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Abstract

Four-dimensional boundary value problems for the nonhomogeneous wave equation are studied, which
are analogues of Darboux problems in the plane. The smoothness of the right-hand side function of the
wave equation is decisive for the behavior of the solution of the boundary value problem. It is shown that
for each n ∈ N there exists such a right-hand side function from Cn, for which the uniquely determined
generalized solution has a strong power-type singularity at one boundary point. This singularity is isolated
at the vertex of the characteristic cone and does not propagate along the cone. The present article describes
asymptotic expansions of the generalized solutions in negative powers of the distance to this singularity
point. Some necessary and sufficient conditions for existence of regular solutions, or solutions with fixed
order of singularity, are derived and additionally some a priori estimates for the singular solutions are given.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In the present paper some boundary value problems for the wave equation in R
4 (having

three space variables and one time variable) are studied, which are multidimensional analogues
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of Darboux problems in the plane. The usual Darboux problem is formulated in a characteristic
triangle with two characteristic segments and a noncharacteristic one. The boundary values are
prescribed on one characteristic and on the noncharacteristic segment. 50 years ago M.H. Protter
[25] formulated and studied a three-dimensional analogue of the planar Darboux problems in a
3-D domain Ω , bounded by two characteristic cones Σ1 and Σ2 and a plane region Σ0. Now, it
is known that the multidimensional Protter problem P1 with the data on Σ0 and Σ1 is not well-
posed, in contrast to the plane Darboux problem. The reason is that its adjoint homogeneous
problem P1∗ has an infinite number of nontrivial classical solutions (Tong Kwang-Chang [27],
Popivanov and Schneider [21], Khe Kan Cher [19]). What is now the situation around these prob-
lems? The uniqueness of a classical solution of problem P1 in R

4 is proved (Garabedian [9]). On
the other hand, a necessary condition for the existence of a classical solution for problem P1 is the
orthogonality of the right-hand side function f to all solutions of the homogeneous problem P1∗.
To avoid this infinite number of necessary conditions in the frame of classical solvability, the
concept of generalized solutions of problem P1 with a possible singularity on the cone Σ2 was
introduced [22]. Many authors studied these problems using different methods, e.g., Wiener–
Hopf method, special Legendre functions, a priori estimates, nonlocal regularization, etc. (see
[22] and references there, further [2,7,14,19,23,24]). On the other hand, in R

4 another analogue
of the classical Darboux problem in the same domain Ω is given (Bazarbekov [4]). Some dif-
ferent statements on Darboux type problems in R

3 are known also [5,16,17]. Together with P1
its adjoined problem P1∗ has been studied for existence of bounded or unbounded solutions for
the wave equation in R

3 and R
4 as well as for the Euler–Poisson–Darboux equation [2,11,14,15,

18,19,24]. Another aspect of the multidimensional analogue of some well-known 2-D transonic
problems have been proposed also by Protter (cf. [25]). For the linear Gellerstedt equation of
mixed type Protter gives a 3-D analogue to the planar Guderley–Morawetz problem, but even in
the linear case a general understanding of the situation is not at hand. The uniqueness result in the
linear case is given in [3] (see also [5,16]). In [20] is shown that the nonexistence Pohozaev type
principle is valid for the semi-linear Protter problem in R

n for the case of supercritical Sobolev
exponent.

According to the solvability problem, it is shown that for each n ∈ N there exists a right-hand
side function f ∈ Cn( �Ω) of the wave equation, for which the uniquely determined generalized
solution has a strong power-type singularity like r−n at the origin. This singularity is isolated
at the vertex of the characteristic cone and does not propagate along the cone. It is interesting
to find the reason why such a singularity occur for very smooth right-hand side functions f

in contrast to the Cauchy problem, for example. Concerning Protter problems, the existence
of singular solutions for both, wave and degenerate hyperbolic equations, were announced by
Popivanov and Schneider in 1988 and the proofs are given in [21,22]. First a priori estimates for
singular solutions of Protter problems, concerning the wave equation in R

3, were obtained [22].
In the case of the wave equation in R

m+1 the existence of solutions in the domain Ωε (Ωε → Ω

and Σ2,ε approximates Σ2 for ε → 0), which grow up in the cone Σ2,ε like ε−(n+m−2) and
ε−(n+m−1), respectively, are noted (Aldashev [1]). It is obvious that for m = 3 these results can
be compared with the results from Corollary 3.4. Some other questions require to describe the
exact order of singularity and to find some a priori estimates for the singular solutions. The
answers for some Protter problems were given, after deriving necessary and sufficient conditions
for the existence of solutions with fixed order of the singularity (see [23] in R

3, [24] in R
4 and

Remarks 3.5 and 3.6).
According to the ill-posedness of Protter problems (see Remark 3.8), there have appeared

some possible regularization methods in the case of the wave equation, involving either lower
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order terms [2,10] or some other kinds of perturbations like integro-differential terms, or nonlocal
ones [7].

This paper is organized in Introduction and five more sections. In Section 2, the Protter prob-
lems P1, P1∗, P2, P2∗ are formulated and the result on the existence of an infinite number of
classical solutions to the homogeneous problems P1∗ and P2∗ (Lemma 2.1) is given. In Sec-
tion 3, the main results of the paper are formulated and discussed, concerning the existence
and the uniqueness (Theorem 3.1), asymptotic expansion of the generalized solution of prob-
lem P1 and the exact behavior of the singularity under the orthogonality conditions, given on
the right-hand side function of the wave equation (Theorem 3.2). Necessary and sufficient con-
ditions for the existence of only bounded solutions are given in Corollary 3.3. Some figures are
also presented, which show the effects appearing near the singularity point. In Section 4, the 2-D
boundary value problems P1.1 and P1.2 which correspond to the (3 + 1)-D problem P1, are dis-
cussed. Finally, these 2-D problems are transferred to an integral equation, which is invertible.
Using special functions, some exact formulas for the solution of P1.2 are given (Lemma 4.3).
Section 5 contains the most technical part of the paper. After detailed study of the relations in the
exact formulas (Lemma 5.1), the results concerning the asymptotic expansions of the generalized
solution of the 2-D problem P1.1 are proved (Theorem 5.2). Additionally, some corresponding a
priori estimates are derived. In the final Section 6, the proofs of the main results (Theorem 3.2)
are given using the results of Section 5.

2. Preliminaries

In the present paper, boundary value problems for the wave equation in R
4

ux1x1 + ux2x2 + ux3x3 − utt = f (x, t) (2.1)

with points (x, t) = (x1, x2, x3, t) are studied in the domain

Ω = {
(x, t): 0 < t < 1/2, t <

√
x2

1 + x2
2 + x2

3 < 1 − t
}
,

bounded by the two characteristic cones

Σ1 = {
(x, t): 0 < t < 1/2,

√
x2

1 + x2
2 + x2

3 = 1 − t
}
,

Σ2 = {
(x, t): 0 < t < 1/2,

√
x2

1 + x2
2 + x2

3 = t
}

and the ball Σ0 = {t = 0,

√
x2

1 + x2
2 + x2

3 < 1}, centered at the origin O: x = 0, t = 0. The right-
hand side function f of (2.1) satisfies some smoothness conditions in Ω , which will be fixed later.
The following multidimensional analogues of Darboux problems were proposed by M.H. Prot-
ter [25]:

Problem P1. Find a solution of the wave equation (2.1) in Ω which satisfies the boundary con-
ditions

P1: u|Σ0 = 0, u|Σ1 = 0.

Problem P1∗. Find a solution of the wave equation (2.1) in Ω which satisfies the adjoint bound-
ary conditions

P1∗: u|Σ0 = 0, u|Σ2 = 0.
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Problems P2 and P2∗. Find a solution of the wave equation (2.1) in Ω which satisfies the
boundary conditions

P2: ut |Σ0 = 0, u|Σ1 = 0

or the adjoint boundary conditions

P2∗: ut |Σ0 = 0, u|Σ2 = 0,

respectively.

Protter [25] formulated and studied the analogues of P1 and P1∗ in R
3 as multidimensional

generalizations of the Darboux problem in the plane. In contrast to the plane Darboux problems,
the multidimensional problems P1 and P2 are not well-posed, because their adjoint homogeneous
problems P1∗ and P2∗ have an infinite number of classical solutions [19,21,27].

Let Ym
n with n = 0,1,2, . . . and m = 1, . . . ,2n + 1, be the orthonormal system of spherical

functions in R
3. They are defined usually on the unit sphere S2 := {(x1, x2, x3): x2

1 +x2
2 +x2

3 = 1}
in spherical polar coordinates (see [13]). Expressed in Cartesian coordinates here, one can define
them by

Y 2m
n (x1, x2, x3) = Cm

n

dm

dxm
3

Pn(x3) Im
{
(x2 + ix1)

m
}
, for m = 1, . . . , n (2.2)

and

Y 2m+1
n (x1, x2, x3) = Cm

n

dm

dxm
3

Pn(x3)Re
{
(x2 + ix1)

m
}
, for m = 0, . . . , n, (2.3)

where Cm
n are constants and Pn are the Legendre polynomials. Recall that the functions Ym

n form
a complete orthonormal system in L2(S

2) (see [13]). For convenience in the discussions that
follow, we extend the spherical functions out of S2 radially, keeping the same notation Ym

n for
the extended function, i.e. Ym

n (x) := Ym
n (x/|x|) for x ∈ R

3 \ {0}.
For n, k ∈ N ∪ {0} define the functions

Hn
k (x, t) =

k∑
i=0

An
k,i

t (|x|2 − t2)n−1−k−i

|x|n−2i+1
, En

k (x, t) =
k∑

i=0

Bn
k,i

(|x|2 − t2)n−k−i

|x|n−2i+1
, (2.4)

where the coefficients are

An
k,i := (−1)i

(k − i + 1)i(n − k − i)i

i!(n − i + 1
2 )i

, An
k,0 = 1;

Bn
k,i := (−1)i

(k − i + 1)i(n + 1 − k − i)i

i!(n − i + 1
2 )i

, Bn
k,0 = 1,

with (a)i := a(a + 1) · · · (a + i − 1) and (a)0 := 1. Special representations read as (Khe Kan
Cher [19])

Hn
k (x, t) = t |x|n−2k−3(1 − t2/|x|2)n−2k−1

F
(
n − k + 1/2,−k,3/2; t2/|x|2),

En
k (x, t) = |x|n−2k−1(1 − t2/|x|2)n−2k

F
(
n − k + 1/2,−k,1/2; t2/|x|2),

where F = F(a, b, c;x) is the Gauss hypergeometric function. Further, define the functions

V n
k,m(x, t) = Hn

k (x, t)Ym
n (x), Wn

k,m(x, t) = En
k (x, t)Ym

n (x). (2.5)
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These functions are classical solutions of the homogeneous adjoint Protter problems.

Lemma 2.1. [24] The functions V n
k,m(x, t) are classical C2( �Ω) solutions of the homogeneous

problem P1∗ for k = 0, . . . , [(n − 1)/2] − 2, and Wn
k,m(x, t) are classical solutions of the homo-

geneous problem P2∗ for k = 0, . . . , [n/2] − 2.

The corresponding solutions to V n
0,m and Wn

0,m for the three-dimensional case are known [21].
On the other hand, a necessary condition for the existence of classical solution for the prob-
lem P1 is the orthogonality of the right-hand side function f to all functions V n

k,m(x, t). To avoid
an infinite number of necessary conditions in the frame of classical solvability, we introduce gen-
eralized solutions for the problem P1, eventually with a singularity at the origin (similarly to [22]
and [24]).

Definition 2.2. A distribution u = u(x, t) is called a generalized solution of the problem P1 in Ω ,
if the following conditions are satisfied:

(1) u ∈ C1( �Ω \ O), u|Σ0\O = 0, u|Σ1 = 0, and
(2) the identity∫

Ω

(utwt − ux1wx1 − ux2wx2 − ux3wx3 − f w)dx dt = 0 (2.6)

holds for all w ∈ C1( �Ω) such that w|Σ0 = 0 and w = 0 in a neighborhood of Σ2.

3. The asymptotic expansions of the generalized solution

In this section, the main results are discussed while the proofs will be given in the last section.
Let the right-hand side function f ∈ C1( �Ω) of Eq. (2.1) be a harmonic polynomial of order l

with l ∈ N ∪ {0} and having the representation

f (x, t) =
l∑

n=0

2n+1∑
m=1

f m
n

(|x|, t)Ym
n (x). (3.1)

First, the following result on the existence and the uniqueness of the generalized solution of
problem P1 is valid.

Theorem 3.1. The problem P1 has at most one generalized solution in the domain Ω . Suppose
that the right-hand side f ∈ C1( �Ω) has the form (3.1) where l ∈ N ∪ {0}. Then, the unique
generalized solution u(x1, x2, x3, t) of the problem P1 in Ω exists and has the form

u(x, t) =
l∑

n=0

2n+1∑
m=1

um
n

(|x|, t)Ym
n (x) ∈ C2( �Ω \ O). (3.2)

Suppose that the right-hand side function f is fixed as a harmonic polynomial (3.1) of order l.
According to the results in the 3-D case, we expect that the corresponding generalized solution
u(x, t) may have a power type singularity at the origin. In this paper the asymptotic expansion
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of the generalized solution of problem P1 at the origin O: x = 0, t = 0 will be found. Denote
by βn

k,m the parameters

βn
k,m :=

∫
Ω

V n
k,m(x, t)f (x, t) dx dt, (3.3)

where n = 1, . . . , l; k = 0, . . . , [n−1
2 ] and m = 1, . . . ,2n + 1, then the main assertion is given.

Theorem 3.2. Suppose that the right-hand side function f ∈ C1( �Ω) has the form (3.1). Then the
unique generalized solution u(x, t) of problem P1 belongs to C2( �Ω \ O) and has the following
asymptotic expansion at the singular point O: x = 0, t = 0

u(x, t) =
l∑

p=1

(|x|2 + t2)−p/2
Fp(x, t) + F(x, t),

where:

(i) the function F ∈ C2( �Ω \ O) and satisfies the a priori estimate∣∣F(x, t)
∣∣ � C‖f ‖C1(Ω), (x, t) ∈ Ω,

with constant C independent on f and ‖f ‖Ck(Ω) = ∑
|α|�k max �Ω |Dαf (x, t)|;

(ii) the functions Fp satisfy the equalities

Fp(x, t) =
[(l−p)/2]∑

k=0

2p+4k+1∑
m=1

β
p+2k
k,m F

p+2k
k,m (x, t), p = 1, . . . , l, (3.4)

with functions Fn
k,m ∈ C2( �Ω \ O) bounded and independent on f ;

(iii) if at least one of the constants β
p+2k
k,m in (3.4) is different from zero, then for the correspond-

ing function Fp(x, t) there exists a direction (α,1) := (α1, α2, α3,1) with (α,1)t ∈ Σ2 for
0 < t < 1/2, such that

lim
t→+0

Fp(αt, t) = cp = const �= 0.

Corollary 3.3. Suppose that the right-hand side function f ∈ C1( �Ω) has the form (3.1) and
satisfies the orthogonality conditions∫

Ω

V n
k,m(x, t)f (x, t) dx dt = 0 (3.5)

for all n = 1, . . . , l; k = 0, . . . , [n−1
2 ] and m = 1, . . . ,2n + 1. Then the unique generalized solu-

tion u(x, t) of problem P1 belongs to C2( �Ω \ O), is bounded and fulfills the a priori estimate

sup
�Ω

|u| � C‖f ‖C1(Ω). (3.6)

Theorem 3.2 gives an asymptotic expansion of the generalized solution. In the case of orthog-
onality conditions (3.5) Corollary 3.3 shows that the solution is bounded and satisfies an a priori
estimate. The case (iii) of Theorem 3.2 clarifies the significance of the above orthogonality con-
ditions (3.5) and shows the exact behavior of the generalized solution if some of conditions (3.5)
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are not satisfied. In other words, for fixed indexes (n, k,m) the corresponding condition (3.5)
“controls” one power-type singularity.

Finally, as a consequence of Theorem 3.2, without any orthogonality conditions on f , the
following result is obtained.

Corollary 3.4. The generalized solution u of problem P1 with a right-hand side function f ∈
C1( �Ω) in the form (3.1) satisfies the a priori estimate∣∣u(x, t)

∣∣ � C
(

max�Ω
|f |

)(|x|2 + t2)−l/2
. (3.7)

In Corollaries 3.3 and 3.4 both extreme cases are studied: all orthogonality conditions (3.5) are
fulfilled and no one of them is satisfied. In each of them the exact behavior of the solution in the
corresponding case is shown. The estimate (3.7), presented here is analogous to known estimates
for Protter problems in R

3 [22] and in R
m [1]. It is interesting that singularities of the generalized

solutions are isolated at the origin O and do not propagate in the direction of the bicharacteristics
on the characteristic cone Σ2. Traditionally, it is assumed that the wave equation, with sufficiently
smooth right-hand side cannot have a solution with an isolated singular point (Hörmander [12,
Chapter 24.5]).

The main results for the existence of a singularity depending on orthogonality conditions at
the point (0,0) in coordinates r = |x| and t is illustrated by the following figures: only one of
orthogonality conditions (3.5) is not fulfilled and the solution tends to ±∞ (Fig. 1), all the or-
thogonality conditions (3.5) are satisfied and the solution is bounded but not continuous at (0,0)

(Fig. 2) and respectively the solution is continuous (Fig. 3).

Remark 3.5. We mention some differences between the results given here for the problem P1 and
the results from [24] for problem P2, both in R

4: First of all, the explicit asymptotic expansion

Fig. 1. One orthogonality condition is not fulfilled.
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Fig. 2. All the orthogonality conditions are fulfilled and the solution is bounded but not continuous at (0,0).

Fig. 3. All the orthogonality conditions are fulfilled and the solution is continuous.

here has no analogue in [24], where we have only the behavior of the singularities. Secondly,
according to Corollary 3.3, if the orthogonality conditions are fulfilled, the generalized solution is
bounded, while for the solution in [24, Theorem 1.1] some logarithmic singularities are possible.
Finally, comparing the power of singularity of the generalized solution in Corollary 3.4 here and
Corollary 1.1 from [24], one can see that in the worst case without any orthogonality conditions,
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the power in the estimate (3.7) is (|x|2 + t2)−l/2, while in the analogous estimate in [24] it is
(|x|2 + t2)−(l+1)/2.

Remark 3.6. Let us point out the difference between the cases in R
3 (see [23]) and R

4 here. In
both of them the study of Protter problem P1 is based on the properties of the special Legen-
dre functions. Instead of Legendre polynomials Pn here, in the three-dimensional case [23]
the Legendre functions Pν with non-integer indexes ν = n − 1/2 are used (for their properties
see [8]). Both these techniques one can easily modify to get similar results for the (m + 1)-
dimensional problems: for even m (analogous to [23]) or for odd m (see [24] and the present
results). Some different kind of results for Protter problems in R

m+1 are presented in [1,2].

Remark 3.7. Let us mention one obvious consequence of Theorem 3.2 and the arguments above,
concerning construction of functions orthogonal to the solutions V n

k,m of the adjoint homoge-

neous problem P1∗. Take an arbitrary C2( �Ω) function U(x, t) satisfying only the boundary
conditions P1. Then applying the wave operator �, the result function F := �U is orthogonal
in L2(Ω) to all the functions V n

k,m, n = 1,2, . . . .

Finally, we formulate some still open questions, that naturally arise from the previous works
on the Protter problem and the discussions above.

Open Problems. 1. To study the more general case when the right-hand side function f ∈
C1( �Ω), i.e. it can be expanded in an infinite Fourier series instead of the finite sum (3.1):

◦ Find some appropriate conditions for the function f under which there exists a generalized
solution.

◦ What kind of singularity can have the generalized solution? The a priori estimates, obtained
in [10,22], show that the generalized solutions of problem P1 (including the singular ones), can
have at most an exponential growth as |x| → 0. The natural question is: are there any singular
solutions of these problems with exponential growth as |x| → 0 or do all such solutions have
only polynomial growth?

◦ To find some appropriate conditions for the function f under which the Protter problem has
only regular, bounded or even classical solutions.

2. To study the Protter problems for degenerate hyperbolic equations. Up to now it is only
known that some singular solutions exist [21]:

◦ We do not know what is the exact behavior of the singular solution even when the right-hand
side function f is a finite sum like (3.1). Can one prove some a priori estimates for generalized
solutions?

◦ Is it possible to find some orthogonality conditions for the function f , as here, under which
only bounded solutions exist?

3. What happens with the ill-posedness of the Protter problems in a more general domain
when the maximal symmetry is lost, if the cone Σ2 is replaced by another characteristic one, but
with the vertex away from the origin (as in [25])?

4. Why there appears a singularity for such smooth right-hand side even for the wave equa-
tion? Can we numerically model this phenomenon?

Remark 3.8. Define the operator T :uf �→ f ∈ C1( �Ω), where uf is the unique classical so-
lution to Protter problem P1 for the right-hand side function f . According to Lemma 2.1
dim cokerT = ∞. This means that T is not Fredholm operator in C1( �Ω) for example, but one
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could expect it to be semi-Fredholm there. Actually, in the present article we build some suitable
infinite-dimensional subspaces Kn ⊂ C1( �Ω) (n ∈ N) of functions, such that T is continuously
invertible on Kn (see Theorem 3.2, with different notations) and Kn approximate {span{V n

k,m}}⊥
(see Lemma 2.1) in some appropriate sense. However, it is not clear how to find R(T ). The last
question is connected to the Open Problem 1.

4. Auxiliary results

Some results for solving integral equations and for finding the connection between the func-
tions Hn

i (r, t) := Hn
i (x, t), with r = |x|, defined in (2.4) and the Legendre polynomials Pn will

be formulated.

Lemma 4.1. [24] Suppose that the function F ∈ C1(0,1/2] satisfies F(1/2) = 0. Then all solu-
tions λ ∈ C1(0,1/2] of the integral equation

1
2∫

ξ

λ′(ξ1)Pn

(
ξ

ξ1

)
dξ1 = −F(ξ)

are given by

λ(ξ) = λ

(
1

2

)
+ F(ξ) +

1
2∫

ξ

P ′
n

(
ξ1

ξ

)
F(ξ1)

ξ1
dξ1. (4.1)

The proof is derived in [24], where some formulas from [26] have been used.

Lemma 4.2. [24] Define the functions

hk(ξ, η) =
ξ∫

η

skPn

(
ξη + s2

s(ξ + η)

)
ds. (4.2)

Then the equality

r−1hn−2i−2

(
r + t

2
,
r − t

2

)
= cn

i Hn
i (r, t) (4.3)

holds for i = 0, . . . , [n−1
2 ] with some nonzero constants cn

i .

Recall that

Pn(x) = 1

2nn!
dn

dxn

(
x2 − 1

)n =
[ n

2 ]∑
k=0

a2kx
n−2k, a2k �= 0, (4.4)

is the Legendre polynomial of order n.
Using spherical coordinates, Protter problems can suitably be treated. Let (r, θ,ϕ) be the

spherical coordinates in R
3: 0 � θ < π , 0 � ϕ < 2π and r > 0 with

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ. (4.5)
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Then the (3 + 1)-D problem P1 can be transformed to a more easier one. Written in the new
coordinates, the wave equation becomes

urr + 1

r2
uθθ + 1

r2 sin2 θ
uϕϕ − utt + 2

r
ur + cos θ

r2 sin θ
uθ = f. (4.6)

The two-dimensional spherical functions, expressed in terms of θ and ϕ in the traditional defin-
ition (see [13]), are Ym

n (θ,ϕ) := Ym
n (x1, x2, x3), x ∈ S2, n = 0,1,2, . . . , m = 1, . . . ,2n + 1 (see

(2.2) and (2.3)), and satisfy the differential equation

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ
Ym

n

)
+ 1

sin2 θ

∂2

∂ϕ2
Ym

n + n(n + 1)Ym
n = 0. (4.7)

In the special case when the right-hand side function f of the wave equation (4.6) has the form

f (r, θ,ϕ, t) = f m
n (r, t)Ym

n (θ,ϕ),

according to Theorem 3.1 we may look for a solution of the same form,

u(r, θ,ϕ, t) = um
n (r, t)Ym

n (θ,ϕ).

Then the problem P1 is reduced to the two-dimensional equation

urr + 2

r
ur − utt − n(n + 1)

r2
u = f (4.8)

in the domain D = {(r, t): 0 < t < 1/2, t < r < 1 − t}, bounded by

S0 = {
(r, t): t = 0, 0 < r < 1

}
,

S1 = {
(r, t): 0 < t < 1/2, r = 1 − t

}
, S2 = {

(r, t): 0 < t < 1/2, r = t
}
.

Problem P1.1. Find a solution of Eq. (4.8) in the domain D which satisfies the boundary condi-
tions

P1.1: u|S0 = 0, u|S1 = 0. (4.9)

Substituting v = ru(r, t), g = rf (r, t) and ξ = (r + t)/2; η = (r − t)/2, implies the equation

vξη − n(n + 1)

(ξ + η)2
v = g (4.10)

in the domain D1 = {(ξ, η) ∈ R
2: 0 < η < ξ < 1/2} with boundary conditions

P1.2: v(η, η) = 0, v(1/2, η) = 0, η ∈ (0,1/2].

Lemma 4.3. The solution v(ξ, η) of problem P1.2 is given by

v(ξ, η) = τ(ξ) +
1
2∫

ξ

τ (ξ1)
∂

∂ξ1
Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1

−
1
2∫ ( η∫

Pn

(
(ξ − η)(ξ1 − η1) + 2ξ1η1 + 2ξη

(ξ1 + η1)(ξ + η)

)
g(ξ1, η1) dη1

)
dξ1, (4.11)
ξ 0
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where

τ(ξ) = G(ξ) +
1
2∫

ξ

P ′
n

(
ξ1

ξ

)
G(ξ1)

ξ1
dξ1 (4.12)

and

G(ξ) =
1
2∫

ξ

( ξ∫
0

Pn

(
ξ1η1 + ξ2

(ξ1 + η1)ξ

)
g(ξ1, η1) dη1

)
dξ1. (4.13)

Proof. Problem P1.2 can be solved explicitly. For Eq. (4.10) the function

R(ξ1, η1; ξ, η) = Pn

(
(ξ − η)(ξ1 − η1) + 2ξ1η1 + 2ξη

(ξ1 + η1)(ξ + η)

)
(4.14)

is the Riemann function (see Copson [6]). Following Aldashev [1] let the function v(ξ, η) be
constructed as a solution of Goursat’s problem for Eq. (4.10) in the triangle D1 with boundary
values v(1/2, η) = 0 and v(ξ,0) = τ(ξ), i.e.,

v(ξ, η) = τ(ξ) +
1
2∫

ξ

τ (ξ1)
∂

∂ξ1
R(ξ1,0; ξ, η) dξ1

−
1
2∫

ξ

( η∫
0

R(ξ1, η1; ξ, η)g(ξ1, η1) dη1

)
dξ1.

The unknown function τ ∈ C1(0,1/2] is found by using the boundary condition v(ξ, ξ) = 0,
ξ ∈ [0,1/2]. For this reason, define the function G(ξ) by (4.13). Then the unknown function τ(ξ)

will satisfy the equation

1
2∫

ξ

τ ′(ξ1)Pn

(
ξ

ξ1

)
dξ1 = −G(ξ), ξ ∈ (0,1/2]. (4.15)

Using Lemma 4.1 and the fact that τ(1/2) = v(1/2,0) = 0, this integral equation can be solved
and one comes to expression (4.12) for the function τ(ξ). Thus, formulas (4.11), (4.13) and
(4.12) give the generalized solution of P1.2. �
Remark 4.4. In the case n = 0 Eq. (4.10) is simply vξη = g and the generalized solution of P1.2
is obviously in conformity with the above formulas, since P0(x) ≡ 1.

5. The asymptotic expansion in two-dimensional cases

We will discus in this section Problem P1 only for right-hand side functions f , which have
the special form:

f (x, t) = f m
n (r, t)Ym

n (θ,ϕ),
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where n,m ∈ N ∪ {0} and m � 2n + 1. Then in view of Theorem 3.1, the unique generalized
solution u of problem P1 has the same form:

u(x, t) = um
n (r, t)Ym

n (θ,ϕ)

and the functions um
n and f m

n satisfy Eq. (4.8) and the boundary conditions P1.1. After the change
of the variables ξ = (r + t)/2;η = (r − t)/2 and the substitutions

v(ξ, η) = (ξ + η)um
n (ξ + η, ξ − η), g(ξ, η) = (ξ + η)f m

n (ξ + η, ξ − η),

according to Lemma 4.3, the solution is determined by formulae (4.11), (4.13) and (4.12). As-
sume that the right-hand side function f in Eq. (4.8) is such that rf (r, t) ∈ C1(�D) and thus
g(ξ, η) = rf (r, t)|r=ξ+η,t=ξ−η ∈ C1(�D1).

In order to study the exact behavior of the function v(ξ, η) and the solution u = r−1v of P1.1,
let us now examine the behavior of τ(ξ) given by (4.12). Obviously, the integral in the right-hand
side of (4.12) blows up when ξ → 0, if no other conditions on G(ξ) are imposed. One could keep
it under control by imposing some orthogonality conditions on the function G. In the case when
these orthogonality conditions are absent, an asymptotic expansion at the point of singularity
(0,0) will be found. To do this one needs a more detailed study of the function G(ξ) and that
of τ(ξ) around the point ξ = 0.

Lemma 5.1. Let g ∈ C1(�D1) and n ∈ N. Then the function G(ξ), given by formula (4.13) belongs
to C2(0,1/2] ∩ C1[0,1/2] and G(ξ) = dnξ + H(ξ), where |dn| � C‖g‖C1(D1)

and |H(ξ)| �
Cξ1+ε‖g‖C1(D1)

, ε > 0, with a constant C independent on f . In addition, the constant dn is zero
for all even numbers n.

Proof. According to relation (4.13) between the functions G(ξ) and g = rf (r, t), the smooth-
ness of the function G(ξ) away from ξ = 0 is obvious. Changing in (4.13) the variables η1 = tξ

one has

G(ξ) = ξ

1
2∫

ξ

( 1∫
0

Pn

(
tξ1 + ξ

ξ1 + tξ

)
g(ξ1, tξ) dt

)
dξ1. (5.1)

Then, for the function

G1(ξ) :=
1
2∫

ξ

( 1∫
0

Pn

(
tξ1 + ξ

ξ1 + tξ

)
dt

)
g(ξ1,0) dξ1 (5.2)

the estimate∣∣G(ξ) − ξG1(ξ)
∣∣ � Cξ2‖g‖C1(D1)

,

holds obviously and the constant C is independent on f . To study the behavior of the func-
tion G1(ξ) at ξ = 0 let compute for 0 < ξ < ξ1 � 1/2 the integral

In(ξ, ξ1) :=
1∫
Pn

(
tξ1 + ξ

ξ1 + tξ

)
dt
0
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=
1∫

0

Pn(t) dt +
[n/2]∑
k=0

a2k

1∫
0

ξ(1 − t2)

ξ1 + tξ

n−2k−1∑
m=0

(
tξ1 + ξ

ξ1 + tξ

)m

tn−2k−1−m dt

= cn + H 1(ξ, ξ1),

where cn = ∫ 1
0 Pn(t) dt and |H 1(ξ, ξ1)| � C(ξ/ξ1). Actually, (tξ1 + ξ) � (ξ1 + tξ ) and then all

the terms in the second sum are bounded. Thus

G1(ξ) = dn + H 2(ξ), dn =
1∫

0

Pn(t) dt

1
2∫

0

g(ξ1,0) dξ1,

∣∣H 2(ξ)
∣∣ =

∣∣∣∣∣
1
2∫

ξ

H 1(ξ, ξ1)g(ξ1,0) dξ1 − cn

ξ∫
0

g(ξ1,0) dξ1

∣∣∣∣∣ � Cξε‖g‖C1(D1)
, ε > 0.

To complete the proof of Lemma 5.1, it is enough to see that for n � 1

cn = 1

2nn!
1∫

0

dn

dtn

{(
t2 − 1

)n}
dt = 1

2nn!
n∑

k=0

(
n

k

)
(−1)n−k+1 dn−1

dtn−1
t2k

∣∣∣∣
t=0

.

Each term in the last sum is zero, except the only one for which 2k = n−1, if n is an odd number,
while c2m = 0 for n = 2m. �

Denote by βn
k the constants

βn
k :=

1
2∫

0

( 1−t∫
t

Hn
k (r, t)f (r, t)r2 dr

)
dt for k = 0, . . . ,

[
n − 1

2

]
. (5.3)

Theorem 5.2. Let rf (r, t) ∈ C1(�D). Then the generalized solution u(r, t) of problem P1.1 be-
longs to C2(�D \ (0,0)) and has the following asymptotic expansion at (0,0)

u(r, t) =
[ n−1

2 ]∑
k=0

r−1(r + t)−(n−2k−1)βn
k F n

k (r, t) + Fn(r, t), (5.4)

where Fn
k ,F n ∈ C2(�D \ (0,0)) and |Fn

k (r, t)| � C, |Fn(r, t)| � C‖rf ‖C1(D) with functions Fn
k

and a constant C independent on f , and Fn
k (t, t) ≡ const �= 0.

Proof. In this case, Theorem 3.1 gives the unique generalized solution u(r, t). Let us begin the
study of the behavior of the function v(ξ, η), given by the representation (4.11) from Lemma 4.3.
According to the smoothness of the function G(ξ) in (4.11), the smoothness of v(ξ, η) away from
the point (0,0) (and than the smoothness of u(r, t) away from r = 0) is obvious. Let find now
the expansion of v(ξ, η) at (0,0).
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In the case n = 0 the assertion of the theorem actually is that u(r, t) is a bounded function,
which follows directly in view of

∣∣u(r, t)
∣∣ =

∣∣∣∣∣r−1

(r+t)/2∫
(r−t)/2

( 1/2∫
(r+t)/2

g(ξ1, η1) dξ1

)
dη1

∣∣∣∣∣ � ‖g‖C(D1).

Now, let n � 1. Using Lemma 5.1 it follows that G(ξ) = dnξ + H(ξ) with the estimates
|dn| � C‖g‖C1(D1)

and |H(ξ)| � Cξ1+ε‖g‖C1(D1)
, ε > 0. In addition, for each even number n

we have dn = 0 and therefore dnPn(0) = 0 for all natural numbers n (obviously, Pn(0) = 0 when
n is an odd number). On the other hand, Lemma 4.2 gives the equality

1
2∫

0

ξn−2i−2G(ξ)dξ

=
1
2∫

0

{ ξ1∫
0

( ξ1∫
η1

ξn−2i−2Pn

(
ξ1η1 + ξ2

ξ(ξ1 + η1)

)
dξ

)
g(ξ1, η1) dη1

}
dξ1

=
1
2∫

0

( ξ∫
0

hn
n−2i−2(ξ, η)g(ξ, η) dη

)
dξ = cn

i

1
2∫

0

( 1−t∫
t

Hn
i (r, t)f (r, t)r2 dr

)
dt, (5.5)

where cn
i �= 0. Therefore, the notations (5.3) lead to

1
2∫

0

ξn−2i−2G(ξ)dξ = cn
i βn

i for i = 0, . . . ,

[
n − 1

2

]
. (5.6)

Recalling the representation (4.12) of τ(ξ), first we find the derivative of the Legendre polyno-
mial Pn from (4.4)

P ′
n(x) =

[ n−1
2 ]∑

k=0

(n − 2k)a2kx
n−2k−1, a2k �= 0. (5.7)

Therefore
1
2∫

ξ

P ′
n

(
ξ1

ξ

)
G(ξ1)

ξ1
dξ1 =

[ n−1
2 ]∑

k=0

a2k(n − 2k)ξ−n+2k+1

1
2∫

ξ

ξn−2k−2
1 G(ξ1) dξ1

=
[ n−1

2 ]∑
k=0

a2k(n − 2k)cn
kβn

k ξ−n+2k+1 −
ξ∫

0

P ′
n

(
ξ1

ξ

)
G(ξ1)

ξ1
dξ1. (5.8)

Then it follows the estimate∣∣∣∣∣
ξ∫
P ′

n

(
ξ1

ξ

)
H(ξ1)

ξ1
dξ1

∣∣∣∣∣ =
∣∣∣∣∣
[ n−1

2 ]∑
k=0

a2k(n − 2k)ξ−n+2k+1

ξ∫
ξn−2k−2

1 H(ξ1) dξ1

∣∣∣∣∣

0 0
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� C1‖g‖C1(D1)

[ n−1
2 ]∑

k=0

ξ−n+2k+1

ξ∫
0

ξn−2k−1+ε
1 dξ1

� Cξ1+ε
∥∥rf (r, t)

∥∥
C1(D)

.

From (4.12) and (5.8) follows the asymptotic expansion of τ(ξ) at ξ = 0:

τ(ξ) = G(ξ) +
1
2∫

ξ

P ′
n

(
ξ1

ξ

)
G(ξ1)

ξ1
dξ1

= dnξ + H(ξ) +
[ n−1

2 ]∑
k=0

a2k(n − 2k)cn
kβn

k ξ−n+2k+1 −
ξ∫

0

P ′
n

(
ξ1

ξ

)
dnξ1 + H(ξ1)

ξ1
dξ1

=
[ n−1

2 ]∑
k=0

a2k(n − 2k)cn
kβn

k ξ−n+2k+1 + dnξ
{
1 − Pn(1) + Pn(0)

} + H1(ξ)

=
[ n−1

2 ]∑
k=0

a2k(n − 2k)cn
kβn

k ξ−n+2k+1 + H1(ξ), (5.9)

where |H1(ξ)| � Cξ1+ε‖g‖C1(D1)
, using that Pn(1) = 1 and dnPn(0) = 0 for each number n.

Substituting τ(ξ) in the formula (4.11) from Lemma 4.3, one gets the expansion

v(ξ, η) =
[ n−1

2 ]∑
k=0

a2k(n − 2k)cn
kβn

k ξ−n+2k+1 + H1(ξ)

+
1
2∫

ξ

τ (ξ1)
∂

∂ξ1
Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1 + F1(ξ, η), (5.10)

where the function F1 is smooth (see (4.11)) and |F1(ξ, η)| � Cξ‖g‖C1(D1)
. Then

1
2∫

ξ

τ (ξ1)
∂

∂ξ1
Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1

=
[ n−1

2 ]∑
k=0

a2k(n − 2k)cn
kβn

k

1
2∫

ξ

ξ−n+2k+1
1

∂

∂ξ1
Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1

+
1
2∫
H1(ξ1)

∂

∂ξ1
Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1.
ξ
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Obviously,

1
2∫

ξ

ξ1+ε
1

∣∣∣∣ ∂

∂ξ1
Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)∣∣∣∣dξ1 � Cξη

ξ + η

1
2∫

ξ

ξ ε−1
1 dξ1 � C′ξ. (5.11)

Thus

v(ξ, η) =
[ n−1

2 ]∑
k=0

a2k(n − 2k)cn
kβn

k ξ−n+2k+1

×
{

1 + ξn−2k−1

1
2∫

ξ

ξ−n+2k+1
1

∂

∂ξ1
Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1

}
+ H2(ξ, η),

where |H2(ξ, η)| � Cξ‖g‖C1(D1)
. To complete the proof, it needs only to estimate the expression

∣∣∣∣∣
1
2∫

ξ

ξ−n+2k+1
1

∂

∂ξ1
Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1

∣∣∣∣∣ � Cξ−n+2k+1. (5.12)

Finally, let us return to the generalized solution u(r, t) of problem P1.1 and to the coordinates r

and t :

u(r, t) = r−1v

(
r + t

2
,
r − t

2

)
= r−1

[ n−1
2 ]∑

k=0

βn
k (r + t)−n+2k+1Fn

k (r, t) + Fn(r, t),

where the independent on f functions Fn
k (r, t) are given by

Fn
k (r, t) := 2n−2k−1(n − 2k)a2kc

n
kGn

k

(
r + t

2
,
r − t

2

)
, (5.13)

with

Gn
k(ξ, η) := 1 + ξn−2k−1

1
2∫

ξ

ξ−n+2k+1
1

∂

∂ξ1
Pn

(
(ξ − η)ξ1 + 2ξη

ξ1(ξ + η)

)
dξ1. (5.14)

Obviously, Fn
k (r, t) are bounded (see (5.12)). Therefore

Fn
k (t, t) = 2n−2k−1(n − 2k)a2kc

n
k �= 0. �

Remark 5.3. In the case, when all orthogonality conditions

βn
i =

1
2∫

0

( 1−t∫
t

Hn
i (r, t)f (r, t)r2 dr

)
dt = 0 for i = 0, . . . ,

[
n − 1

2

]
(5.15)

are fulfilled, expansion (5.4) directly gives |u(r, t)| � C‖f ‖C1(D).
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6. Proofs of the main results

Let first mention that we omit the proof of Theorem 3.1, which is similar to the proof of
Theorems 3.2 and 3.3 from [24] and Theorem 2.3 from [22].

Now, using the last two results from the previous section it is not hard to prove Theorem 3.2.

Proof of Theorem 3.2. When the right-hand side function f (x, t) has the form (3.1), due to
Theorem 3.1, the unique generalized solution u(x1, x2, x3, t) is given by (3.2). Moreover, the
functions um

n (r, t) are solutions of problem P1.1 with right-hand side f m
n ∈ C1(�D), where the

Fourier coefficients f m
n are given by

f m
n (r, t) :=

π∫
0

( 2π∫
0

f (r, θ,ϕ, t)Ym
n (θ,ϕ)dϕ

)
sin θ dθ. (6.1)

Obviously,

max�D
∣∣f m

n (r, t)
∣∣ � 4 max�Ω

∣∣f (x, t)
∣∣. (6.2)

Using the definition of functions V n
k,m from Lemma 2.1 and (6.1), the identity

1
2∫

0

( 1−t∫
t

Hn
k (r, t)f m

n (r, t)r2 dr

)
dt =

∫
Ω

V n
k,m(x, t)f (x, t) dx dt,

implies the connection βn
k = βn

k,m between the constants from (3.3) and (5.3). Therefore, one can
apply Theorem 5.2 for the functions um

n (r, t) and f m
n (r, t) with these values of βn

k . Using all this
and (6.2), one finds the expansion

um
n (r, t) =

[ n−1
2 ]∑

k=0

r−1(r + t)−(n−2k−1)βn
k,mF

n,m
k (r, t) + Fn,m(r, t),

where |Fn,m(r, t)| � C‖f ‖C1(Ω), |Fn,m
k (r, t)| � C and F

n,m
k (t, t) = const �= 0. Summing up

over n and m one gets the desired expansion.
To prove property (iii), notice that for a fixed direction (α,1) := (α1, α2, α3,1) with α1 =

sin θ0 cosϕ0, α2 = sin θ0 sinϕ0 and, α3 = cos θ0, for the functions Fn
k,m from (3.4) we have

Fn
k,m(αt, t) := 2(2k−n+2)/2F

n,m
k (t, t)Ym

n (ϕ0, θ0). (6.3)

Therefore

lim
t→+0

Fp(αt, t) =
[(l−p)/2]∑

k=0

2p+4k+1∑
m=1

Cp,k,mβ
p+2k
k,m Ym

p+2k(ϕ0, θ0), (6.4)

with constants Cp,k,m �= 0. Thus the property (iii) follows from the fact that the spherical func-
tions Ym

n are linearly independent. �
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