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1. INTRODUCTION

In this paper we introduce g2-analogue differential operators adapted to
study certain g2-analogue functions investigated by T. H. Koornwinder and
R. F. Swarttouw. We shall consider the g2-analogue trigonometric func-
tions introduced in [10],
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using the g2-analogue Bessel function introduced by H. Exton [2], and
W. Hahn [5],

(q2a+2; q2)w
(4% 4°).
Here we are using the basic notational conventions of [10, 4]. In

particular, let 0 < g < 1, define (a; q), = IT/Z0(1 — ag), k € Z, (a; q),
=1, (a;q), = lim, _, (a; q),, and

Ja(z;qZ) — Zald)l(o; q2a+2;q27q2z2). (7)

. k _
( _ 1) qk(k l)/sz

il 0i0i02) = B T

(8)

(1¢,(0; b; q; z) defines an entire analytic function in z provided b is
outside the set {1, *, ¢~ 2%, ...})

A key property of J_(z; g?),cos(z; g?), and sin(z; g?) is that they satisfy
appropriate g-analogue orthogonality relations (cf. [10]). In fact, the g*-
analogue Bessel functions and closely related variants have received much
attention because of their importance in the study of g-analogues of
representations of the Group of Plane Motions and of the Quantum
Group of Plane Motions, g-differential equations, and other topics. In
addition to the work already cited, see, e.g., Vaksman and Korogodskii
[12], Kalnins, Miller, and Mukherjee [6], Koelink and Swarttouw [8],
Koelink [7], and Swarttouw and Meijer [11].

However, the fact that cos(z; g?) and sin(z; ¢g?) have disjoint sets of
eigenvalues with respect to the classical g-differential operator

f(z) ~1(ez)
(1-4q)z
and also with respect to D, > D, has limited their consideration and
discouraged efforts to construct a g-exponential built from functions

defined by cos(z; g?) and sin(z; g?).
In this paper we consider the operator

fla7'z) + f(—q7'2) — f(qz) + f(—qz) — 2f(~2)
(7' —q)z

D,f(2) = (9)

A, f(z) = » (10)

and its renormalized version

3, = (qlT_Q)Aq. (11)
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We will show that A, (or 4,) is a useful g*-analogue of the derivative in
that it produces analogues of the standard differential relationships be-
tween cos(z; g?) and sin(z; g%). We will define a g%-analogue exponential
function in terms of these functions, study some of its properties, and use
it to define and study a g2-analogue Fourier Transform.

To conclude the introduction, we would like to discuss some differences
between A, and D,. Historically, the relation between g-analogues and
the classical hypergeometric functions is based on observations such as
lim, (1 —¢q)/(1 - ") = 1/k so that, lim,_, ([(1 - Dz /(q; ),) =
zk /k!. (Also see Remark 1 later in this paper.) In our context, we have the
limits

Iimlcos((l —q)z;q”) = cos(z) (12)
ILn1lsin((1 —q)z;q%) = sin(z). (13)

Another classical fact is that if f is differentiable at z,
lim D, f(2) = '(2). (14)
We also have for f differentiable at z,

M A,f(2) = £(2). (15)

However, when studying expressions such as (12) and (13), frequently we
are interested in limits of the form lim _ .7, f((1 — q)z; q?%) where both
the operator and its argument function change with g. Computing the
classical g-derivative of the functions in (12) and (13) gives

D,sin((1 — ¢)z;4°) = cos((1 — q)z:q°) (16)

D,cos((1 — q)z;4%) = —qgsin((1 — q)qz; q%). (17)

Although, lim,_, D,sin((1 — ¢)gz; ¢*) = cos(z) and lim,_, D,cos((1
—q)z;q?) = —sin(z), we see that the eigenvalue relationship between

these functions and D, is not analogous to the classical situation for
0 < g < 1. On the other hand,

Asin((1—q)z;q%) = 1 chos((l -q)z:q%) (18)

2
Acos((1—q)z;9%) = — 1 +qq sin((1 —¢q)z;4%) (19)
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giving the classical limit as ¢ — 1 and, more importantly, a useful ana-
logue relationship for 0 < g < 1. These relationships will allow us to
define a g%analogue exponential which exhibits appropriate behavior
under A .

In addition to studying the interaction of ¢, and related operators with
the g2-analogue trigonometric functions and with a g%-analogue exponen-
tial function and applications, the operator can also be used for other
analogue results. For example, we have a number of g -formulas for
q?-Bessel functions of integer order n which yield classical Bessel function
identities in the appropriate limit. Corresponding formulas in terms of D,
have been obtained by others, cf. [10, 8, 11] and references found in these
papers.

2. THE OPERATOR 4,

We use the notation f,(z) = f(w 'z) where w represents a complex
constant. Unless otherwise specified we will always assume that functions f
are defined on sets, S, which are symmetric in the sense that if z € S then
—z€eSand +g*'z €S,

In this section »n will always be integer-valued.

Our first lemma lists some useful computational properties of A, and
d,, and reflects the sensitivity of these operators to the parity of their
arguments.

Lemma 1. (@) If fis an odd function, A, f(z) = (2q/(1 + q)) D, f(2).

@) If fis an odd function, 9,f(z) = z7*(f(2) — f(qz)).
(b) If fis an even function, A, f(z) = (2q/(1 + q)) D, f,(2).
(b") If f is an even function, d,f(z) = z7*(f(q~*z) — f(2)).
(¢) Iffand g are both even, 9,(fgXz) = f,(2)d,8(2) + g(2)d,f(2).
(d) If fand g are both odd, J,(fgXz) = f(2)d,8,(2) + g(2)d,f,(2).
(&) For any complex number o, a(3,(f,N2)) = (3,1),(2).

The verification of these formulas is straightforward and will be left to

the reader.
We consider a context in which the behavior of ¢, is very useful. Using

the g2-analogue trigonometric functions defined in (2) and (5) we define a
g’-analogue exponential by

e(z;9%) = cos(—iz; ¢°) + isin(—iz; %) (20)
o gkt 1,2k o gkt 1), 2k+1
-y = iy (21)

_k=0 (q:9)2« im0 (4:9)2k+1 '
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e(z; g?) is absolutely convergent for all z in the plane, 0 < g < 1, since
both of its component functions are. lim_,,e((1 — ¢)z; g*) = e(z) point-
wise and uniformly on compacta, because both of its component functions
satisfy corresponding limits by the following remark.

Remark 1. u > —1 = lim,¢,0; ¢""; q, (1 — ¢)?z) = F(—;u + 1;
g1t
—2z), uniformly in z in compact subsets of the plane.

Here ,F, denotes the (generalized) hypergeometric series. The remark
is proved in [10, p. 459].

The basic computational g, formulas for these g*-analogue functions
are given by:

LEMMA 2.
(a) g,sin (z; ¢%) = cos(z; ¢°). (22)
(b) 9,c08(z;q%) = —sin(z; q%). (23)
(c) de(z: %) =e(z:9°%). (24)

Proof. cos(z; q?) is an even function, so

k _
(-1) qk(k+1)zzk q 2k _q
z

3, cos(z; q?) =
b ool ) kgo (95 9)2x

o (_1)qu(k+1)—2kzzk—1
- k§1 (q:9)2x (1 - qZk)

o (_1)qu(k—1)22k—1
= Z :

k=1 (C],Q)zk—l

) (_1)m+1qm(m+1)22m+1
- mgo (q;q)2m+l
= —sin(z; ¢%).

Part (a) is proved similarly, and (c) follows from (a) and (b) using the
linearity of J, and Lemma 1(e). 1

3. A ¢g>-ANALOGUE FOURIER TRANSFORM

We will use the notation for g-integrals introduced by Jackson, cf. [4],

L e

n=—ow

[F()d,e = (1-4q)
0
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and

[ f0di=2-q) > (f(a") +F(=a")a"

n= —ow

Set

Lr(a) = {ruig = [ yorag = -0 £ (@

+Hf(=g")I}g" <=
for 1 < p < o, and set
L5(d,) = {f:IIfll. = sup{l f(+q")l: k € Z} < =0}.
The following properties can be verified by direct calculation.
Lemma 3. If [Z..f(t)d,t exists,
(@  fodd implies [~ . f(t)dt = 0.
(b)  feven implies [~ f(t)d,t = 2[5f(¢t)dt.
(©) s an integer implies [~ f(q’t)d t = [~ _.f(t)g~°dt.
We will also use the following lemma. Let F*(¢) = sgntF(¢).

Lemma 4. If [*, (3,/)0)g()d,t exists, [~ (3,/)()g(t)d,t =
[7 . f(0)(G, - g)*(1)d 1.
Proof. The verification of this results is a tedious calculation using the

definitions of the g-integral given above and of 4,. We will give a typical
term:

i Qf(q;]# - _i_ f(q""*)s(q") = ki f(a)g(d" )
& 4(d%)g(d" )
- kzm o |

We will need the g-Gamma function defined by I, = (q; q)../(¢*; q)..)
1 — @), cf. [4] Note that lim T, (z) = I'(2), see [9].
Define the g*-analogue Fourler Transform to be

N ) R
f(x,q)—zrz(l/z)f f(0)e(=i(1 = q)e;g*)d,r. (25)
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If we impose the condition that g be in {g €(0,1):1 — g = g?™ for
some integer m} and if we let ¢ 11 under this side condition, we obtain,
formally, the classical Fourier Transform on the line. (See also the com-
ment after the next lemma.) Therefore, in the remainder of this paper, we
assume that

g€ {qe€(0,1):1—g=qg?" for some integer m}. (26)
(It should be noted that if we disregard the limit as g 1 1, we can formulate
a definition of the Fourier Transform which will satisfy all the correspond-
ing versions of the results discussed below for all g € (0, 1).)

For convenience, set

(1+4q)"°

2T2(1/2)
If we show that |e(+i(1 — g)g*; g?)| is bounded for all integers k, then it
will follow immediately that the g2-Fourier Transform defines a bounded

linear operator from Ll(dq) to L(d,). We turn to this task
We use the following results of Koornwinder and Swarttouw [10]:

(27)

LEMMA 5. (@) For |z| < 1 and n, m integers,

o0 2-
S = 2,z —(z ,Q)w1¢1(0'z2'€1 q" )

" (q:9)-
><Zk+m (Zz'q)@
(4;9)=

where the sum converges absolutely, and uniformly on compact subsets of the
open unit disk.

(b) Forfe IXd,),

g(q") = 2Cf:COS((l —q)1q"; q*)f(t)d,t

1¢1(O, 22; q’qm+k+l)'

implies
f(q") = 2C/OOOCOS((l —q)sq*; q*)g(s)d,s
or
8(q") = 2C/(:csin((l —q)tq"; q*)f(t)d,t
implies

f(q*) = 2Cf:sin((1 —q)sq*;q%)g(s)d,s.
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A study of the convergence as g 11 of the cosine transform defined in
part (b) of this lemma can be found in [3].

We obtain some useful inequalities by combining this result with the
following classical equalities of Rogers and Ramanujan [1, p. 8],

© qk(k+l) 1
Yy—=I1 —. 28
w0 (@ @)k necr (L—4q") (%)
where CI ={n € Z:n > 1,n # 0(mod10), + 1(mod10), + 8(mod20)} and
o k(k+1)
q 1
Y — =11 —. 29
w0 (@1 @)oks1 nest (L —q") (29)
where SI ={n € Z:n > 1, n # 0(mod10), + 3(mod10), + 4(mod20)}.

LEMMA 6. cos((1 — ¢)x; ¢?), sin((1 — g)x: g?), and |e(i(1 — ¢)x; g*)|
are all bounded for x € {+q" : k is an integer}. In fact

1
lcos((1 — gq)x; ¢°)l < (1 +q) gzm and

Isin((l — q)X; q2)| < glm

Proof. Letting m = n and replacing g by ¢ in part (a) of Lemma 5
gives
w 22: g?). 2
1= Y 2k+m ( i qz) 1¢1(0;22;q2’q2(n+k+1)) . (30)
ke (4% 4°)-
Taking z = +¢%?, n = 0 in (30) shows that

g*cos?(q*; 4%) = *[164(0; ¢ 4%, ¢+ V)] < [—((qq;;;z))“l (31)

for all integers k,0 < g < 1. Alternately, taking z = ¢*2, n = 0 in (30)
gives that

0: g% g2, g2k+D 2 2. 4?).
45 (q %) = g™ 16:1(0:4% 4% g )l S[(61 q%)

1-gq (4:4%).
for all integers k, 0 <g < 1. This shows that x?cos(x;q?) and

xY/2sin(x; g%) are bounded for x € {g* : k is an integer}. Thus cos(x; g2) is
bounded for x € {g* : k is a non-positive integer}.

l (32)
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Now for |z| < 1, using the expansion (5) we get

© k(k+1)

S Lo _ 1
|Sm(z,q )| = kgo (q; Q)2k+1 nle_.[SI (1 - qn) . (33)

The last equality follows from (29). Moreover the fact that 0 < ¢ < 1
implies that (g?2; ¢2), < IT7_,(1 — ¢*" 81 — ¢ H(1 — ¢**")
(1 _ q20n716)(1 _ q10n72) < 1—[52:1(1 _ q10n77)(1 _ q10n73)(1 _ qun)(l _
g®" 1)1 — ¢®*~*) and (q; ¢*)., = (q; q)... Combining these inequalities,

(4°:a°). _ 1
(¢:9%).. ~ nest (1—4q")°

This, combined with (32) and (33) gives

sin(¢*; ¢%) < T1 = for k an integer. (34)
neSl -

A similar argument using (28) shows

los(¢*;g*)l < (1 +q) [ ——=, forkaninteger. (35)
necr (L —q")

Finally, using the evenness of cos(x; g?), we see that it is also bounded
with the same bound for x € {+¢* :k is an integer}. Applying condition
(26), we see that cos((1 — g)x; g?) is bounded with the above bound for
x € {+g" :kis an integer}. A similar argument shows that sin((1 — ¢g)x; g2)
is bounded for x € {+¢"* :k is an integer}. Finally, combining the above,
we see that |e(i(1 — ¢)x; g»)I* = cos?((1 — ¢)x; g?) + sin?(1 — ¢)x; g?)
is bounded on the same set. ||

At this point, even though we do not have a simple addition formula for
e(z; g?), we can establish several g2-analogue Fourier transform results
using essentially standard arguments. For example, it is easy to show:

CoroLLARY 1. Iff, g € L(d,), then
@) fis a bounded linear operator from L(d ) to L°(d).
®) 7. f(t;gD)g)d,t = [7 f(OF(; gP)d, t.
(c) For s an integer, (quv’)f(x) = q_“'(]?)qs(x).
(A  Ifuf(w) € LXd,), 3,f(x; ¢°) = (=il — Quf(w)) " (x).
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A complement to part (d) of the above corollary is:

CoROLLARY 2. If (3,-1f)* € LNd ) : (3,1 f)*"(x:¢q°) = —i(1 — q) X
(f)"(x; ¢°).

Proof. The formula follows by expanding the left-hand side using the
definition of the analogue Fourier transform and then applying Lemma 4
and using Lemmas 1e, 2, and 6.

We turn to the L? theory of the g2-analogue Fourier Transform.
(L' n L?)(d,) is dense in L?*(d,). (Consider functions with finite support.)
Since the g%analogue Fourier Transform is defined and bounded on
(L' n LZ)(dq) for such functions, it defines a bounded extension to all of
Ly(d,). We can use Lemmas 3 and 5 to prove an inversion theorem.

THEOREM 1. fe& (L' N L2Xd,) implies f(q") = C[7 . f(t; g)e(i(1 —
Qg"; g>)d .
Proof. We begin by rewriting the transform pair of Lemma 3(b) as

f(q") = 2C'/:-2Cj: cos((1 — q)ts; qz)f(t)dqt]cos((l —q)sq"; q*)d,s
(36)

f(q") = 2Cf: -ZC/:sin((l —q)ts; qz)f(t)dqt}sin((l ~q)sq"; q%)d,s.
(37)

As far as possible, we will apply a standard strategy to derive Fourier
Inversion. Namely, write f=f, + f,, with f,, even and f,, odd. Using
(36) and then Lemma 3(b) and (a) we get

fu(g") = 4C*[“cos(1 = )1q": 4%) [ Fuu(5)e0s(1 = q)st: 4°)d s, 1
= 2C2fwcos((1 -q)q"; qz)f>o foo(s)cos((1 — q)st; qz)dqsdqt
0 o
- 2C2/wcos((1 - q)tq"; qz)'/-oo f(s)cos((1 —q)st; q*)d, sd,t.
0 o
Similarly, we get

fa(q") = 2C2fooosin((1 - q)q"; qz)/if(s)sin((l —q)st; qz)dqsdqt.
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Combining these expressions and using the evenness of the integrand in
the t-variable gives

f(a")
- 2C2/000f: {sin((1 — q)q"; ¢*)sin((1 — q)st; q?)
+cos((1 — q)tq")cos((1 — q)st; g% )}f(s)d,sd,t
=2 [ {sin((1 ~ q)tg"; q*)sin((1 — q)st: 4*)

+cos((1 — q)tq")cos((1 — q)st; qz)}f(s)dqs‘lqt-
Since e(ix; g?) = cos(x; g?) + isin(x; g?), we see that
e(i(1 - q)x;q*)e(—i(1 - q)y: q°)
= cos((1 — q)x; g*)cos((1 — q)y: q°)
+sin((1 = q)x; ¢*)sin((1 - q)y; q%)
+i[sin((1 — q)x; ¢?)cos((L — q)y; ¢°%)

—sin((1 = q)y; q?)cos((1 — q)x; ¢2)].
Using Lemma 6 and the fact that f Ll(dq), apply Fubini’s Theorem to
show that

[ J Tsin((2 = )iq”; *)eos((L — q)st; 0?)
—sin((1 — g)st; g*)cos((1 — q)1q"; qz)]dqsdqt
—j {jw sin((1 — q)tq"; ¢*)cos((1 — q)st; g%)

—sin((1 — q)st; g*)cos((1 — q)tq"; qz)]dqt}f(s)dqs.

This last integral is zero by Lemma 3(a) since the integrand of the
t-integral is odd in z. Applying this to the above expression for f(g") yields

f(q") = ijow Cf_mwe(i(l - q)[q”; qz)e(—i(l _ C])St; qz)f(S)qudqt
= Cfie(i(l - q)iq"; qz){CfZe(—i(l —q)st; qz)f(s)dqs}dq[

=Cf:€(,~(1 —q)tq"; q*)f(t: q*)d,t. I
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Now we can establish an analogue to the Plancherel Theorem. In what
follows assume x € {+¢g*:k is an integer}. Define i(x q%) = f(—x; ¢?).

Theorem 1 says that f & (L' N L2) implies f(x) = f(x). Also, if f(z) is
the complex conjugate of f(z), note that e(ix; g*)= e(—ix; ¢*). Thus

f( —x;q%) = C[* f(t)e(i(1 — @)x; qz)d t=f (x;¢4%). For fe(L'n
L?Xd ), say, v with finite support using Corollary 1(b), [*_ f()f(t)d,t

= [~ fOFDdyt = [ fOF ~1:q2d,t = [t (1 ¢7)d,t =
[ f gdf (t:g*)d,t. Since the functions with finite support are dense
in L*(d,), we get

CoROLLARY 3. f € L*(d,) implies I|fll, = I f(+; gl.
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