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Abstract

Let X be a zero-dimensional compact space such that all non-empty clopen subsetref
homeomorphic to each other, and let Aube the group of all self-homeomorphismsXfequipped
with the compact-open topology. We prove that the Roelcke compactification oX Aain be
identified with the semigroup of all closed relations Enwhose domain and range are equal to
X. We use this to prove that the group Ats topologically simple and minimall 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Let G be a topological group. There are at least four natural uniform structurés on
which are compatible with the topology [4]: the left uniformify the right uniformityR,
their least upper bound v R and their greatest lower bouriA R. In [4] the uniformity
L AR is called thdower uniformityon G; we shall call it theRoelcke uniformityas in [6].
Let N'(G) be the filter of neighborhoods of unity i&. WhenU runs overN (G), the
covers of the formxU: x € G}, {Ux: x € G}, (xUNUx: x € G} and{UxU: x € G}
are uniform forZ, R, £ v R and L A R, respectively, and generate the corresponding
uniformity.

All topological groups are assumed to be Hausdorff. A uniform spaisgprecompactf
its completion is compact or, equivalently, if every uniform covekdias a finite subcover.
For any topological groug the following are equivalent:

(1) G is L-precompact;

(2) G is R-precompact;
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(3) G is L v R-precompact;

(4) G is atopological subgroup of a compact group.

If these conditions are satisfie@, is said to bgorecompactLet us say thatG is Roelcke-
precompacif G is precompact with respect to the Roelcke uniformity. A graups
precompact if and only if for every/ € N'(G) there exists a finite sef C G such that

UF = FU = G. A groupG is Roelcke-precompact if and only if for evety € N'(G)

there exists a finite" C G such thatU FU = G. Every precompact group is Roelcke-
precompact, but not vice versa. For example, the unitary group of a Hilbert space or
the group Symrt&) of all permutations of a discrete sét, both with the pointwise
convergence topology, are Roelcke-precompact but not precompact [6,4]. Unlike the usual
precompactness, the property of being Roelcke-precompact is not inherited by subgroups.
(If H is a subgroup ofG, in general the Roelcke uniformity off is finer than the
uniformity induced onH by the Roelcke uniformity of5.) Moreover, every topological
group is a subgroup of a Roelcke-precompact group [7].

TheRoelcke completioof a topological grougs is the completion of the uniform space
(G, L AR). If G is Roelcke-precompact, the Roelcke completiozofvill be called the
Roelcke compactificatioof G.

A topological group isminimal if it does not admit a strictly coarser Hausdorff group
topology. Let us say that a group is topologically simplef G has no closed normal
subgroups besides and{1}. It was shown in [6,7] that the Roelcke compactification of
some important topological groups has a natural structure of an ordered semigroup with
an involution, and that the study of this structure can be used to prove that a given group
is minimal and topologically simple. In the present paper we apply this method to some
groups of homeomorphisms.

A semigroupis a set with an associative binary operation. KEdte a semigroup with
the multiplication(x, y) — xy. We say that a self-map +— x* of S is aninvolution if
x** = x and(xy)* = y*x* for all x, y € S. Every group has a natural involutian— x 1.

An elementx € S is symmetricalf x* = x, and a subsed C S is symmetricalf A* = A.
An ordered semigroufs a semigroup with a partial ordersuch that the conditions< x’
andy <y’ imply xy < x’y’. An elementx € S is idempotentf x% = x.

Let K be a compact space. @osed relatioron K is a closed subset &?2. Let E(K)
be the compact space of all closed relationskgrequipped with the Vietoris topology. If
R, S € E(K), then thecompositionof R and S is the relationRS = {(x, y): 3z((x,z) €
Sand(z,y) € R)}. The relationRS is closed, since it is the image of the closed subset
{(x,z,¥): (x,2) €8, (z,y) € R} of K3 under the projectiok 3 — K2 which is a closed
map. If R € E(K), then theinverse relation{(x, y): (y, x) € R} will be denoted byR* or
by R~1; we prefer the first notation, since we are interested in the algebraic structure on
E(K), and in generaR~1 is not an inverse oR in the algebraic sense. The g&tK) has
a natural partial order. ThuS(K) is an ordered semigroup with an involution. In general
the map(R, S) — RS from E(K)?to E(K) is not (even separately) continuous.

ForR € E(K) let DomR = {x: Jy((x,y) € R)} and RarR = {y: 3x((x, y) € R)}. Put
Eo(K) ={R € E(K): DomR = RanR = K}. The setEy(K) is a closed symmetrical
subsemigroup of' (K).



V.V. Uspenskij / Topology and its Applications 111 (2001) 195-205 197

Denote by AutK) the group of all self-hnomeomorphisms &f, equipped with the
compact-open topology. For evere Aut(K) let I'(h) = {(x, h(x)): x € K} be the graph
of h. The maph +— I'(h) from Aut(K) to Eo(K) is a homeomorphic embedding and a
morphism of semigroups with an involution. Identifying every self-homeomorphiskn of
with its graph, we consider the group Akit) as a subspace @fy(K).

We say that a compact spakes h1-homogeneou$ X is zero-dimensional and all non-
empty clopen subsets &f are homeomorphic to each other.

Main Theorem 1.1. Let X be ank-homogeneous compact space, anddet Aut(X) be
the topological group of all self-homeomorphismstofThen
(1) G is Roelcke-precompgdhe Roelcke compactification 6f can be identified with
the semigrouEo(X) of all closed relation®® on X such thaDomR = RanR = X;;
(2) G is minimal and topologically simple.

In the case wherX = 2% is the Cantor set, the minimality of Agt) was proved by
Gamarnik [3].

Let us explain how to deduce the second part of Theoremfrbm the first. Let
G = Aut(X) be such as in Theorem.1, and let f:G — G’ be a continuous onto
homomorphism. We must prove that eithgiis a topological isomorphism dG’| = 1.

Let ® = Eo(X). The first part of Theorem.1 implies thatf can be extended to a map
F:0 — ©’, where®' is the Roelcke compactification @'. Let ¢’ be the unity ofG’,
and letS = F~1(¢'). ThenS is a closed symmetrical subsemigroup®f Let A be the
diagonal inX2. The set{r € S: A C r} has a largest element. Denote this elemenpby
Then p is a symmetrical idempotent i® and hence an equivalence relation ¥nThe
semigroupS is invariant under inner automorphisms®f and so is the relatiop. But
there are only twaG-invariant closed equivalence relations &pn namelyA and X2. If
p=A,thenS c G, G = F~(G') and f is perfect. Since5 has no non-trivial compact
normal subgroups, we conclude thais a homeomorphism. Ip = X2, thenS = ® and
G' ={e}.

A similar argument was used in [7] to prove that every topological group is a subgroup
of a Roelcke-precompact topologically simple minimal group, and in [6] to yield an
alternative proof of Stoyanov’s theorem asserting that the unitary group of a Hilbert space
is minimal [5,2]. For more information on minimal groups, see the recent survey by
Dikranjan [1].

We prove the first part of Theorem1lin Section 2, and the second part in Section 4.

2. Proof of Main Theorem, part 1

Let X be anh-homogeneous compact space, anddet Aut(X). Let ® = Eo(X) be
the semigroup of all closed relatio®son X such that DonkR = RanR = X. We identify
G with the set of all invertible elements @d. We prove in this section tha® can be
identified with the Roelcke compactification 61
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The space®, being compact, has a unique compatible uniformity. lete the
uniformity that G has as a subspace 6f. The first part of Theorem.1 is equivalent
to the following:

Theorem 2.1. Let X be ank-homogeneous compact spa€e—= Eo(X), andG = Aut(X).
Identify G with the set of all invertible elements f. Then
(1) Gisdenseim;
(2) the uniformityl/ induced by the embedding 6finto ® coincides with the Roelcke
uniformity L AR onG.

Let us first introduce some notation. Let= {U,: « € A} be a finite clopen partition of
X. A y-rectangleis a set of the fornt/,, x Ug, «, B € A. Given a relatiorR € ©, denote
by M(y, R) the set of all pairga, ) € A x A such thatR meets the rectanglg, x Us.
Let V(y, R) be the family{U, x Ug: (a, B) € M(y, R)} of all y-rectangles which meet
R.If risasubset oA x A, put

Oyr={Re€®: M(y,R)=r}.

The sets of the forn®,, , constitute a base @. Denote byEq(A) the set of all relations
r on A such that Dom = Ranr = A. A setO, , is non-empty if and only it € Eq(A).

Let O, (R) be the set of all relationS € ©® which meet the samg-rectangles a®. We
haveO, (R) = O,,, wherer = M(y, R). The sets of the forn®,, (R) constitute a base at
R. If A is another clopen partition of which refinesy, thenO0;.(R) C O, (R).

Proof of Theorem 2.1. Our proof proceeds in three parts.

(a) We prove tha is dense in®.

Lety = {Uy: « € A} be a finite clopen partition ok andr € Eg(A). We must prove
that 0, , meetsG. Decomposing eacl/, into a suitable number of clopen pieces, we
can find a clopen partitiofW, g: («, 8) € r} of X such thatUy = J{Wep: (a, B) €1}
for everya € A. Similarly, there exists a clopen partitiqmv(;yﬂ: (a, B) € r} of X such
thatUg = U{W&.ﬂ: (a, B) er} foreveryp € A. Let f € G be a self-homeomorphism of
X such thatf (Wy, g) = W(;.ﬂ for every(«, B) € r. The graph off meets each rectangle
of the form W, g x W(;,ﬂ, (a, B) € r, and is contained in the union of such rectangles. It
follows thatM (y, f)=randf e GN O, , # 0.

(b) We prove that the uniformi/ is coarser thar A R.

This is a special case of the following:

Lemma 2.2. For every compact spack the maph — I'(h) from Aut(K) to Eo(K) is
L A R-uniformly continuous.

Proof. It suffices to prove that the map under consideratiof-gniformly continuous
and R-uniformly continuous. Let/ be a continuous pseudometric &h Let d> be the
pseudometric ork 2 defined byda((x, y), (x', y) = d(x,x’) + d(y, y'), and letdy be
the corresponding Hausdorff pseudometric&s(K). If R, S € Eo(K) anda > 0, then
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dy(R,S) < a if and only if each of the relation® and S is contained in the closed-
neighbourhood of the other with respectio The pseudometrics of the foray; generate
the uniformity of Eg(K).

Letd, be the right-invariant pseudometric on Akit) defined byl (£, g) = sudd(f (x),
g(x)): x € K}. The pseudometrics of the forad, generate the right uniformityR
on Aut(K). Sincedy(I'(f), I'(g)) < ds(f, g), the mapl':Aut(K) — Eo(K) is R-
uniformly continuous. For the left uniformit we can either use a similar argument,
or note that the involution on A(K) is an isomorphism betweefi andR, and use the
formulal (f) = I'(f~1)* to reduce the case d@fto the case oR. 0O

(c) We prove that/ is finer thanl A R.

Let y = {Us: o € A} be a finite clopen partition ok. PutV, ={f € G: f(U,) =
U, for everya € A}. The open subgroups of the fori constitute a base at unity @f.
We must show that iff, ¢ € G are close enough i@, thenf € V, gV,,.

The set of all pairgR, S) € ©®2 such thatM (y, R) = M(y, S) is a neighbourhood of
the diagonal in®? and therefore an entourage for the unique compatible uniformity on
©. It suffices to prove that for every, g € G the conditionM (y, f) = M(y, g) implies
that f € V, gV,. Suppose that (y, f) = M(y,g) = r. The following conditions are
equivalent for every, 8 € A:

(1) fWa)NUg #6;

(2) g(Ua) NUp #0;

Q) (@, p)er.

Pick u € G such thatu(f(Uy) N Ug) = g(Uy) N Ug for every (a, B) € r. Such a
self-hnomeomorphism: of X exists, since all non-empty clopen subsets Jofare
homeomorphic. Since for a fixg#le A the setsf (Uy) N Ug coverUg, we haveu(Ug) =
Ug. Thusu € V,,. It follows thatuf(Uy) N Upg = u(f(Uy) N Up) = g(Uy) N Upg for all
a, B € A and hencef (Uy) = g(Uy,) for everya € A. Putv = g~ tuf. Sinceuf(U,) =
g(Uy), we havev(U,) = U, foreverya € A. Thusv e V,, and f = ulgve VygV,. O

3. Continuity-like properties of composition

We preserve all the notation of the previous section. In particklds,ank-homogene-
ous compact spacé€, = Aut(X), ® = Eo(X).

Recall that is a non-empty collectigh of non-empty subsets of a sEtis afilter base
onY ifforevery A, B € F thereisC € F suchthalC c AN B. If Y is atopological space,
F is afilter base o1y andx € Y, thenx is acluster pointof F if every neighbourhood of
x meets every member ¢f, andF convergeso x if every neighbourhood of contains a
member ofF. If F andg are two filter bases o6, let FG ={AB: A€ F, B G}.

For everyR € © let

Fr={GnV: Visaneighbourhood ak in ©}.

In other words,Fy, is the trace orG of the filter of neighborhoods aR in ®. We have
noted that the multiplication o® is not continuous. IR, S € @, it is not true in general
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that Fr Fs converges taRS. However,RS is a cluster point ofFg Fs. This fact will be
used in the next section.

Proposition 3.1. If R, S € ®, thenRS is a cluster point of the filter baség Fs.

We need some lemmas. First we note that for any compact gpdabe composition of
relations is upper-semicontinuous 61K) in the following sense:

Lemma 3.2. Let K be a compact spac®, S € E(K). Let O be an open set ik ? such
that RS C O. Then there exist open séis, Vo in K2 such thatR c Vi, S C Vs, and for
everyR’, S’ € E(K) such thatR’ c V1, 8’ C Vo we haveR’S’ C O.

Proof. Consider the following three closed setsk:

F1 = {(x,z,9): (z,y) € R},
Fo = {(x,z,y) (x,2) €S},
F3 = {(x,z,y): (x,y) ¢ O}.

The intersection of these three sets is empty. There exist neighborhoods of these sets with
empty intersection. We may assume that the neighborhoofis ahd F» are of the form
{(x,z,¥): (z,y) € Vi} and{(x, z, y): (x, z) € V>}, respectively, wher&; andV, are open

in K2. The sets/; and Vs, are as required. O

Lemma 3.3. Lety = {U,: o € A} be a finite clopen partition ok. For everyR, S € ®
we haveM (y, RS) C M(y, R)M(y, S) (the product on the right means the composition
of relations onA).

Proof. Let («, 8) € M(y, RS). Then RS meets the rectangl®, x Ug. Pick (x,y) €
RSN (Uy x Up). There existg € X such thatx, z) € S and(z, y) € R. Picks € A such
thatz € Us. Then(x,z) € SN (Uy x Us), (z,¥) € RN (Us x Up), hence(w, 8) € M(y, S)
and(é, B) € M(y, R). It follows that(a, B) € M(y, R)YM(y, S). O

Lemma 3.4. LetA = {U,: « € A} be afinite clopen partition ok, and letr, s € Eg(A).
There existf, g € G suchthatM (&, f)=r, M(A,g) =s andM(r, fg) =rs.

Proof. We modify the proof of Theorem.2. For everyy € A take a clopen partition
{(Va,y.p: (a,y) €s, (v, B) er}ofU,. Forever\(y, B) e r putWy, g = J{Vu,y.5: (@, y) €
s}. For every(a,y) € s put¥,, = U{Va,yp: (v.p) € r}. Take a clopen partition
{W]’/,ﬂ: (y, B) e r} of X such that for everyg € A we havelUg = U{W]’/,ﬂ: (y,B) er}.
Take a clopen partitioqY, ,: («,y) € s} of X such that for everyx € A we have
Uy = U{Ye,y: (a,y) € s}. There existf € G such thatf(W, g) = W)/,’ﬁ for every
(v, B) er. There existg € G such thatg(Ye,) =Y, , for every(e, y) € s. The graph
of f meets every rectangl®, g x W)/,’ﬁ, (v, B) € r, and is contained in the union of
such rectangles. Sind&, g x W), ; C U, x Uy, it follows thatM (1, f) = r. Similarly,
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M), g) =s. We claim thatM (&, fg) =rs. Let («, B) € rs. There existy € A such that
(a,y) €s and (y, B) € r. We haveg(Uy) D §(Yay) =Y, , D Vayp and f~1(Up) D
F7YW] ) =Wy D Va5 ThusVy,, g C g(Us) N fH(Up) # 0. It follows that the
graph of fg meets the rectangle, x Ug. This means thata, ) € M(%, fg). We have
proved thats C M (A, fg). The reverse inclusion follows from Lemma&33 O

Proof of Proposition 3.1. Let Uy, Uz, Us be neighborhoods i® of R, S and RS,
respectively. We must show thélg meets the set/1 N G)(U2 N G).

Fix a clopen partitionh of X such thatO, (RS) C Uz. Lemma 32 implies that there
exists a clopen partitiory of X such that for everyr’ € 0, (R) and S’ € 0, (S) we
have R'S" C | JV(%, RS) (recall thatV(x, RS) is the family of all A-rectangles that
meet RS). We may assume that refinesix and thatO, (R) C Ui, 0,(S) C U,. Put
r=M(y,R), s = M(y,S). According to Lemma 3, there existf, g € G such that
My, f)=r,M(y,g)=sandM(y, fg) =rs. Thenf e GN O, (R) andg € GN O, (S).
Lemma 33 implies thatM (y, RS) C rs = M(y, fg). This means that (the graph ofy
meets every member of the famil}(y, RS). Then every member df(A, RS) meetsfyg,
since every member df(1, RS) contains a member df(y, RS). On the other hand, by
the choice ofy we havefg C | JV (A, RS). It follows that M (x, fg) = M (%, RS). Thus
fg € 0,(RS) cUszand hencefg e (U1NG)(U2NG)NU3#@P. O

4. Proof of Main Theorem, part 2

Let X, as before, be a compasthomogeneous spac& = Aut(X), ® = Eo(X).
We saw thatG is Roelcke-precompact and th&t can be identified with the Roelcke
compactification of5. In this section we prove that is minimal and topologically simple.

If H is agroup an¢ € H, we denote by, (respectivelyr,) the left shift of H defined
by I, (h) = gh (respectively, the right shift defined by (i) = hg).

Proposition 4.1. Let H be a topological group, and lek be the Roelcke completion of
H.Lletg € H. Each of the following self-maps &f extends to a self-homeomorphism of
K:

(1) the left shiftl,;

(2) the right shiftr,;

(3) the inversiong — g~ 1.

Proof. Let £ andR be the left and the right uniformity off , respectively. In each of the
cases (1)—(3) the map: H — H under consideration is an automorphism of the uniform
space(H, L A R). This is obvious for the case (3). For the cases (1) and (2), observe that
the uniformitiesC andR are invariant under left and right shifts, hence the same is true for
their greatest lower boun€iA R. It follows that in all caseg extends to an automorphism

of the completiork of the uniform spacéH, L AR). O
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Forg € G define self-mapé,:©® — ® andR, :® — © by L,(R) = gR andRy(R) =
Rg.

Proposition 4.2. For everyg € G the maps., : @ — © andR, : ©® — © are continuous.

Proof. We havegR = {(x,g(»)): (x,y) € R}. Let A = {U,: « € A} be a clopen
partition of X. Letr = M (X, gR), and letO,(gR) = {S € ©®: M(x,S) =r} be a basic
neighbourhood of R. Let U be the set of alll € ® such thatl meets every member of
the family {U, x g*l(Uﬂ): (a, B) € r} and is contained in the union of this family. Then
U is a neighbourhood ok andL,(U) = 0;.(gR). ThusL, is continuous. The argument
for R, is similar. O

Let A be the diagonal ik ?.

Proposition 4.3. Let S be a closed subsemigroup @f, and letT be the set of alp € §
suchthatp D A. If T £ ¢, thenT has a greatest elemept and p is an idempotent.

Proof. We claim that every non-empty closed subsebdfas a maximal element. Indeed,

if C is a non-empty linearly ordered subset®fthenC has a least upper bouid= m

in @, andb belongs to the closure @f in @. Thus our claim follows from Zorn’s lemma.
The setT is a closed subsemigroup 6f. Let p be a maximal element df. For every

q € T we havepq D pA = p, whencepg = p. It follows that p is an idempotent and that

p=pg D Aq =q. Thusp is the greatest element &f. O

An inner automorphisnof ©@ is a map of the fornmp — gpg~1, g € G.

Proposition 4.4. There are precisely two elements é which are invariant under all
inner automorphisms a®, namelyA and X2.

Proof. A relation R € ® is invariant under all inner automorphisms if and only if the
following holds: if x,y € X and (x, y) € R, then(f(x), f(y)) € R for every f € G.
Suppose thaR € ® has this property and # R. Pick (x, y) € R such thatx # y. We
claim that the seB = {(f (x), f()): f € G} is dense inX?. Indeed, pick disjoint clopen
neighborhood#/1 and U, of x andy, respectively, such thaf is not covered by/; and
U». Given disjoint clopen non-empty sets and Vo, by 1-homogeneity ofX we can find
an f € G such thatf (U;) c V;,i =1, 2. It follows thatV; x V> meetsB, henceB is dense

in X2. SinceB C R, it follows thatR = X2. O

Proposition 4.5. The groupG has no compact normal subgroups other t{ah
We shall prove later that actualty has no non-trivial closed normal subgroups.

Proof. Let H # {1} be a normal subgroup @f. We show that{ is not compact.
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Let Y be the collection of all non-empty clopen setsXn ConsiderY as a discrete
topological space. The group has a natural continuous action BnPick f € H, f # 1.
PickU € Y suchthatf (U)NU =@ andX \ (f(U)UU) # . LetY1 bethesetofalV e Y
such thatV is a proper subset of \ U. If V € Y1, there existé: € G such that:(U) =U
andh(f(U)) =V.Putg =hfh~1. Theng(U) = V. SinceH is a normal subgroup af,
we haveg € H. It follows that theH -orbit of U containsY;. SinceY1 is infinite, H cannot
be compact. O

Proposition 4.6. For every topological groufH the following conditions are equivalent
(1) H is minimal and topologically simpje
(2) if f:H — H’ is a continuous onto homomorphism of topological groups, then
either f is a homeomorphism, 0H'| =1. O

We are now ready to prove Theorem lpart 2:

For every compact-homogeneous spack the topological groupG = Aut(X) is
minimal and topologically simple.

Proof. Let f:G — G’ be a continuous onto homomorphism. According to Proposi-
tion 4.6, we must prove that eithet is a homeomorphism 4’| = 1.
SinceG is Roelcke-precompact, so@s . Let ®' be the Roelcke compactification 6f.
The homomorphisnf extends to a continuous mdp. ® — @’. Lete’ be the unity ofG’,
and lets = F~1(¢/) Cc ©.

Claim 1. S is a subsemigroup .

Let p,q € S. In virtue of Proposition 3, there exist filter baseg, and 7, on G
such thatF, converges top (in ®), F, converges ta; and pq is a cluster point of
the filter basef, 7. The filter basesF), = F(F,,) and ¥, = F(F,) on G’ converge to
F(p) = F(q) = ¢, hence the same is true for the filter baSgF; = F(F,F,). Sincepq
is a cluster point ofF, 7, F(pq) is a cluster point of the convergentfilter baser, 7).
A convergentfilter on a Hausdorff space has only one cluster point, namely the limit. Thus
F(pg) =¢' and henceyg € S.

Claim 2. The semigrous is closed under involution.

In virtue of Proposition 4L, the inversion orG’ extends to an involution — x* of ©’.
SinceF(p*) = F(p)* for everyp € G, the same holds for evegye @. Let p € S. Then
F(p*)=F(p)* =¢ and hence* € S.

Claim 3. If g € G andg’ = f(g), thenF~1(g') = gS = Sg.

We saw that the left shift — gh of G extends to a continuous self-map= L, of ®
defined byL(p) = gp (Proposition 42). According to Proposition.4, the self-map —
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g'x of G’ extends to self-homeomorphisiof ®’. The mapsF'L andL’'F from © to ©’
coincide onG and hence everywhere. Replacingy ¢, we see thaF L1 = (L')~1F.
ThusF~Y(g") = F~1L'(¢/) = LF~1(¢') = gS. Using right shifts instead of left shifts, we
similarly conclude thatF—1(g’) = Sg.

Claim 4. S is invariant under inner automorphisms 6.

We have just seen thgts = Sg for everyg € G, hencegSg~1 = §.

LetT ={r € S: r D A}. According to Proposition.3, there is a greatest elemenin 7.
Claim 4 implies thap is invariant under inner automorphisms. In virtue of Propositidn 4
either p = A or p = X?. We shall show that eithef is a homeomorphism diG'| = 1,
according to which of the casgs= A or p = X? holds.

First assume thagt = A.

Claim5 (p = A). All elements of are invertible in®.

Let r € S. Thenr*r € S andrr* € S, since § is a symmetrical semigroup. Since
Domr = Ranr = X, we haver*r D A andrr* D A. The assumptiop = A implies that
every relations € S such thats > A must be equal ta\. Thusrr* =r*r = A andr is
invertible.

Claim6 (p=A). S| =1.

Claim 5 implies thatS is a subgroup ofG. This subgroup is normal (Claim 4) and
compact, since is closed in®@. Proposition 46 implies that S| = 1.

Claim7 (p=A4). f:G — G’ is a homeomorphism.

Claims 6 and 3 imply thaG = F~1(G’) and that the mag’ : G — G’ is bijective.
Since F is a map between compact spaces, it is perfect, and hence so is the map
f:G=F1G")— G'. Thusf, being a perfect bijection, is a homeomorphism.

Now consider the case = X2.
Claim 8. If p= X2 € S, thenG’ = {¢'}.

Letg € G andg’ = f(g). We havegp = p € S. On the other hand, Claim 3 implies that
gpegS=Fg).Thusg' = F(gp)=F(p)=¢. O

5. Remarks

The group AutK) is Roelcke-precompact also for some compact spacasgich are
not zero-dimensional. For example, |et= [0, 1] and G = Aut(/). Identify G with a
subspace of: (1), as above. The Roelcke compactification(ofcan be identified with
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the closure ofG in E(I). Let Go be the subgroup of alf € G which leave the end-points
of the intervall fixed. The closure o6 in E(I) is the set of all curves in the squard?
such thatc connects the point®, 0) and(1, 1) and has the following property: there are
no points(x, y) € c and(x’, y’) € ¢ such thatt < x” andy > y’. This can be used to yield
an alternative proof of D. Gamarnik’s theorem saying tidas minimal [3].

Let K = I* be the Hilbert cube and = Aut(K). | do not know if G is minimal or
Roelcke-precompactin this case.
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