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The AMPA receptor (AMPAR) GluR2 subunit dictates the critical biophysical properties of the recep-
tor, strongly influences receptor assembly and trafficking, and plays pivotal roles in a number of
forms of long-term synaptic plasticity. Most neuronal AMPARs contain this critical subunit; however,
in certain restricted neuronal populations and under certain physiological or pathological conditions,
AMPARs that lack this subunit are expressed. There is a current surge of interest in such GluR2-lacking
Ca2+-permeable AMPARs in how they affect the regulation of synaptic transmission. Here, we bring
together recent data highlighting the novel and important roles of GluR2 in synaptic function and
plasticity.
Introduction
In the mammalian central nervous system, AMPA-type

glutamate receptors mediate the vast majority of fast

excitatory synaptic transmission. AMPARs are tetramers

made up of combinations of four subunits: GluR1,

GluR2, GluR3, and GluR4 (also called ‘‘GluRA–D’’) (Borges

and Dingledine, 1998; Dingledine et al., 1999). All AMPAR

subunit proteins have an extracellular N terminus, an

intracellular C terminus, and four membrane-associated

hydrophobic domains (M1–4), one of which (M2) forms

a re-entrant loop (Figures 1A and 1B). Stargazin or other

transmembrane AMPAR regulatory proteins (TARPs)

also coassemble stoichiometrically with native AMPARs.

The TARPs act as auxiliary subunits that are required for

AMPAR maturation, trafficking, and channel function

(Chen et al., 2000; Nicoll et al., 2006; Rouach et al.,

2005; Tomita et al., 2003, 2005; Ziff, 2007).

AMPARs are widely expressed throughout the central

nervous system both in neurons and in glia (Belachew

and Gallo, 2004; Wisden and Seeburg, 1993). The great

majority of AMPARs in the central nervous system exist

as heteromers containing GluR2 (Greger et al., 2002; Went-

hold et al., 1996). For example, in forebrain, including

hippocampus and cerebral neocortex, the predominantly

expressed subunits are GluR1 and GluR2, with low levels

of GluR3 and GluR4 (Craig et al., 1993; Geiger et al.,

1995; Monyer et al., 1991; Sans et al., 2003; Tsuzuki et al.,

2001). Thus, the major neuronal population, pyramidal

cells, express AMPARs primarily comprised of heterote-

tramers of GluR1 and GluR2 (Sans et al., 2003; Wenthold

et al., 1996). Although GluR2/3 has been hypothesized as

the other major heteromer in cortical principal cells, expres-

sion of GluR3 is low in this cell type (�10% of GluR1 or

GluR2 levels) (Geiger et al., 1995; Sans et al., 2003; Tsuzuki

et al., 2001; Wenthold et al., 1996), suggesting that GluR2/3

heteromers are not a predominant subunit combination.
During early postnatal development, expression of

GluR2 is low compared with that of GluR1, but it increases

rapidly during the first postnatal week (Monyer et al., 1991;

Wisden and Seeburg, 1993). Consistent with this, synaptic

GluR2-lacking AMPARs can be detected during a re-

stricted developmental period in neonatal layer V pyrami-

dal neurons (Kumar et al., 2002) and at early days in vitro in

dissociated hippocampal culture (Pickard et al., 2000).

Since AMPARs lacking GluR2 are Ca2+ permeable (see

below), this suggests that early in development, such

receptors play a role in neonatal synaptic function. In

addition, throughout the brain, GABAergic interneurons,

which represent about 10% of the total cell population,

exhibit low levels of GluR2 subunit expression, and sev-

eral subpopulations of these neurons express a significant

proportion of GluR2-lacking Ca2+-permeable AMPARs at

all developmental stages (Geiger et al., 1995; Koh et al.,

1995a; McBain and Dingledine, 1993).

GluR2 and AMPAR Biophysics
GluR2 is a critical subunit in determining mammalian

AMPAR function. This subunit determines many of the

major biophysical properties of the native receptor, includ-

ing, but not limited to, receptor kinetics, single-channel

conductance, Ca2+ permeability, and block by endoge-

nous polyamines. In addition, it is the most tightly regu-

lated of the glutamate receptor subunits, with a number

of specific regulatory processes at the level of gene ex-

pression, RNA editing, receptor assembly, and trafficking.

Moreover, genetic manipulations of this subunit cause the

most profound phenotype of all the AMPAR subunits,

demonstrating the critical importance of GluR2 for normal

brain function (Brusa et al., 1995; Feldmeyer et al., 1999;

Gerlai et al., 1998; Hartmann et al., 2004; Higuchi et al.,

2000; Shimshek et al., 2006a, 2006b). Most mature

GluR2 protein contains an arginine residue (R) within the
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Figure 1. GluR2 Subunit Structure and
General Structure of the AMPAR
Complex
(A) Schematic of an AMPAR subunit in the
plasma membrane. N-terminal domain (NTD),
S1 and S2 ligand binding domains, membrane
spanning domains (M1–4), Q/R and R/G RNA
editing sites, flip/flop alternatively spliced re-
gion, glycosylation, and palmitoylation sites
are indicated. The associated TARP/stargazin
is also shown.
(B) Schematic of predicted 3D structure of the
tetrameric AMPAR complex, with NTD, S1 and
S2, M2, and C terminus regions indicated.
(C) GluR2 subunit domain structure with C ter-
minus sequence detailed for the GluR2-short
splice isoform (predominant form in the brain)
and the GluR2-long isoform. Transmembrane
domains indicated in yellow; flip/flop alterna-
tively spliced region is shaded; editing, palmi-
toylation, phosphorylation, and protein inter-
action sites are as indicated.
re-entrant M2 membrane loop region at position 607 in

place of the genomically encoded glutamine (Q) (Figures

1A and 1C) (Sommer et al., 1991). This change is the result

of hydrolytic editing of a single adenosine base in the pre-

mRNA to an inosine by the adenosine deaminase enzyme

ADAR2 (Higuchi et al., 1993). This Q/R editing is specific to

the GluR2 subunit; more than 95% of GluR2 mRNA tran-

scripts are edited in postnatal brain.

The additional positive charge introduced into the pore

by the presence of R607 prevents both the passage of di-

valent cations (including Ca2+) and block by endogenous

intracellular polyamines, and reduces single-channel con-

ductance (Jonas and Burnashev, 1995; Swanson et al.,

1997; Verdoorn et al., 1991). Thus, channels containing

edited GluR2 subunits have a linear current-voltage rela-

tionship (Boulter et al., 1990), are impermeable to Ca2+,

and exhibit a relatively low single-channel conductance,

while those lacking edited GluR2 are Ca2+ permeable, of

higher conductance, and are inwardly rectifying due to

a voltage-dependent block by endogenous intracellular

polyamines (Bowie and Mayer, 1995; Geiger et al., 1995;

Hestrin, 1993; Jonas et al., 1994; Kamboj et al., 1995;

Koh et al., 1995b). However, although GluR2-lacking

AMPARs exhibit significant Ca2+ permeability, they are

less permeable to Ca2+ than NMDARs. For example, re-

combinant GluR1 homomers exhibit a PCa/PNa,K ratio of

2.3, compared with PCa/PNa,K of 3–17 for NMDARs (of var-

ious subunit compositions) and PCa/PNa,K < 0.1 for GluR1/2

heteromers (Dingledine et al., 1999). In neurons, GluR2-

containing AMPARs in principle cells exhibit a PCa/PNa,K

ratio of �0.1, while in interneurons where there are signif-

icant levels of GluR2-lacking AMPARs, PCa/PNa,K varies

from 1.6–0.7 depending on cell type (Geiger et al., 1995).

The GluR2-dependent biophysical parameters of inward

rectification, block by external polyamine, and Ca2+ per-
860 Neuron 54, June 21, 2007 ª2007 Elsevier Inc.
meability show a dose-dependence for, and also are dif-

ferentially sensitive to, the number of GluR2 subunits in

the AMPAR complex (Washburn et al., 1997). Ca2+ perme-

ability and external polyamine block go hand-in-hand and

are both more sensitive to the presence of GluR2 subunits

than inward rectification is. This indicates that the copy

number of GluR2 within the complex can differentially reg-

ulate the GluR2-dependent biophysical properties of the

AMPAR. The relevance of this for native receptors is un-

clear, however, since other work (see below) indicates

that AMPARs assemble in preferred subunit combinations

containing either two GluR2 subunits or no GluR2 subunits

(Brorson et al., 2004; Greger et al., 2003; Mansour et al.,

2001).

There are a number of polyamine derivatives and toxins

(e.g., philanthotoxin, joro spider toxin, argiotoxin, 1-naph-

thylacetyl-spermine) that act as channel blockers of

GluR2-lacking AMPARs (Blaschke et al., 1993; Bowie

and Mayer, 1995; Herlitze et al., 1993; Toth and McBain,

1998; Washburn and Dingledine, 1996; Washburn et al.,

1997). Polyamines and polyamine derivatives and toxins

can block GluR2-lacking AMPARs when applied extracel-

lularly and show good selectivity over GluR2-containing

AMPARs; therefore, these reagents are useful in probing

the GluR2 content of AMPARs (Kumar et al., 2002; Liu

and Cull-Candy, 2000; Terashima et al., 2004; Toth and

McBain, 1998). These drugs also block other polyamine-

modulated receptors such as a7 nicotinic, kainate, and

NMDARs, although they exhibit varying degrees of selec-

tivity for GluR2-lacking AMPARs over these other chan-

nels (Washburn and Dingledine, 1996).

GluR2 and AMPAR Assembly
GluR2 plays a critical role in AMPAR assembly and

trafficking. AMPARs are tetramers (Rosenmund et al.,
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1998; Wu et al., 1996) formed in the endoplasmic reticu-

lum (ER) as a dimer of dimers (Mayer, 2006). The initial

stage of formation is the dimerization of two subunits

that is dependent on the interactions in the N-terminal

domain (NTD) (Ayalon and Stern-Bach, 2001). This is

followed by a second dimerization step mediated by asso-

ciations at the ligand binding and membrane domains,

and this latter process is dependent on Q/R editing of

GluR2 (Greger et al., 2003). The formation and stabilization

of the tetramer is further promoted by NTD interactions.

In cells where GluR2 is highly expressed, the great

majority of the AMPARs contain this subunit (Wenthold

et al., 1996), and the preferred organization of receptor

complexes containing GluR2 is a symmetrical heteromer

(Mansour et al., 2001).

The assembly of AMPARs in the ER and subsequent ER

exit is influenced by subunit-specific interactions and ed-

iting of GluR2, both at the Q/R and at a second (‘‘R/G’’) site

(Brorson et al., 2004; Greger et al., 2003, 2006; Greger

et al., 2002). This regulated ER exit results in a large

GluR2 pool in the ER of cell types that highly express

this subunit (such as cortical pyramidal neurons), and

this may serve to ensure that the great majority of

AMPARs include GluR2. In certain other cell types exhib-

iting relatively low levels of GluR2 expression, such as cor-

tical GABAergic interneurons (Jonas et al., 1994; Lambo-

lez et al., 1996; Tsuzuki et al., 2001), the limited availability

of GluR2 results in a significant fraction of AMPARs lack-

ing GluR2. Importantly, some subpopulations of inhibitory

interneurons assemble and express both GluR2-contain-

ing and GluR2-lacking AMPARs in a single cell. Of partic-

ular interest is that these two types of AMPARs can be

differentially targeted to synapses receiving distinct affer-

ent input (Toth and McBain, 1998). This would suggest

that stringent mechanisms are in place to regulate the

availability of the GluR2 subunit during synthesis and

targeting of GluRs in these cell types. Finally, there is

also evidence that even in cells expressing high levels of

GluR2, a functionally relevant population of GluR2-lacking

AMPARs can be surface expressed under certain condi-

tions (e.g., Clem and Barth, 2006; Ju et al., 2004; Plant

et al., 2006; Thiagarajan et al., 2005). This may specifically

relate to GluR1 homomers produced by local dendritic

synthesis of this subunit (Ju et al., 2004; Sutton et al.,

2006), potentially suggesting a differential assembly

and trafficking for local dendritically synthesized AMPAR

subunits.

GluR2 Interacting Proteins
Mechanisms exist in neurons for the subunit-specific traf-

ficking of AMPARs to synapses (Collingridge et al., 2004;

Malinow and Malenka, 2002). This is most well-explored

for GluR1 and GluR2: for example, recombinant GluR2 ho-

momers, when overexpressed in CA1 pyramidal neurons

in hippocampal slices, are constitutively incorporated at

synapses, while GluR1 homomers require LTP to produce

their synaptic expression (Hayashi et al., 2000; Shi et al.,

2001). Moreover, for coexpressed GluR1 and GluR2,
GluR1 C-terminal-dependent mechanisms regulate the

GluR1/2 heteromer (Shi et al., 2001). This differential sub-

unit-dependent regulation involves protein-protein inter-

actions with the C terminus of the AMPAR subunits.

Many of these C-terminal AMPAR interactions are subunit

specific, and the largest number of direct protein interac-

tions has been described for GluR2. These are involved in

a rapid subunit-specific regulation of GluR2-containing

AMPARs, thus providing a mechanism by which AMPARs

can be differentially trafficked depending on their GluR2

subunit composition. The best functionally characterized

of these GluR2 interactions are at the proximal N-ethyla-

mide-sensitive fusion protein (NSF) / adaptor protein 2

(AP2) site, and at the distal PDZ binding site.

NSF/AP2 Site

NSF, an ATPase required for membrane fusion events

(Rothman, 1994), interacts directly with the C terminus

of GluR2 (Nishimune et al., 1998; Osten et al., 1998;

Song et al., 1998) (Figure 1C). This interaction is at a mem-

brane proximal site via a novel binding motif (Nishimune

et al., 1998), and a- and b-SNAPs can also coassemble

with the GluR2-NSF complex (Hanley et al., 2002; Osten

et al., 1998). AP2, a protein critical for clathrin-dependent

endocytosis that acts as an adaptor for cargo to be inter-

nalized (Sorkin, 2004), also associates with GluR2 in the

same region (Lee et al., 2002). The AP2 binding motif

overlaps with, but is not identical to, the NSF binding

site (Kastning et al., 2007; Lee et al., 2002).

Selective disruption of these interactions using peptides

mimicking the binding sites shows that these binding part-

ners are involved in the rapid regulation of AMPAR surface

expression and function at synapses in hippocampal neu-

rons. The GluR2-NSF interaction is required to maintain

AMPAR expression at synapses (Lee et al., 2002; Luscher

et al., 1999; Luthi et al., 1999; Nishimune et al., 1998; Noel

et al., 1999; Song et al., 1998). The extent of the effect of

blocking the GluR2-NSF interaction on synaptic AMPARs

varies considerably between preparations: in culture,

blockade of the interaction by viral expression of the pep-

tide pep2m causes an almost complete loss of AMPARs

from the surface of hippocampal neurons (Noel et al.,

1999), while acute infusion of pep2m during patch-clamp

recordings produces a reduction of �35%–40% in

AMPAR-mediated EPSC amplitude (Nishimune et al.,

1998). This difference may be explained by the much

shorter duration of the blockade in the acute infusion

experiments, and the results in culture indicate that the

GluR2-NSF interaction is required for synaptic expression

of the great majority of AMPARs. The loss of synaptic

AMPARs caused by blockade of GluR2-NSF binding pre-

vents, and is reversibly occluded by, NMDAR-dependent

LTD (Luscher et al., 1999; Luthi et al., 1999), indicating that

the population of receptors regulated by this mechanism

is involved in the expression of LTD. The role of the AP2-

GluR2 interaction is less clear. One recent study reports

that blockade of AP2-GluR2 binding causes an increase

in AMPAR-mediated transmission (Kastning et al., 2007);

however, an earlier study shows that blocking this
Neuron 54, June 21, 2007 ª2007 Elsevier Inc. 861
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interaction has no effect on basal transmission but selec-

tively prevents LTD (Lee et al., 2002). There is evidence

that clathrin-mediated endocytosis regulates basal

AMPAR function and is required for the internalization of

AMPARs during NMDAR-dependent LTD (Carroll et al.,

1999, 2001; Luscher et al., 1999). Therefore, one hypoth-

esis is that AP2 recruits AMPARs for clathrin-mediated

endocytosis during LTD in response to NMDAR-mediated

Ca2+ influx. Recent work provides evidence that hippo-

calcin is a Ca2+ sensor involved in linking the NMDAR-

mediated Ca2+ influx to the AP2-dependent internalization

of AMPARs during LTD (Palmer et al., 2005).

PDZ Site Interactions

Three proteins, glutamate receptor interacting protein

(GRIP) (Dong et al., 1997), AMPAR binding protein

(ABP), also known as GRIP2 (Srivastava et al., 1998),

and protein interacting with C-kinase-1 (PICK1) (Dev

et al., 1999; Xia et al., 1999) interact with the extreme C

terminus of GluR2 and GluR3, which contains a type II

(Sheng and Sala, 2001) PDZ binding motif (Figure 1C).

GRIP and ABP are structurally very similar and contain

multiple PDZ domains, so they are capable of interacting

with many of the same postsynaptic proteins. PICK1 con-

tains a single PDZ domain but can dimerize via a separate

BAR domain (Perez et al., 2001a). PICK1 also interacts

with PKC, and it has been proposed that dimeric PICK1

can act to chaperone activated PKC to AMPARs (Chung

et al., 2000; Perez et al., 2001a). The interaction of GRIP

and ABP with GluR2 and PICK1 with GluR2 is dependent

upon the phosphorylation state of serine 880 (S880),

which is located in the PDZ ligand at the C terminus

of GluR2; S880 phosphorylation prevents the GRIP/ABP

interaction, but not the PICK1 interaction (Chung et al.,

2000; Matsuda et al., 2000; Matsuda et al., 1999). In addi-

tion, ABP binding can itself prevent phosphorylation of

S880 on the GluR2 C terminus (Fu et al., 2003). Phosphor-

ylation of the tyrosine 876 (Y876) residue by Src tyrosine

kinase also regulates the GRIP1/ABP interaction, but

has no effect on PICK1 binding (Hayashi and Huganir,

2004). Both S880 and Y876 can be phosphorylated

in vivo and the regulation of the protein-protein interac-

tions by these mechanisms are thought to influence the

trafficking of GluR2-containing AMPARs to and from

synapses during synaptic plasticity (Chung et al., 2003).

Studies using acute infusion of peptides mimicking the

PDZ binding ligand on C-terminal GluR2 into neurons

provide evidence that the GRIP/ABP-, but not the PICK1-,

GluR2/3 interaction can acutely regulate synaptic trans-

mission and is required for the expression of hippocampal

LTD (Daw et al., 2000; Li et al., 1999). However, other

studies also provide evidence for a requirement for the

PICK1-GluR2 interaction in hippocampal LTD that is

dependent upon phosphorylation of S880 on GluR2 (Kim

et al., 2001; Seidenman et al., 2003). Puzzlingly, although

numerous labs have reported a requirement of GluR2/3

PDZ interactions in hippocampal LTD, this form of plastic-

ity is still observed in both the GluR2 knockouts and the

GluR2 and GluR3 double knockouts (Meng et al., 2003).
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Although a resolution to this major discrepancy in the

mechanism of hippocampal LTD has as of yet to be pro-

vided, a much clearer picture exists for the role of GluR2-

interacting proteins in cerebellar Purkinje cell LTD. A

series of studies has shown that the PICK1-GluR2 interac-

tion and the PKC-dependent phosphorylation of S880 on

GluR2 are required for this form of LTD (Chung et al., 2003;

Steinberg et al., 2006; Xia et al., 2000), and that cerebellar

LTD is absent in GluR2 knockout mice (Chung et al., 2003).

N-Terminal GluR2 Interactions

Recent work demonstrates a role for GluR2 N-terminal

protein-protein interactions in promoting spine and syn-

apse formation. The first indication of such a role was

the finding that GluR2 overexpression in culture increases

spine density in hippocampal neurons, while knockdown

of endogenous GluR2 expression reduces spine number

(Passafaro et al., 2003). The increase in spine number is

associated with an increase in mEPSC frequency, indicat-

ing that this mechanism also increases the number of

functional synapses. The GluR2-dependent increase in

spine and synapse number appears to be entirely medi-

ated by the N terminus of GluR2 (Saglietti et al., 2007).

The mechanism involves a direct interaction of the

GluR2 N terminus with N-cadherin, suggesting that

GluR2 promotes spine and synapse formation and stabili-

zation by a structural interaction with the presynaptic ter-

minal. In future work it will be of great interest to elucidate

the physiological significance of this novel mechanism

that can potentially directly link postsynaptic and presyn-

aptic function.

GluR2-Lacking AMPARS in Interneurons
As described above, the presence of GluR2 in the AMPAR

complex confers distinct biophysical properties to the re-

ceptor. Neurons have numerous mechanisms to enable

the tight regulation of this subunit to ensure that at the

great majority of synapses, GluR2-containing Ca2+-imper-

meable AMPARs are expressed. Considerable interest,

however, currently centers on GluR2-lacking Ca2+-perme-

able AMPARs because they confer novel properties on

synapses and are expressed in specific, restricted cell

populations or under certain physiological conditions.

The roles of such receptors in synaptic function, synaptic

plasticity, and local circuits are now beginning to be eluci-

dated, and this is the topic to which we now turn.

The most detailed early descriptions of the physio-

logical role for native GluR2-lacking, Ca2+-permeable

AMPARs originate from studies of synaptic transmission

onto local-circuit GABAergic interneurons. Cortical inter-

neurons are critically important for the precision timing

of principal cell action potential firing and coordinating

the output of large ensembles of pyramidal cells. Given

that interneurons are embedded in both feedforward and

feedback cortical inhibitory circuits, the input and output

of these cells must be tuned according to the role they

play in a particular network (Jonas et al., 2004; McBain

and Fisahn, 2001). Excitatory synaptic transmission onto

interneurons typically possesses EPSCs with rapid rise
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and decay times (Carter and Regehr, 2002; Geiger et al.,

1997; Walker et al., 2002). For example, EPSCs onto den-

tate gyrus basket cells have quantal amplitudes of 160 pA

(at �70mV) and decay time constants of �400 ms (at

34�C). Unlike principal cell AMPARs, which are typically

comprised of GluR1 and GluR2, AMPARs at the mossy

fiber-basket cell synapse are comprised almost exclu-

sively of GluR1 (Geiger et al., 1995). In addition to Ca2+

permeability and the block by polyamines, native AMPARs

lacking GluR2 exhibit faster channel deactivation kinetics

(Geiger et al., 1995) and enhanced single-channel con-

ductance (Swanson et al., 1997), contributing to large,

rapidly decaying EPSPs (Lawrence and McBain, 2003).

Consistent with this idea, at interneuron synapses there

is a striking correlation between the time course of the

synaptic conductance and inhibition by the polyamine

toxin (Walker et al., 2002). Under current-clamp conditions

activation of these GluR2-lacking AMPARs results in rapid

EPSPs (Geiger et al., 1997), which trigger action potential

firing in a narrow temporal window with little jitter (Jonas

et al., 2004; Lawrence et al., 2004; Lei and McBain,

2002; Vida et al., 2006), emphasizing the role these recep-

tors play in precisely controlling spike timing.

Novel Short-Term Plasticity at Ca2+-Permeable

AMPARs

In addition to providing a mechanism for rapid synaptic

signaling, Ca2+-permeable, GluR2-lacking AMPARs im-

part a novel form of short-term plasticity at interneuron

synapses that is entirely postsynaptic in origin. As de-

scribed above, GluR2-lacking AMPARs are blocked by

endogenous intracellular polyamines (Bowie and Mayer,

1995; Kamboj et al., 1995; Koh et al., 1995a). In neurons,

a tonic block of the AMPAR pore by endogenous poly-

amines is relieved by repetitive activation of GluR2-lacking

receptors (Rozov and Burnashev, 1999; Rozov et al.,

1998; Toth et al., 2000), resulting in a use-dependent in-

crease in current flow through the channel that confers

a novel postsynaptic mechanism of short-term synaptic

plasticity (Figure 2). This use-dependent relief of poly-

amine block is frequency dependent, requires multiple

stimuli to reach a maximum, and differs depending on

the receptor subunit composition of the GluR2-lacking

AMPAR (Rozov et al., 1998). This short-term facilitation

appears not to depend on Ca2+ permeation or ion flux

through the receptor per se but arises entirely from a volt-

age- and use-dependent relief of block by internal poly-

amines (Bowie et al., 1998; Rozov et al., 1998). Facilitation

of currents lasts only for a limited time before reblock of

the channel occurs. The reblocking mechanism proceeds

without requiring the channel to reopen, suggesting that

polyamines do not act only as classical open channel

blockers (Bowie et al., 1998; Rozov et al., 1998).

Although polyamines are important cytoplasmic con-

stituents in many cell types, their free concentration has

been hard to determine (Tabor and Tabor, 1984; Soulet

and Rivest, 2003). Physiologically, their levels are tightly

controlled by a number of enzymatic steps, chelated by

cytoplasmic ATP, and strongly influenced by patterns of
ongoing activity (Watanabe et al., 1991; Bowie and Mayer

1995). Pathophysiological conditions such as seizures,

electrographic activity, and forebrain ischemia can also

regulate intracellular polyamine availability (Hayashi

et al., 1993; Zoli et al., 1993). Of particular relevance, in de-

veloping Xenopus optic tectum a brief episode of visual

stimulation increases the rectification properties of Ca2+-

permeable AMPARs, resulting in an overall reduction in

AMPAR-mediated drive at retinotectal synapses (Aizen-

man et al., 2002; 2003). This effect of visual stimulation is

blocked by polyamine synthesis inhibitors, suggesting

that visual activity directly regulates the polyamine syn-

thetic pathway, which can then directly tune AMPAR

function to influence the integrative properties of the reti-

notectal system. A similar scenario has been observed

in developing rat cortex and hippocampus (Shin et al.,

2005). Ornithine decarboxylase, a metabolic precursor

for polyamines, is highly enriched in immature layer V

pyramidal neurons when compared with those of the

adult, suggesting that the levels of endogenous poly-

amines play a critical role in establishing the modulatory

control of GluR2-lacking AMPARs in developing animals.

Novel Mechanisms of Long-Term Synaptic

Plasticity Are Associated with

GluR2-Lacking AMPARs

The first indication that novel forms of long-lasting synap-

tic plasticity could be observed at synapses bearing

GluR2-lacking AMPARs came from studying excitatory

transmission onto interneurons of the amygdala (Mahanty

and Sah, 1998). There, an NMDAR-independent form of

LTP was observed at synapses expressing GluR2-lacking

AMPARs, whose induction requires a postsynaptic rise in

Ca2+ levels, presumably (but not proven) to occur from

Ca2+ entry through the GluR2-lacking AMPAR. Subse-

quent work on hippocampal interneurons described

a number of forms of long-term synaptic plasticity at

inputs expressing GluR2-lacking AMPARs. A novel form

of mGluR7-dependent long-term depression occurs at

synapses expressing GluR2-lacking AMPARs on hippo-

campal interneurons in the CA3 stratum radiatum and

lucidum that requires a postsynaptic Ca2+ influx through

GluR2-lacking AMPARs (Laezza et al., 1999; Pelkey

et al., 2005; Toth et al., 2000). NMDAR-independent LTP

has also been described at excitatory synapses con-

taining GluR2-lacking AMPARs on hippocampal stratum

oriens interneurons (Lapointe et al., 2004; Perez et al.,

2001b). This form of plasticity is critically dependent

upon metabotropic glutamate receptor function and is

absent in the mGluR1 knockout mouse. Interestingly,

this plasticity occurs only at synapses expressing

GluR2-lacking AMPARs, but surprisingly does not appear

to require Ca2+ flux through these receptors for induction

or expression (Topolnik et al., 2005). Recently, Kullmann

and colleagues (Lamsa et al., 2007) described a novel

role for GluR2-lacking AMPARs in LTP at this same syn-

apse. In a mechanism akin to the voltage-dependent

unblock of Mg2+ from the NMDAR during classical

NMDAR-dependent LTP, they demonstrate that
Neuron 54, June 21, 2007 ª2007 Elsevier Inc. 863
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Figure 2. GluR2-Lacking AMPAR-
Dependent Short-Term Synaptic
Plasticity
(A) The upper panel schematic shows the
mechanism of polyamine block of AMPARs.
(Left) GluR2-lacking, Ca2+-permeable AMPARs
are tonically blocked by intracellular poly-
amines. Unblock of polyamines from the chan-
nel vestibule is use dependent (center) and
typically requires repetitive synaptic stimula-
tion to reach maximal current amplitude (right).
(Lower panel) At mossy fiber-interneuron
CP-AMPAR synapses, normalizing the first
EPSCs in the train evoked at both �20mV
and�80mV reveals a greater degree of facilita-
tion in EPSCs evoked at �20mV. This voltage-
dependent increase in the degree of facilitation
at more positive potentials is consistent with
the greater tonic block by polyamines of
AMPARs held at depolarized potentials. Error
bars represent SEM.
(B) High-frequency stimulation relieves
AMPAR channels from polyamine block in re-
combinant channels. Currents in GluR-2(Q)
channels were recorded with 25 mM spermine
added to the intracellular solution. Current-
voltage relationship for control (open circles)
and facilitated currents (closed circles) is indi-
cated. In control, glutamate was applied 20
ms after stepping the potential from �80mV
to various test potentials (�80mV to +60mV)
at 0.2 Hz. An identical voltage protocol was
used for the facilitated currents except that
a 100 Hz train (ten pulses) of glutamate was
applied at �80mV (conditioning glutamate
pulses) 160 ms before the step to the test
potential. (Inset) Example recordings at a test
potential of +40mV; arrows indicate glutamate
application during the test step. For the I-V
curves, smooth lines are fitted sixth (control)
or eighth order polynomials, and each point
represents the mean of ten sweeps.
The upper panel of (A) was kindly provided by
Derek Bowie, the lower panel of (A) is taken
with permission from Toth et al. (2000), and
(B) is reproduced with permission from Rozov
et al. (1998).
NMDAR-independent LTP at synapses expressing GluR2-

lacking AMPARs is enhanced by hyperpolarization of the

membrane potential and is absent when the cell is depo-

larized. The authors hypothesize that the hyperpolariza-

tion acts to unblock polyamines from the intracellular

pore, facilitating current flow (and presumably increasing

the driving force for Ca2+ entry) through the GluR2-lacking

AMPAR to induce LTP. However, in the absence of

current-voltage relationships made in the presence and

absence of intracellular polyamines, it is hard to gauge

how much additional unblock of the pore actually occurs

via this manipulation since, at voltages around resting

potential, there typically exists only a minimal degree of

polyamine block (Bowie and Mayer, 1995). Moreover,

this is probably not a mechanism available to all synapses

expressing GluR2-lacking AMPARs, since LTP at such

synapses onto interneurons of the stratum radiatum is

NMDAR dependent and is blocked by hyperpolarization

(Dingledine and Laezza, 2004; Laezza et al., 1999). Al-

though much remains unexplored concerning the precise
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mechanisms and roles of these novel forms of long-term

synaptic plasticity, GluR2-lacking AMPARs clearly endow

synapses on GABAergic interneurons with novel and

unexpected properties that are likely to be critical for the

function of local inhibitory circuits.

GluR2-Lacking AMPARS and Homeostatic
Synaptic Plasticity
Cortical pyramidal neurons undergo a homeostasis of

synaptic strength that is dependent upon the total synap-

tic input onto the cell. This property, which is termed

homeostatic synaptic plasticity or synaptic scaling, is dis-

tinct from input-specific Hebbian forms of synaptic plas-

ticity (such as LTP), and is most readily induced in vitro

by chronically blocking neuronal activity or glutamatergic

transmission in cultured neurons (Turrigiano et al., 1998;

Turrigiano and Nelson, 2004). Recent studies show that

GluR2-lacking AMPARs are involved in the expression

mechanism underlying the increase in AMPAR-mediated

transmission that occurs during homeostatic synaptic
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Figure 3. Comparison of Induction and Expression Mechanisms of Homeostatic Synaptic Plasticity and LTP in Hippocampal
CA1 Pyramidal Neurons
In homeostatic synaptic plasticity (A), dendritic GluR1 synthesis is tonically suppressed by synaptic NMDAR activation (left); incubation of cultures or
slices in D-APV for at least 1 hr relieves this suppression and leads to dendritic synthesis of GluR1 homomers and their incorporation at synapses to
produce an increase in synaptic strength (middle). Stabilization of this synaptic strength change occurs over a longer time period (4–24 hr) and is
associated with a replacement of GluR1 homomers with GluR2-containing AMPARs in a mechanism independent of NMDAR activation but possibly
driven by Ca2+ influx through GluR2-lacking AMPARs (right). In LTP (B), transient strong activation of NMDARs produced during coincident pre- and
postsynaptic activity causes a rapid incorporation of existing (already synthesized) GluR1 homomers into synapses within a few minutes of the
induction stimulus (left, center). The increase in synaptic strength is stabilized over the next �20 min by replacement of GluR1 homomers with
GluR2-containing AMPARs in a mechanism independent of NMDAR activation and driven by Ca2+ influx through GluR2-lacking AMPARs (right).
Biophysical changes in the AMPAR-mediated EPSC corresponding to the three states of synapses during these two forms of synaptic transmission
are shown in the center.
plasticity. In response to chronic activity blockade, there is

an increase in miniature EPSC amplitude that is specifi-

cally reversed by bath application of polyamine analogs

or toxins (Ju et al., 2004; Sutton et al., 2006; Thiagarajan

et al., 2005). This suggests that GluR2-lacking AMPARs

are selectively incorporated at synapses to produce

the synaptic scaling. Consistent with this, an increase in

GluR1, but not GluR2, protein expression is observed in

response to activity blockade, and this appears to be

primarily due to a selective increase in dendritic protein

synthesis of the GluR1 subunit (Ju et al., 2004; Sutton

et al., 2006). Recent work indicates that NMDARs, acti-

vated during miniature synaptic events, actively inhibit

dendritic GluR1 synthesis, tonically suppressing the

synaptic expression of GluR1 homomers under control

conditions; furthermore, blockade of NMDARs for as little

as 1 hr can cause an increase in GluR1 synthesis and

expression of GluR1 homomers at synapses (Sutton

et al., 2006) (Figure 3A). However, following incorporation

of these GluR2-lacking AMPARs, they are slowly replaced
with GluR2-containing receptors over a period of 12–24 hr

via a mechanism independent of NMDARs that maintains

the increased synaptic strength (Sutton et al., 2006). Other

work suggests that TNFa released from glia is required for

homeostatic synaptic plasticity and insertion of GluR2-

lacking AMPARs during activity blockade (Stellwagen

et al., 2005; Stellwagen and Malenka, 2006). These find-

ings thus indicate that GluR2-lacking AMPARs can be

rapidly and locally synthesized and used to increase syn-

aptic strength in response to changes in global activity in

cortical pyramidal neurons. Such mechanisms may also

occur in vivo: deprivation of sensory experience causes

a global upregulation of synaptic transmission and an

increase in GluR2-lacking AMPARs at synapses (Desai

et al., 2002; Goel et al., 2006; Turrigiano and Nelson,

2004; Watt et al., 2000).

Homeostatic synaptic plasticity also requires Arc, the

immediate early gene product that is strongly upregulated

during activity and implicated in hippocampal learning and

memory (Tzingounis and Nicoll, 2006). Arc overexpression
Neuron 54, June 21, 2007 ª2007 Elsevier Inc. 865
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causes a reduction in evoked and miniature EPSC ampli-

tude and reduced GluR2 surface expression (Chowdhury

et al., 2006; Rial Verde et al., 2006; Shepherd et al., 2006).

In synaptic scaling experiments, Arc activity is downregu-

lated by chronic TTX treatment in culture, producing an

increase in mEPSC amplitude, while synaptic scaling is

absent in cultured neurons overexpressing Arc or in Arc

knockout animals (Shepherd et al., 2006). These findings

therefore demonstrate a requirement for Arc in homeo-

static synaptic plasticity and indicate a potential role for

Arc in regulating the GluR2 subunit composition of

AMPARs that underlies the expression mechanism of

this form of synaptic plasticity.

GluR2-Lacking AMPARs and Input-Specific
Synaptic Plasticity
The GluR2 subunit is clearly important in the regulation of

the induction of forms of long-term synaptic plasticity in

principal neurons such as CA1 pyramidal neurons. Since

the great majority of AMPARs in principal neurons contain

GluR2, this renders AMPARs impermeable to Ca2+, and

the NMDAR or voltage-gated Ca2+ channels are the major

pathways for synaptically evoked Ca2+ entry. In animals in

which GluR2 is knocked out or in which GluR2 Q/R editing

is altered, a major fraction of LTP is NMDAR independent

(Feldmeyer et al., 1999; Jia et al., 1996), demonstrating the

critical role played by GluR2 in determining the source of

synaptic Ca2+ entry.

Recent work is now revealing an unexpected role for

GluR2 in the expression of several forms of long-term syn-

aptic plasticity involving the activity-dependent regulation

of GluR2 subunit composition. Such a mechanism was

first described for a novel form of synaptic plasticity at

parallel fiber-stellate cell inputs in cerebellum, where

Ca2+ influx through synaptic GluR2-lacking AMPARs dur-

ing high-frequency activity produces a rapid switch to

GluR2-containing receptors (Liu and Cull-Candy, 2000;

2002). Subsequently, it was demonstrated that this is me-

diated by a rapid subunit-specific trafficking of AMPARs

involving the interactors PICK1, GRIP, and NSF (Gardner

et al., 2005; Liu and Cull-Candy, 2005). Recent work

shows that GluR2 subunit composition can also be regu-

lated acutely during hippocampal LTP in CA1 pyramidal

cells (Plant et al., 2006). LTP induction causes the rapid

incorporation of GluR2-lacking AMPARs at synapses,

but these are only present transiently, and are replaced

by GluR2-containing receptors after �20 min of LTP ex-

pression. Blockade of GluR2-lacking AMPARs during

this early phase of expression causes a reversal of LTP,

suggesting that Ca2+ influx through these receptors is

necessary to drive the exchange for GluR2-containing

receptors (Figure 3B). However, there is also evidence

that LTP can be expressed and maintained without the

involvement of this mechanism. Previous studies have

shown no requirement for AMPAR activation in the main-

tenance of early LTP (Kauer et al., 1988; Muller et al.,

1988). Moreover, a recent study reports that hippocampal

LTP can be expressed without the transient incorporation
866 Neuron 54, June 21, 2007 ª2007 Elsevier Inc.
of GluR2-lacking AMPARs (Adesnik and Nicoll, 2007). It is

not clear why this study, which uses very similar experi-

mental conditions, does not produce a similar GluR2

subunit composition switch to that reported in Plant

et al. (2006). It is unlikely that technical or experimental is-

sues explain the differences (for further discussion see

electronic letter in response to Adesnik and Nicoll 2007

at http://www.jneurosci.org/cgi/eletters/27/17/4598), and

more likely that the GluR2 subunit composition switch

and the requirement for GluR2-lacking AMPARs for the

early expression of LTP is not always required for hippo-

campal LTP. For example, it is possible that the require-

ment for the GluR2 subunit composition switch in LTP

expression is developmentally regulated, dependent

upon LTP induction protocol, or both. Elucidation of this

issue will shed important light on the expression mecha-

nism or mechanisms of LTP and the role of GluR2-lacking

AMPARs in cortical pyramidal neurons.

There is accumulating evidence that synaptic plasticity

in vivo uses similar GluR2-subunit-specific expression

mechanisms. At layer 4 inputs onto layer 2/3 pyramidal

cells in barrel cortex, a single whisker experience protocol,

in which all whiskers but one are trimmed, causes a path-

way-specific increase in synaptic strength and the incor-

poration of GluR2-lacking AMPARs in vivo (Clem and

Barth, 2006). In other studies on the ventral tegmental

area (VTA), an mGluR1-dependent form of LTD at gluta-

matergic synapses onto dopamine (DA) neurons has

also been described, which causes a rapid switch from

GluR2-lacking to GluR2-containing AMPARs (Bellone

and Luscher, 2005). A similar mechanism can be activated

in vivo by a single injection of cocaine into VTA, and there

is evidence that this in vivo GluR2 subunit switch requires

PICK1-GluR2 interactions (Bellone and Luscher, 2006).

These studies demonstrate a novel role for the GluR2

subunit in the expression of input-specific long-term

synaptic plasticity. Although the precise roles of such

Ca2+-permeable AMPARs are currently unclear, these

receptors will provide specific novel pathways for Ca2+ in-

flux at synapses that could potentially act as a ‘‘tag’’ (Frey

and Morris, 1997, 1998) for recently potentiated synapses

that may be important for driving subsequent long-term

changes in spine structure, local protein synthesis, and

gene expression.

Conclusions
It is clear that GluR2 and its appropriate regulation is crit-

ical not only for many aspects of AMPAR function but also

for normal brain function. This is most evident in trans-

genic mouse strains that lack either GluR2 itself or appro-

priate editing of this subunit. These animals exhibit a wide

variety of profound detrimental phenotypes in synaptic

function, development, and behavior (Brusa et al., 1995;

Feldmeyer et al., 1999; Gerlai et al., 1998; Hartmann

et al., 2004; Higuchi et al., 1993, 2000; Jia et al., 1996;

Shimshek et al., 2006a, 2006b; Yan et al., 2002). More-

over, there is considerable evidence that disruption

in GluR2 function is associated with a number of

http://www.jneurosci.org/cgi/eletters/27/17/4598
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neurological disorders such as cerebral ischemia, amyo-

trophic lateral sclerosis, pain, and epilepsy (Cull-Candy

et al., 2006). Thus, mechanisms for the regulation of

GluR2-subunit-containing AMPARs are of particular inter-

est, and we are only now starting to appreciate the extent

and roles of such processes in synaptic function and plas-

ticity. This is likely to continue to be an important area of

study for novel mechanisms regulating synaptic function

in physiology and disease.
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