Adalberto Orsatti's 60th Birthday, Lecture Notes in Pure and Applied Math., Vol. 201, Marcel Dekker, New York, 1998, pp. 411–419.
- [7] V.V. Uspenskij, On subgroups of minimal topological groups, Submitted for publication.