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Abstract 

In this report we will survey some of the main ideas and tools which appeared recently in the study of the analytic 
properties of polynomials orthogonal with respect to inner products involving derivatives. Although some results on weak 
asymptotics are mentioned, the strong outer asymptotics constitutes the core of the paper. Both the discrete and the 
continuous cases are considered, and several open problems and conjectures are posed. (~) 1998 Elsevier Science B.V. 
All rights reserved. 

I. Introduction 

More than a survey paper, pretending to mention all the contributors and all the results, this 
report deals with an up-to-date account on some new tools and ideas, which appeared in the study 
of the analytic properties of the Sobolev orthogonal polynomials. Thus, it is quite natural to start by 
answering the question: what are these polynomials and where is the difference between them and 
the standard orthogonal polynomials? 

1.1. Sobolev vs. standard inner products 

Let X be a vector space of  complex-valued functions with an inner product (., .). 

Definition 1.1. The inner product (., .) is called standard if 

(xf(x),  g(x)) = ( f(x) ,  2g(x)), (1) 

for every f ,  g C X. 
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In other words, standard means that the operator of multiplication by the variable is symmetric. 
If  the polynomials form a subspace of  X, well-known arguments allow to establish the existence 

of the unique (up to normalization) sequence of  orthogonal polynomials. If  the given inner product 
is standard, the corresponding sequence of  orthogonal polynomials has a very important property: 
the three-term recurrence. This is a connection with several fields (say, difference equations, operator 
theory), leading to many beautiful asymptotic results. Without recurrence, this approach is no longer 
valid. 

This is what happens to inner products modified by terms involving derivatives. Along this pre- 
sentation, we will restrict ourselves to the simplest (although not trivial) case of two terms, the 
second one containing derivatives. 

For the time being, assume that #0 and #~ are finite Borel measures on C, with infinitely many 
points of  increase. For 2 > 0, we define 

f f(z)g(z)d#o + 2 f f'(z)g'(z)d#,. (2) ( f  ,g)s = 

Besides historical reasons, the explicit parameter 2 is a useful tool for establishing some algebraic 
relations (it allows to "supress" smoothly one of  the two terms when necessary). 

The key fact that should be observed is that (.,.)s is, generally speaking, nonstandard, and thus, the 
classical theory of  orthogonal polynomials cannot be directly applied to the Sobolev case. Probably, 
the first example is due to Althammer in 1962 [4]. He proved that if we take on [ -1 ,  1], 

lOdx, - 1  ~<x<O, 
d # 0 ( x ) = d x  and d # l ( x ) =  dx, 0 ~<x ~< 1, 

then the monic Sobolev polynomial of  degree 2 is 

27  1 Qz(x) = x  2 + ~x  3, 

and has a zero at x = - 1.08 q~ ( -  1, 1 ). In fact, the existence of zeros of Sobolev orthogonal poly- 
nomials out of  the support of  the measures is a frequently occurring phenomenon. 

1.2. Historical notes 

There are two exhaustive surveys on this topic, including the early period and the maturity of the 
algebraic and formal theory. The first one is due to Alfaro et al. [1] and corresponds to an invited 
talk given at the previous Symposium on Orthogonal Polynomials; the other one was published 
some years later by Meijer [21]. Thus, we shall recall only the main dates and characters and, 
taking advantage of  the fact that the mentioned surveys were written before the breakthrough in the 
study of the analytic properties of  these polynomials, we will go straight to the topic of asymptotics. 

In his pioneer work, Althammer considered the so-called Legendre-Sobolev orthogonal polynomi- 
als, corresponding to the case when both measures, #0 and #1, are the Lebesgue measure supported 
on [ -1 ,  1]. In fact, the first period in the study of the Sobolev polynomials (1962-1973) was char- 
acterized by the use of absolutely continuous measures (defined by classical weights, as a rule). The 
main topics of research were existence, algebraic properties and location of zeros, and the major 
tool was integration by parts. 
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Probably the first asymptotic result was given by Sch/ifke [26] for the derivatives of  the Legendre- 
Sobolev orthogonal polynomials, 10 years after they were introduced by Althammer. Sch/ifke's result 
reads as 

1 ' 2 ~ -  - 3  '2 Q'.(x) = nP._l(x) 4- to' urn ' ), 

where Qn are monic Legendre-Sobolev polynomials with Sobolev norm t¢],/2. Unfortunately, this 
study did not continue. 

A different line of  research, started about 1988, considered the so-called discrete case, when the 
measure corresponding to the derivatives, #~, is a finite (or at most, denumerable) collection of  mass 
points. A rich algebraic theory grew and it is still evolving. It was in 1993 when Marcellfin and Van 
Assche [16] gave the first asymptotic result. An essential paper was published in 1995 by L6pez 
et al. [11], where using techniques from the analytic theory of Pad6 approximants they proved the 
asymptotics in a very general case and under mild conditions on the measures. 

Nevertheless, albeit the origins, the asymptotic results in the non-discrete case (excluding the one 
by Sch~ifke) are very recent. In order to avoid unnecessary details, we will pay major attention to 
the case of the first derivative and two measures compactly supported on the real line; at the end 
more general problems will be mentioned. 

1.3. Notation 

Let us make some conventions concerning notation that will be used below. For two finite Borel 
measures #0 and #~ we collect the definitions in Table 1. 

Table  1 

Measu re  Dens i ty  Inner  prod. M O P S  N o r m  2 

~0 ~ = p0 <., .>0 p,, ~n = (P,,, PA,  
/~, /~', = p ,  ( . . . ) ,  T,, r,, = (T, .  T,,), 

(po.pl) ('.')s Q,, ~, =(Q,,Q,)s 

Although the last row depends upon the parameter 2, we assume it fixed (unless we say the 
contrary) and omit it from the notation. 

Our goal is the study of the monic orthogonal polynomial system (MOPS) corresponding to the 
inner product 

(p,q)s = J p~d#0 4- 2 f p'q~ d#1 = (P,q)0 4- 2(p',q')l. (3) 

We will use the following additional notation: 
• Function ~(z)  = z 4- v / ~  - 1 with v ~  - 1 > 0 when z > 1, providing the conformal mapping of  

C \ [ - 1 ,  1] on the exterior of  the unit disc. When necessary, we assume q~(+ l )=  4- 1. 
• P,, will be the family of all polynomials with complex coefficients and degree ~<n, and 

P = U,,~>0 P~. 
We begin with the problem of  the weak asymptotics, though chronologically it was not the beginning. 
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2. Weak asymptotics 

An essential result on the weak asymptotics of Sobolev orthogonal polynomials is contained in a 
paper by Gautschi and Kuijlaars [9]. The article comprises of both a numerical part and theoretical 
results, where a natural tool was the logarithmic potential theory (see the monograph [27] for details 
and necessary notions from the potential theory). 

We will restrict our attention to the class Reg of regular measures; this is the class of  the regular 
nth root behavior and can be characterized as follows: # E Reg if for the sequence p , ( z )  = k,z  ~ + . . . ,  
k, > 0, of  polynomials orthonormal w.r.t. #, 

1 
lim k 1/" -- 

. ' "  cap(supp #)" 

The asymptotic zero distribution of a sequence of  polynomials can be described in terms of the 
weak convergence of  measures: 

# .  ~ # ,  

if for every continuous and compactly supported on C function f ,  

With a polynomial 

n 

P(x)  = const I-[ (x - z~ ) 
k - 1  

we associate the unit measure 

1~2.~ 
v ( P )  = - 6z~. 

n 
k = l  

In particular, denote 

v. = v(Q.) and v'. = v(Q'.) 

(the sequence of  zeros and critical points of  the Sobolev polynomials, respectively). We are interested 
in the (weak) limit (or at least, accumulation points) of  these sequences. 

In [9] Gautschi and Kuijlaars proved, among others, the following result: 

Theorem 2.1. Assume 
(a) Ao -- supp(#o) and Ai = supp(#1 ) are regular for  the Dirichlet's problem; 
(b) #0, #1 E Reg. 
Then, 

I * 
Yn > O)AoUAt 

and 

* I * 
A1 C Ao =~ Vn ~ ~OAo, Vn > ~OAo. 
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Note that the sequence of derivatives {Q',} has the so-called regular asymptotic zero distribution. 
However, this does not imply that the zeros of {Q',} are all real. The authors conjectured that they 
accumulate at the convex hull of the union of the supports of #0 and #~. 

Let us see very briefly the scheme of the proof of the first result. One of the features of the 
regular class Reg is that for/~ E Reg, the L2(/~) and the sup-norms have the same nth root asymptotic 
behavior. In particular, 

( IIQ.II o 
lim N Q ~ 0 , , ]  = 1 '  

and a similar identity holds for {Q'Jn} on A,. Using the Bemstein-Walsh lemma and Cauchy's 
formula, the authors show that the Markov constants M, in the inequality 

IlQ',l[z0 ~< M~llQnlDz0 

have subexponential growth, that is 

limsup ( ]]Q~ [],Jo ~ '/~ 
IlO.l[ 0/ 1. 

This kind of reasoning allows to establish the inequality 

t 1/n 
lim sup IIQ. IIAoUA, <~ cap(A0 U A,), 

n 

and the assertion follows from a result of [5]. 
As we will see later, for Sobolev orthogonal polynomials it is easier to say something about 

their derivatives than about themselves. For example, the set of accumulation points of the zeros is 
in general much more difficult to describe. Let A =A0 U Al, f2= C\A and g~(z,e¢) be the Green 
function for f2 with a pole at oo. Recall that 

g~(z, oo) = 0 for zE A. 

For r > O, denote by Ar the union of components of {z E C: go(z, c~) < r} having empty intersection 
with A0. The set of accumulation points of the zeros is 

A =  LiAr. 
r > O  

Theorem 2.2 (Gautschi and Kuijlaars [9]). 

v, *~v, n E A C ~ ]  ~ supp (v )cAUA.  

Moreover, the balayage o f  v onto K = OA U (A\A)  is equal to the balayage o f  (2) A onto K. 

The notion of balayage of a measure onto a compact set can be found, for example, in the 
monograph [27]. Note that from this theorem it does not follow that the full sequence v, converges. 
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3. The discrete case 

Historically, the first results concerning strong asymptotics were obtained in the discrete case. 
Discrete Sobolev orthogonal polynomials appeared in the works of  Koekoek, Bavinck and Meijer, 
who were interested in the Laguerre inner product modified by derivatives evaluated at zero. Since 
the results were strongly tailored to the specific properties of the Laguerre weight, in 1990 Marcelhin 
and Ronveaux [15] focused on the problem from a more general point of  view. They joined forces 
with Alfaro and Rezola and continued this research two years later in [2]. 

In 1993, Marcellfin and Van Assche published [16], considering the inner product of the type 

f 
l 

( f ,  g)s = f(x)g(x)  d#0(x) + 2f'(c)g'(c), 
1 

where c E ~, 2 > 0. Their goal was to compare the Sobolev orthogonal polynomials with the standard 
orthogonal polynomials associated with the measure /~0, in order to investigate how the addition of 
the derivatives in the inner product influences the orthogonal system. With this purpose they assumed 
that #0 is a measure for which the asymptotic behavior of  the orthogonal polynomials is known; 
the most relevant class of  this type is the Nevai's class M(0, 1) of orthogonal polynomials with 
appropriately converging recurrence coefficients. 

The cornerstone of  their approach was the expansion of  Q, in series of P,, whose coefficients are 
asymptotically known. The authors establish that 

lim Q,(z) f 1 if c E supp p0, 
- - 2 

, , - - > o o  P,,(z) t 2~(z)(z - c) if c E ~ \ supp  #0- 

This shows that the situation is very similar to adding a mass point distribution to the measure ~0 
and comparing the corresponding polynomials. In particular, a zero of  Q, is attracted by c and the 
rest accumulate at the support of P0. We find reminiscences of the Nevai's monograph [24] here. 

In 1995 L6pez et al. [11] extended the above result to the inner product involving a linear 
differential operator, complex measures and several points in C. In particular, for the inner product 

i =  1 i=0  

where cj E C, L~j.~(9; cj) is the evaluation at ci E C of the linear differential operator L-Di, i with constant 
coefficients acting on 9, Mi.i/> 0, m, Nj > 0, they studied the asymptotic behavior of the ratios 

Q~,"'(x) 
v E Z +, v fixed, (4) 

m 

on compact subsets of  de C\supp/~0, assuming that the complex measure/to supported on E belongs 
to the generalized Nevai's class Mc(O, 1 ). Their result confirms the parallelism between the discrete 
Sobolev and standard orthogonal polynomials with mass modification of  the measure. 



A. Martinez-FinkelshteinlJournal of Computational and Applied Mathematics 99 (1998) 491 510 497 

Here the key was the possibility to transform the Sobolev orthogonality in the standard quasi- 
orthogonality, using the following property: 

(UV, Q,,)s =/V(x)Q,,(x)d[to(x)=O for all VE P,, N 1, 

where, if ~. is the maximal order of the derivative evaluated at CJ, 

U(x)= 1-I(x- Cj) Ni*' and d/~0(x)-- U(x)d#o(X), 
/=1 

with N = deg U. As a consequence, we can express the polynomial Q, as a linear combination 
(with a fixed number of  terms) of standard orthogonal polynomials corresponding to the modified 
measure /~0: 

Q,(x) = ~ 2~.k~-k(x). 
k=0 

It remains to apply techniques developed in the study of convergence of  Pad6 approximants to 
meromorphic functions. 

The study of the discrete case continued in the works of Alfaro, Marcellfin, Rezola and others 
and, though not concluded yet, can be considered more established in the sense of methods and 
approaches than the continuous case. 

4. Coherence of  measures 

We have seen that when the operator of  multiplication by a variable commutes with the inner 
product (we call such a product standard), we have the 3-term recurrence relation and all what it 
implies. If not, we still can find an operator of  multiplication by a fixed polynomial symmetric with 
respect to the inner product (that is what happens in the discrete case) causing higher order recurrence 
relations appear, and the situation is still hopeful. But, generally speaking, in the continuous case such 
operators cannot be expected (a result from [7]). Thus, the "discrete" techniques relying on recurrence 
or algebraic relations do not work. If we need some, we must assume a kind of "correlation" or 
coherence between the measures/-to and/~l. This definition appears in the work of Iserles and others 
[10], and can be motivated by the following considerations (see [12]). 

4.1. Motivation 

Using standard arguments (say expressing the monic polynomial Q, as the ratio of two deter- 
minants, see [25]) we can see that its coefficients are rational functions in )~, with the numerator 
and denominator of  the same degree. Thus, for 2---*~ there exists the "limit" polynomial, R,. This 
polynomial can be used as a "bridge" between Q, and P,, and T,. Simple computation allows us to 
see that 

R~,+l(x)=(n+l)Tn(x) and (Rn, 1)0=0 f o r n ~ > l .  (5) 
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If we expand the limit polynomials Rn+l in terms of  both P. and Q., we obtain that 

n+l n+l 

R.+,(x) = ~ b..j~(x) = ~ fl.+,.yQj(x), 
j = i j = o 

(6) 

where ~n+ l , j  = xf~(R.+l,Qj)s. Of course, it is desirable to have on both sides of this relation a fixed 
finite number of terms. For example, assume that the left-hand side is 

n+l 

b,,jPj(x ), 
j = n - k  

k ~ - 1 ,  n ~ k + l ,  (7) 

where k is a fixed integer. In particular, 

T . ( x )  - -  

1 n+l 

n + 1 b,,/~ (x), 
j k 

k ~ - l ,  n ~ k + l .  (8) 

Using (5) and (7) we set fln+l.j=0, for O < ~ j < n - k -  1. Thus, (6) reads 

n+l n+l 

b,,jPj(x)= ~ fl.+tjOj(x), 
j=n--k  j=n--k  

k ~ - l ,  n ~ k + l .  (9) 

In this way, we are ready to introduce the following definition. 

Definition 4.1. Let (/to,/t~ ) be a pair of  positive Borel measures, and {P.}. and {T.}. the corre- 
sponding sequences of MOP. We say that (P0,/t~ ) constitutes a k-coherent pair, k / > - 1 ,  if 

T.(x)= ~ '(x), n>~k + l, 
j = n - k  

with b...+l : 1 and b . . . .  k # 0. 

Note that for k = - 1  this relation is only satisfied by the sequences of the classical orthogonal 
polynomials (Laguerre, Jacobi, Hermite). We fix our attention on the 0 and 1-coherence. 

4.2. Coherent pairs on [ -1 ,  1] 

So, we start from 

Definit ion 4.2. Let (#0,/t~) be a pair of  positive Borel measures, and {Pn}, and {L,}, the corre- 
sponding sequences of MOP. We say that (/to,/tl ) constitutes a O-coherent ( or just coherent) pair, 
if  there exist real non-zero constants (coherence parameters) al, o2,..., such that 

T n ( X  ) - -  Pn~-l(X) ~n P n t ( x )  , n ~ 1. ( 1 0 )  
n + l  n 



A. Martinez-Finkelshtein/Journal o f  Computational and Applied Mathematics 99 (1998) 491-510 499 

In the previous discussion we have eventually established the following property (see [25]): 

Proposition 4.3. I f  (l~o, #l ) is a coherent pair o f  measures, then 

n + l  
Pn+,(x)-a,, Pn(x) = Qn+,(x)-ctnQn(x), 

n 
n ~ 1, (11) 

where 

n +  1 rcn ¢ 0 ,  n~>l .  (12) 
n K n 

Taking into account (11 ), the following plan looks promising: 
(1) Describe all the coherent pairs of measures. 
(2) Compute the asymptotics of the (standard) polynomials pn. 
(3) Find the limits of  a,  and an. 
(4) Establish the asymptotics of  Qn. 
The first step was recently made by Meijer; in the paper [22] he gave the complete classification of 
all coherent pairs of  measures. In particular, he proved that necessarily either one of the measures 
must be classical. Restricted to the case of the interval [ -1 ,  1] we have the following coherent pairs: 

Case p0 #l 

1 ( l - - x )  ~ 1(1+x)/~ Idx ixZ#2i(ll _x)~(1 +x)fSdx+Mc~(~2) 
2 I x - ~ l ( 1  - x y  I(1 +x)/~ ~dx (1 - x ) ~ ( l  +x)lSdx 
3 ( l + x )  [3 I d x + M ~ ( 1 )  (1-x) lSdx 
4 (1 - x)~-Idx + M r ( -  1) (1 - x)~dx 

with > 0, I ,1 > 1, I :1 1, and M ~ > 0 .  
Note that in all the cases #0 is the same rational modification of p~ plus a possible mass point 

on ~. Thus, the question of  the relative asymptotics of  T,,/Pn can be explicitly solved in terms of 
the Szeg6's function of  the ratio of weights. 

Now, rewriting the coherence condition (11) as 

1 P'.+t(x) P~+t(x) T.(x) 

an = n+l e~+~X)l e'(x)P"(x) P.(x) , (13) 

n P.(x) 

and using the previous remark, it is easy to establish the convergence of  the sequence a,, in all the 
cases and to compute the limit explicitly. 

Now we turn to a,; taking into account expression (12), it is convenient to study the behavior of 
the Sobolev norm of Qn. The result, though elementary, has an independent interest. 

Lemma 4.4 (Moreno Balcfizar [23]). For n >1 2, 

2 n 
7In -[- 2n2"Cn_l ~ /~n ~ ~n -{- O'n-- 1 ~n--I + "4n2Tn-l- (14) 



500 A. Martinez-Finkelshtein/Journal of Computational and Applied Mathematics 99 (1998) 491-510 

The proof is straightforward: let us consider the expression 

•,, -- (Q,, Qn)o + 2n2(Q'/n, Q/,/n)~, 

and use the fact that both P,, and T,,_, give the minimal values to the corresponding brackets in the 
r.h.s. On the other hand, to, is minimal, thus an upper bound can be obtained substituting Q, by the 
limit polynomial R, which we can express in terms of P,,. 

A direct consequence of  (14) is 

lim ='-' = 0, 
n ~ o c  ~ n  

and it is immediate to obtain 

P r o p o s i t i o n  4.5. The sequence ~ defined in (12) satisfies 

lim ~. = O. 
n---* O0 

(15) 

Now we have all the ingredients for the proof of the main result: 

T h e o r e m  4.6 (Martinez-Finkelshtein [19]). Let (#0,#1) be a coherent pair o f  measures, supp#0 
- - [ -1 ,  1]. Then, 

lim Q,(x) 2 - -  - - -  ( 1 6 )  
rn(x) 

uniformly on compact subsets o f  C \ [ - 1 ,  1]. 

Among the consequences of this formula we can mention that all the zeros of Qn accumulate at 
supp #0, presenting the arcsin distribution, which means that Qn has the classical weak asymptotics 
(compare with the results of  Gautschi and Kuijlaars). 

This approach can be extended to the general case of k-coherence. In fact, it has been done in [13] 
for particular cases of 1-coherence (the symmetric coherence) and in [12] for 2 and 3-coherence. In 
the latter cases we obtain pairs of  measures where neither #0 nor #~ is classical (Jacobi). 

Moreover, nothing prevents from using this method in the case of coherent pairs of  measures with 
unbounded support. According to Meijer's classification, either one of them must be Laguerre (up 
to affine change of variable), and the other is its rational modification plus a mass point. Recently, 
Prof. Meijer joined forces with the Madrid-Granada tandem (Marcellfin-P6rez-Pifiar) and considered 
this problem in [14]. I will not present their formulas here in order to avoid introducing additional 
notation. 

5. Q u e s t  for  S z e g 6 ' s  t h e o r y  

It is clear that the coherence approach does not allow to move far enough. We need some 
general methods of  establishing asymptotics. Naturally, the classical methods of Bemstein-Szeg6 or 
Widom come to mind. Although suitable for the study of extremal polynomials in L p norm, we will 
concentrate on the orthogonal polynomials. 
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5.1. Informal reasoning 

We start with some informal reasoning in order to "guess" the answer. Recall that the MOPS 
{Q,,} solves the extremal problem 

~c, : (Qn, Q,)s = min{(P,P)s: d e g P  : n, P monic}. (17) 

Assume that #0 and #j are absolutely continuous measures supported on [ -1 ,  1] and t~(x)=pi(x)  
for i = 0 ,  1. Above we have defined the function ~(x), which is analytic in C \ [ - 1 , 1 ]  and 

I ~ ( x ) [ = l  for x E [ -1 ,1 ]  and C b ( x ) = 2 x + . . . , x ~ e c .  

Thus, 

i 2,_lQ~(x ) 2 + 2 f l  I 2,,_lQ,(x ) 2 
4"-'t¢. = L ,  -~"-~ po(xldx _ ci),_,(x~---~ l p,(x)dx.  

If we denote 

f , ( x ) -  4~"(x~ - 1 + O and g , ( x ) -  (ln f,,(x))' ' 

then the previous equation can be rewritten as 

4"-'ten l f '  f,~(nX) 2 f_l ~ ' ( X )  X 2 gn(x) 2 
n ~ - - 4  1 po(x)dx + 2 i - - - -~f~(  ) 1 +  n pl(x)dx.  

Assume that f , ( z )  converges to an analytic nonvanishing function f f  in C \ [ - I ,  1], so that g,(z) is 
bounded. Then, if P0 is "good enough", 

4 " -  i Kn fl 
II 2 ' Rv(pl) = 2 ~ I~(x)]2pl (x) dx, 

i 

where ~ (x )  is the function minimizing the integral on the r.h.s, in the class of  all analytic functions 
in H2(pl ) equal to 1 at infinity. Thus, 

2 

which coincides with the results for the coherent pairs obtained so far. 
Without any doubt, these considerations are absolutely informal, but allow to believe that the 

following statement is true: 

Theorem 5.1. I f  po and Pl satisfy the SzegJ's condition on [ -1 ,  1], then 

Q,(x) 2 
lim - -  - - -  

T , , ( x )  

locally uniformly in C \ [ - 1 ,  1]. 
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This assertion is contained in [17], but part of  the ideas of  the proof appeared already in 
[18, 23]. Let us consider the case when p~ is the Jacobi weight. We take advantage of the well-known 
property that the derivative of  a Jacobi polynomial is again a Jacobi polynomial. 

5.2. Jacobi weight 

Thus, assume that Pl is the absolutely continuous measure given by the Jacobi weight 

pl(x)=p(~'~)(x)=(1--x)~(1 + x )  l~, ~ , f l > 0 ,  

on [--1, 1], and, for the time being, ~0 is arbitrary. Then, Tn is the nth monic Jacobi polynomial, 
and is the solution of the extremal problem 

zn = I[T,[l~ = min{IIPll~: d e g P = n ,  P monic}. (18) 

(for the sake of brevity, we write [l' II* instead of II" I[L2o,,)). Since we will use different parameters 
in the Jacobi weight, we also denote by P,(~'~) and p~'~) the monic and the orthonormal Jacobi 
polynomial (with the parameters ~ and fl, respectively). 

As usual, bounds for the Sobolev norm ~c, will be the key to the asymptotics of {Q,}. 

Theorem 5.2 (Martinez-Finkelshtein and Moreno-Balcfizar [18]). 
above, for n >>- 1, 

~. + ~.n2zn__l ~< K. ~< IIP~(~-I'/*-')[[ 2 + An2'lTn_,. 

Furthermore, i f  # satisfies the condition 

IIP =-l"-')ll0 = o(n) ,  n ---+ oo, 

then 

With the notation introduced 

(19) 

(20) 

lim - -  -- 2. (21) 
n--+cc~ n2Tn - 1 

Remark.  (1) Using the well-known bound [24, Lemma 16, p. 83], 

[p},~'/~(x)[ 2 ~<C(~/1 - x +  1/n)-' 2 ~ ( v q - + x +  1/n) ' 2/t, x E [ - 1 , 1 ] ,  

several sufficient conditions for (20) can be produced. For instance, if #0 is an absolutely continuous 
measure with respect to Lebesgue measure on [ -1 ,  1] and 

Po(X) = h(x)(1 - x)~-l(1 + x)/~-', (22) 

with 

f f  (1 - x2)°h(x) < 00, 
I 

for some 6 < 1/2, then (20) holds. In particular, condition a, f lE(0,  3) guarantees (20) for every 
finite Borel measure/-to supported on [ -  1, 1 ]. Furthermore, addition to/.to of a finite number of mass 
points on ( - 1 ,  1) (but not at - 1  or 1) does not affect (20). 



A. Martinez-FinkelshteinlJournal of Computational and Applied Mathematics 99 (1998) 491-510 503 

(2) We can take h (x )=  I x -  31 in (22) with ~ C R \ ( - 1 ,  1). Then measures #0 and #l constitute a 
coherent pair. Analogously, a symmetrically coherent pair can be obtained if ~--/~ and we choose 
in (22) h(x)=x  2 + ~2 with ~E •\{0}, or h (x )=  ¢ 2 - x  2 with ~E R \ ( - 1 ,  1). 

In what follows we write # c S to denote that the finite measure # with supp # = [ -  1, 1] satisfies 
the Szeg6's condition, i.e. 

f l  dx > - oo. (23) 
In #'(x) 

_~ v/1 - x  2 

A finite measure #0 is admissible if #0 E S and (20) holds. 
Now we state the asymptotic result for the monic polynomials Q,,: 

Theorem 5.3 (Martinez-Finkelshtein and Moreno-Balc~zar [18]). I f  #o is admissible, then 

lim Q.(x) 2 
,,-,~ T,(x) - cb'(x)' (24) 

m 

locally uniformly in f 2 = C \ [ - 1 ,  1]. 

Besides the strong outer asymptotics of {Qn}, the following corollary immediately follows: 

Corollary 5.4. The zeros of  Sobolev orthogonal polynomials Q, distribute on [ -  1, 1 ] according to 
the arcsin law. All of  them accumulate at [ -1 ,  1], i.e., 

o < 3  

r ]  u {  x: Q~(x)=O} = [ - 1 , 1 ] .  (25) 
n>~l k=n 

We will outline the proof now. Recall that the following extremal problem, 

v (p , )= in f { f ' l ( .F+(x ) I2+,F_(x ) I2 )p , ( x )dx :FEH2(p , ) ,F (ec )=l  } , (26) 

(where F+ and F_ are boundary values of F on [ -1 ,  1]) has the unique solution (extremal function) 

~ - ( z )  = g ( p ~  ; z ) ,  

(see e.g. [29] for details). Function ~ and the extremal constant v(pl ) are closely related to the 
asymptotics of the monic polynomials T,. In fact, 

lim 4"IIT, II 2 = v(p, ) (27) 
n ~ o o  

and 

lim 2 n T,(z) - -  - ~ ( z ) ,  ( 2 8 )  

locally uniformly in £2. 
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By (28) the limit (24) is equivalent to 

lim 2" ~Q,(z) _ Y ( z )  (29) 
. ~  45.(z) ~ ' (z )  

locally uniformly in f2. Since 2(Q,',, Q,',)I ~< ~c,,, by (19) and (27), 

< Q ~ , Q ~ )  ~<~, , ( 1 + o ( 1 ) ) .  (30) 
n n i 

Then, {Q'~/n} is an extremal sequence for the problem (18) and its asymptotic behavior is determined. 
Indeed, if 

H,,(x)=2"-l{~b"- '(x)F_(x) + q~+-'(x)F+(x)}, x E  ( -1 ,  1), 

then standard arguments from [29] allow to prove that 

lim IIH, "" -" -""  . - ~  - z  ~. /nl l ,  = 0. (31) 

Via the reproducing property of the Szeg6 kernel it yields 

2" l O' 
l i rn  ~ ( z )  = o~(z), (32) 

locally uniformly in f2. Hence, we have established the asymptotics of the derivative Q',; we should 
prove now that (32) implies (29). 

Recall that 

~c. = IIQ.IIg + ~n2 Q" 2 
n i 

so that 

4"-I to, 2~-IQ, 2 ° 
-- nqb, + 2112"-'Q,',/n[[~. (33) 

From (21), (26) and (31) we see that both the 1.h.s. and the second term of the r.h.s, of (33) tend 
to 2v(pl). Thus, 

2',-nQ, 
l i rn  ~ 0 =0 .  (34) 

Since a function in H2(po) can be recovered from its boundary values on [ -1 ,  1], we have (cf. [29, 
Corollary 7.4]) 

Lemma 5.5. I f  po c S then for  any compact subset K c f2 there exists a constant C = C(K) such 
that 

/' max If(z)[ 2 ~< C {]f+(x)[ 2 + If_(x)[2}po(x)dx for  all f cH2(p0). 
zEK 1 
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Applying this inequality to Q,/~", with account of (34) we obtain that 

O n -  1 

,! im - n ~ ( Z )  = 0, 

locally uniformly in O. Then, 

(2,, 
l i m  \ nq," ( z ) = 0 ,  

also locally uniformly in f2. The identity 

2"'O,(z)q~,(z)_Z'- 'O' ,(z  ) (2" - 'Q , ( z ) y  
• "+'(z) /7<s>,(z) \ ) '  

and (32) remains to be used to obtain (29). The theorem is proved. [] 

505 

5.3. Theorem 5.1." the general case 

Going through the proof above, we can see that the essential step consisted in establishing sharp 
bounds for x,, in order to assure that 

lim - -  -- 2. (35) 
n ~ c , o  n2qTn_  I 

Actually, it was sufficient to obtain a sequence of monic polynomials {U~} which are asymptotically 
extremal in the L2(/~ ) norm, and a corresponding sequence of  monic primitives V,, satisfying 

(V,,,, V,)0 + 0. (36)  
o 

/7" I7 n _  I 

In the case of Jacobi weight we took U, = 7",. 
A natural question that arises here is how to estimate polynomials in terms of  their derivatives. 

In 1939, Turfin [28] studied this problem and established some lower bounds for derivatives, for 
example in L ~ ( [ - 1 ,  1]). Nevertheless, no such inequalities are known in general weighted L p spaces 
(see, e.g., [6]). 

Thus, we exploit a different idea. Assume again p~ 6 S absolutely continuous on [ -1 ,  1] such that 

1 E L ' [ - 1 ,  1]. (37) 
Pl 
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For example, the Bemstein class of  weights on [ -1 ,  1] satisfies this condition. As the extremal 
sequence for the L2(#~ )-norm we take the MOPS T,, and let V, be the sequence of monic primitives 
normalized by V~(- 1 ) = 0, that is 

V~(x) = n T._l(t)dt. 
1 

Proposition 5.6. I f  (37) holds, then for any finite measure #o on [ -1 ,  1] (36) holds, i.e., 

(v., V.)o o. 
n2~n_l 

Indeed, observe that condition (37) assures that 

1 
g(x, y)  ---- Z[_l,x](y) pl~ ~ E L2(/~l ), 

for every x E [ - 1 , 1 ]  (here ;~A means the characteristic function of the set A). Then, its Fourier 
coefficients w.r.t, the orthonormal sequence t , (x)= z;~/2Tn(x) tends to zero. The Lebesgue's theorem 
of  dominated convergence concludes the proof. 

Corollary 5.7. I f  (37) holds, then for any finite measure #o E S on [ -1 ,  1], 

lim Q.(x)_ 2 
. - ~  r . (x )  ~ ' (x)"  

Now we can close the gap in the proof of  Theorem 5.1 by showing that a weight from S can be 
approximated (in a suitable metric) by those satisfying (37). We refer the reader to [17] for details. 

Clearly, the sufficient conditions mentioned in Theorem 5.1 are far from being necessary. For 
instance, they are not necessary for the measure #~: among the coherent pairs there are #~ containing 
mass points outside the support of  the absolutely continuous component, and hence not satisfying 
the Szeg6's condition. Moreover, an analog of  Riemann-Lebesgue lemma for #~ is sufficient for 
Proposition 5.6 to be valid. Although for general orthogonal polynomial systems we cannot expect 
this lemma to be valid (see e.g. [8]), some milder (or different) conditions than the Szeg6 class 
could be considered. 

On the other hand, having the necessary behavior of the Sobolev norms Xn, the condition #~ E S 
was sufficient to establish strong asymptotics for the sequence of  derivatives Q',. Assumption #0 E S 
was introduced in order to recover from here the asymptotics of  Qn. But this is not a necessary 
condition either; it is enough to consider the following example: take #0 = 80 and #1 given by the 
Jacobi weight p(~'/~). Then easy computation shows that 

Q,(x) = P,C~-l'l~-')(x) - P,(~-"l/-1)(0), 

and the same asymptotics (24) actually takes place. 
In this sense an interesting problem would be to find an example of a pair (/~0,P~) with 

supp#0 C [ -1 ,  1] and suppp~ = [ -1 ,  1], such that the asymptotic formula (24) is no longer valid. 



A. Martinez-FinkelshteinlJournal of Computational and Applied Mathematics 99 (1998) 491-510 507 

6. Jordan curves and arcs 

Observing again the scheme of  the proof given above, we can see that it is tailored neither to the 
interval [ -1 ,  1] nor to the first derivative in the Sobolev inner product. Moreover, most arguments 
are standard in the theory of H 2 spaces and can be easily extended to more general problems. Thus, 
once again we must concentrate on the norm bounds. 

For instance, let us consider the problem on the unit circle. Now the measures #0 and #~ are 
supported on T =  {z E C: Izl--1} and satisfy the Szeg6's condition. Standard arguments with gen- 
eralized Faber polynomials are suitable for establishing (35) after some "adjustment": now not only 
convergence of the sequence of these polynomials but of  their derivatives must be controlled. 

Assume that the density pl(0) on [0,2n] is strictly > 0  and satisfies the Szeg6's condition 

f0 2~p~(0) > -~  dO 

(again we denote it p~ E S). Assume further that p~ is such that the Szeg6's function 

{ 1 f2'~ei°+Zlogpl(O)dO } Iz l<l  , D(pl;z)= exp ~ ei 0 _ ~  

has analytic continuation throughout ql- (for example, trigonometric weights satisfy this condition). 
Then the extremal function 

D(pl; O) 
~ ( z )  = _ 

D(p,; l/z) 

has the same property. 
If we take the sequence of generalized Faber polynomials 

1 flit ~(t)t" dt, M<R, R > I ,  

then with our assumptions it is easy to prove that 

U,(z) =z"F(z)(1 + o(1)), U~(z) =nz"-IF(z)(1 + o(1)), (38) 

uniformly on the unit circle -0-. Assuming the extra condition 

1 E L'(#o), 
Pl 

and using the extremal property of  to, and (38), we have that 

~c, <~ 2n2v(pl)(1 + o(1)). 

Now (35) can be obtained in one step. Thus, we can state the following result: 

(39) 

Proposition 6.1. Let #o, #~ E S on -~, #j is absolutely continuous with #'1(0)= pl(O)> 0 and 1/pl E 
U(#o). Assume additionally that the SzeyJ's function D(p~;z) can be analytically continued 
through Y. Then 

z " Q . ( z )  ~ g ( z ) ,  
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or equivalently, 

Q.(z) 
- - - - ' - + 1 ,  T.(z) 

locally uniformly in Izl > 1. 

All these considerations with minor changes can be extended to sufficiently smooth Jordan curves 
or arcs in C. In fact, a natural generalization of  Theorem 5.1 to this case was established in [17]. 
Furthermore, Sobolev inner products with derivatives of  higher order are also suitable for attacking 
with this method; see [20]. Finally, in the spirit of  the work of Widom, we can consider supports 
with nonconnected components. Nevertheless, here the picture must be much more complicated; a 
slight idea can be obtained from the weak asymptotic behavior. 

The approach based on the extremal property of the norm of Sobolev polynomials found applica- 
tion also in the discrete case. In the 1980s Nikishin, and later Kaliaguin, have studied the extension 
of the Szegr's method to measures with mass points outside of  the support of  the absolutely con- 
tinuous part, producing the appropriate extremal problem. Recently, these results were applied to 
Sobolev orthogonality by Foulquir, Marcellfin and Branquinho. Once again, following the parallel 
between discrete Sobolev inner product and the standard one but with addition of mass points, they 
reduced the first to the latter, extending asymptotics to more general configurations, like rectifiable 
Jordan curves on the plane, and also giving formulas valid on the support of  the first measure. 

7. "Balanced" Sobolev products 

The asymptotic formulas obtained so far in the continuous case show that essentially only the 
second measure matters (corresponding to the derivatives) and the role of the first one is reduced 
to "not disturb". A closer look at the inner product (3) reveals that the measures #0 and pl do not 
play an equivalent role: differentiation makes the leading coefficients of  the polynomials involved in 
the second integral of  (3) to be multiplied by their degrees. This effect is more notorious for larger 
degrees, explaining the apparent independence of  the asymptotics from the measure #0. 

These considerations motivate to "balance" the role of  both terms of (3) by considering only 
monic polynomials. In fact, we can study the asymptotic behavior of  polynomials Q , ( x ) = x n +  . . .  
minimizing the norm 

/ Q, ,,2 

IlOnll -- i d#o + S t d#,, 
n t> 1. Clearly, this problem can be reduced to the study of  orthogonality with respect to a "varying" 
Sobolev inner product 

(p,q).= i P d#o+ X. f 
where (2,) is a monotone decreasing sequence of real positive numbers such that 

lim)~nn2 = 2 c [0, +co], lim n2(2,_1 - 2 , ) = 0 .  (40) 
n #1 
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First results in this direction have been obtained assuming coherence of  the measures #0 and p~, 
both supported on [ -1 ,  1] (see Section 4.2 for the possible cases). Define a new measure /z* on 
[ -1 ,  1] by 

j 'd#0(x) + 2[~'(x)12d~(x) if 0 ~< 2 < + ~ ,  
d/~*(x) = dp*(x; 2) = (41) 

I , t , ' ( x ) l  2 d/zl(x) if 2 = + ~ .  

Let R . ( x ) = x n +  . . .  be the sequence of monic polynomials, orthogonal on [ -1 ,  1] with respect to 
#* and 

1 

R 2 f IR.(x)l 2d#*(x). 

As above, denote by Q. the monic polynomial of  degree n such that 

to,, = (Q., Q.).  -- min{(P,P) . :  d e g P  = n, P monic}. 

Theorem 7.1 (Alfaro et al. [3]). Let  (#o, #l) be a coherent pair o f  measures supported on [ -1 ,  1], 
and the sequence {2.} as in (40). Then, 

e.( ) 
lim - -  -- 1 (42) 

and 

lim Q.(z) _ 1, (43) 
,, R°(z) 

locally uniformly in C \ [ - 1 ,  1]. 

In other words, the sequence {Q.} behaves asymptotically as the monic orthogonal polynomial 
sequence corresponding to the measure (41). This result should remain true without the assumption 
on coherence of P0 and #~. 
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