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Abstract

In this paper we consider the existence of the solution of a special nonlinear least-squares problem . We find
the necessary conditions on the data, which insure the existence of the optimal parameters for the asymmetric
S-function in the sense of the least squares .
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1. Introduction

Applied research in biology, agriculture, economics, electrical engineering, medical sciences etc .
often uses the so-called S-function model. By an S-function we mean a differentiable increasing
function defined on the whole real line such that its graph lies between two horizontal asymptotes .
The most common S-function is the so-called logistic function (see [4,6,7,10])

f(t)=l+be_

	

c>0,

	

(1 .1)

satisfying the well-known Verhulst differential equation

dt =cy11- A I .

	

(1 .2)

This equation describes the biological principle that the growth rate of the number of living organisms
in a restricted environment is proportional to the number of living organisms itself and the amount of
as yet unused resources at the given moment . The constant A denotes the saturation level. The logistic
function is centrally symmetric with respect to the inflection point I = ((Inb)/c,'''A) . Namely, we
have

f(ti)=i[f(ti+t)+f(ti-t)], VtE2,

	

(1 .3)
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where ti is the first coordinate of the inflection point .
When using this model function in economics research, it becomes clear that this symmetry

does not correspond to the real-life situations . Therefore Lewandowsky [4] suggested the following
modification of (1 .2) :

dt=cy
c>0, Y>0,

	

(1 .4)

which has the solution
A

.f(t) = (1	
+ be-"yt)'/y'

c>0, y > O .

	

(1 .5)

For y = I the function (1 .5) becomes the logistic function, and for y # I it is an asymmetric
S-function .

Definition 1 .1 . We say that the S-function f with the inflection point 1(tt , y,) is negatively asym-
metric if the following holds :

f(t,) < z[f(t, +t)+ .f(t,-t)], VtER,

	

(1 .6)

and it is positively asymmetric if the opposite inequality holds .

Remark 1 .2. From the definition it is clear that the function (1 .5) is negatively (respectively posi-
tively) asymmetric, provided y, < ' A (respectively y, > '' A) .

2

	

2

It is shown in [4] that if y < I (respectively y > 1), then the function (1 .5) is negatively
(respectively positively) asymmetric . Therefore y is called the asymmetry coefficient .

In [4] Lewandowsky suggests that the negatively asymmetric function be used to describe phenom-
ena of relatively short duration span (e.g ., fashion products), and the positively asymmetric functions
for phenomena of relatively longer duration span (e.g ., the personal car demand) .

The saturation level A is a constant which may represent the biological maximum (e.g ., of the yield
of a specific farm crop) or the economic maximum (e.g ., the maximal profitable production) . The
asymmetry coefficient y is determined from one's experience and depends on the particular problem
(see [4]) .

The parameters b and c have to be determined from the experimental data (p,, t,, f), i = 1, . . . , m,
where t; denotes the independent variable, f, the respective function value and p, is the data weight .

In this paper we solve the existence problem of this special nonlinear least-squares problem, and
the example at the end of the paper is worked out using the modified Levenberg-Marquardt's method
with regulated step (see [ 1-3,5] ), based on my own software modified for PCs .

2. Existence of the best approximation

Given are the data (p,, t,, f,), i = I_ ., m, where the p, are some positive weights and t, < . . <
t,,, . Furthermore, since the numbers fi usually denote the quantity of something, we may assume that
fl, . . ., fm > 0 .
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Consider the class of functions

f (t ; b, c) _ (I	
+ be trr) l/r' b>0, c>0,

	

(2.1)

where A > 0 and y > 0 are constant .
We look for an ordered pair (b*, c*) of real numbers, which minimizes the function

m

	

2

F(b,c)=2E,Pi[fi -
i=

	

(1+be tyh)1/r]

If we denote the set

13={(b,c)EIIR2: b>0,c>0},

then the problem can be defined as follows .
Does there exist a pair of numbers (b*, c*) E B, such that

F(b*, c*) = inf F(b, c)7
(b,c)ES

The following example shows that the above problem does not always have a solution .

Example 2.1 . The function F defined in (2.2) does not always have its minimum in the set f3 .
We give an example . Let fl = . . . = fm = 1 . Then F(A' - 1, 0) = 0 . Since F(b, c) >, 0 for all

(b, c) E 13, this means that the global minimum of F is on the boundary of 8 . But this means that
the function (2.1) is the constant function t -, 1, which is ruled out by requiring c > 0 .

Therefore, to ensure the existence of the minimum of the function F, it is necessary to require
that the data satisfy some conditions . It will be shown that the property of preponderant increase is
playing an important role (see [9] ) .

Definition 2.2. The data (pi , t i , fi ), i = 1, . . . , m, are said to have the preponderant increase (respec-
tively decrease) property if the slope of the associated linear trend is positive (respectively negative) .
If this coefficient is equal to zero, then the data is said to be preponderantly stationary .

Remark 2.3. In [9] it is shown that the condition of the preponderant increase is equivalent to the
corresponding Chebyshev inequality

m

	

m

	

ne

Pitifi>Pi -

	

Piti

	

Pifi > 0,

	

(2.3)
i=1

	

i=1

	

i=1

	

i=1

and that the condition of preponderant increase is weaker than the condition of increase

fl <, f2 ~-
. .

. <1 fm & fl < fm •

The next theorem gives the same sufficient conditions which assure that the function F reaches its
minimum in 13 .

(2 .2)
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Theorem 2 .4 . Let the data (p i , ti , fi ), i = I,-, m, be given. Denote
m

	

I m0,

= ~ Pifi,

	

f,

	

tp =- > pit,,
i=1

	

(d'

	

~ i=1

I _
O"+(0

	

or

	

Pifi ,

	

f -
>

	

W+ '

and let (i) the data fulfil Chebyshev's inequality (2.3), (ii) fi 5 A, i = I, . . . , m. Then, (I) if

In <1 -fP ,

there exists a pair (b*, c*) E 13 which minimizes the function F defined by (2 .2) on B ;
(II) if

W
f,, > - fP

and

m

= E, Pi,
i=1

i=1

(2.4a)

(2 .4b)

fP +

	

2 -

	

f12 A,

	

(2.5)

there also exists a pair (b*, c') E B which minimizes the function F on B .

Proof. If we substitute

ri = ti - t,,,

	

i=1, . . .,m,

	

(2 .6)

the function F takes the form

F(b,c)=`F($,c)=2~Pi[L- (1
+Qe y)1/y]

z

=1

where 0 = be- '7'p . The function P is of the same type as F, and since the map (h, c) H (be-`y', , c)
is a bijection of B into B, our problem is equivalent to the following one .

Does there exist a pair of numbers (h*, c*) E 8, such that

4' * _ (P(/3 * , c*) = inf '(f, c)?
(0 ,F)Ei3

Note that because of (2.6) we have
m

~, piri = 0,

(2.7)

(2.8)

and the condition for the preponderant increase property (Chebyshev's inequality (2 .3)) becomes
simply

m

pirifi > 0 . (2.9)
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grad (Y

V/ (a, c) = 0(0, c) = -

0

C

r l

	

C

	

r, .__,

	

grader

a/i\ A

aA
f` (cry +(A'_ar)e-" )Ur

grad ct

Fig. 1 . The behavior of the function W on the boundary dC of the set C .

The substitution

a
(1+/3) 1 r, aE(0,A),

	

(2.10)

reduces the problem to the following one .
Does there exist a pair (a*, c*) E C = {(a, c) E a2 : 0 < a < A, c > 0} such that

IF* =F(a*,c*)= inf IF (a,c),
(a,c)EC

(2 .11)

After the performed transformations, the function f became

g(fi a, c) =

	

aA

	

(2 .12)
(ay + (A7 - a r )e-Ir+-) Ur

The existence of a minimum for W on the set C will ensure the existence of a minimum of 0, and
hence of F, on the set B .

We investigate first the behavior of P on the boundary dC of the set C, which we write as
dC = T, U F2 U I'3 , where (see Fig . 1)

F,={(a,c)EC: a=0),

	

F2={(a,c)-EC : c=0},

	

F3={(a,c)EC: a=A}.

We investigate the behavior of )P on dC by means of its gradient

(2.13)

d

grad e=
da
dY

e-'Y',

	

aA
[

	

Av
a(Ar- a')7-d=-A ~,Pa d'lr+i f. - d' yr )

do
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First consider the part T( of dC . For the first component of grad WW on T, we have

dip

	

m

grad, Y1~r

= da

	

P;f;e`T' < 0 .

	

(2.14)

Therefore, regardless of the second component of grad +P, the direction of the antigradient (i.e ., of
the fastest decrease) of !P on F, is going to be towards C .

In order to investigate the behavior of YP on F2, consider the second component of grad Y/ . We
have

dY•
grad Y fi r, = do

Then for (2.8) and (2.9) we have grad Wl., < 0. This again means that the direction of the
antigradient of !P on T2 has the direction towards C .

Finally, for the first component of grad IF on r3 we have

grad, war = da

	

=-EP,(f, -A)e`y'i > 0 .

	

(2.16)
da a=n

The condition (ii) then shows that the direction of the antigradient of YW on r3 is also towards C .
The above considerations show that Y' cannot reach its infimum on dC . Since Y2 > 0, there is a

sequence (a,,, ca ) in C such that

+P„=1P(a,,,c„)= inf !P(a,c) .
(u,c)EC

We show that the sequence (a,,, c„) is bounded. Assume the contrary . Because of the shape of the
set C, this means that the sequence (c„) is not bounded . One can assume that c . -* +00 (if not, take
an appropriate subsequence), By the Bolzano-Weierstrass theorem we may assume that the sequence
(a,) converges (if not, take a convergent subsequence) . Let a* = limn_. a,,, a* E (0, A) . Because
T, < . . . < r,, we see for (2.8) that T < 0 and r,,, > 0. Now it is easy to see that the sequence
&(7j = g(T i ; a,,, c .), n E N, where g was defined in (2.12), converges with the limit being

0,

	

Ti < 0,
Si = a',

	

Ti = 0,
A,

	

ri > 0 .

a 2 (Ay -ar) m

	

a(Ar-ay)
°,

1a

	

Ay

	

EPiTi-

	

Ay

	

EPiTif.
i=1

	

i =1

The corresponding sequence +P„ = IF (a,,, c„) converges with the limit being

1

	

Pifi+'n (F.-a*)2+2~ P,(f-A)
2 ,

o

	

,;>o
'PO =

(2.15)

(2.17)

where
L oth data,

	

if there exists a data with ti = tp ,
(0,0,0),

	

otherwise .

In order to show that the assumption that c„ -. +oo, i.e ., that the infimum of 91 is obtained for
a„ -, a* and c„ -* +oo, either we have to find a function of the type (2 .12) which is, in the sense
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of least squares, better than g and which is at the point T; given by S„ or we have to find a point in
C where the value of V is smaller than Y•0 in (2.17) .

Let us look for such a point near F 2 . On F2 the function IF becomes

P, (a) _ -

	

Pi(.fi-a)2 .

	

(2.18)

The function P, has a minimum for a = fn . We shall show that the function +P has a value smaller
than 'Po at T(fp , 0) . In fact, the point T lies on T2 , but because of (2 .15) there is always a point in
C where the value of 'P is even smaller .

To do this, consider the difference
m

	

m

2[Yro-'P(fn,0)]=2fvj:Ptfi-fpJ:Pt+A2EP;-2A pif;-2a P;f;o +Proa
*2

t=1

	

i=1

	

r;>0

	

r,>0

(2 .19)

From p o2 > 0 and a* < A, we obtain

2[Po - P(fv ,0)] > A2w+ -2Aw+ f" +wfp •

	

(2 .20)

The right-hand side of (2.20) can be considered a quadratic function in A, with the discriminant

D = 4w+ (w+fn2 - w f2,) .

	

( 2 .21)

If (2.4a) holds, then D ( 0, and since w + > 0, the whole graph of the quadratic function lies in
the upper half-plane, i.e ., we have

2['Po-?(fv,0)1 >0 .

	

(2 .22)

If (2.4b) holds, then denote

h(x) = w+x2 - 2w+f,+X + wfp •

	

(2.23)

Since the zeros of h are

x1.2 = fn f
+2 - Cf2l

	

w v

and w+ > 0, because of (2.5) we have again (2.22) .
We now conclude that the sequence (c n ) is bounded, and therefore by the Bolzano-Weierstrass

theorem we may assume that it converges (otherwise take a subsequence) . Let c* = limn_.cn ,
c* E (0,+x) .

In that way we obtained a convergent sequence (a n , cn) with limn_. (a,,, c n ) = (a*, c*) . Note that
(a*, c*) cannot lie on dC since the direction of the antigradient of 'P is towards C, and therefore
(a*, c') E C . By continuity of IF we now have

P(an,cn ) -+ YP(a*,c*), n-++oo .

	

O
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Remark 2.5. If we consider the case m = 2k, k E N, and pl = . . . = P2k = I and if the t, are
equidistant (which is often the case in practice), then condition (2 .4a) becomes simply

fkf 1+''' -1- f2k 1< (2+1)(fl + . . .+ fk) .

This means in case of a "mild" preponderant increase, the data have to satisfy only condition (ii),
while in case of more prevalent growth, the data have to satisfy also condition (2.5) .

Example 2.6 . The data are given in Table 1. For this data condition (2.4a) is not satisfied. Therefore
it is not enough that the saturation level A be greater than 200 (by (ii)), but, in addition, the
condition (2.5) has also to be satisfied, i .e ., the saturation coefficient A has to be greater than 256 .
It was checked numerically that also in case 200 < A < 256 the iteration process does not converge .
But for A = 260 (and y = 0.5) we have

b' = 1989 .08,

	

c* = 6.276 11,

	

F(b*, c*) = 1678.97 .

The minimized function F is shown in Fig . 2 .

b

2000 6 .2

Fig . 2 . Graph of the minimized function F .

Table I

1 I 2 3 4

Pi 1 1 1 1
t i 1 2 3 4
f; 0.5 0.5 200 200



R. Scitovski/Journal of Computational and Applied Mathematics 53 (1994) 323-331

	

331

References

[11 E.Z. Demidenko, Optimizacia i Regresija (Nauka, Moscow, 1989) .
[2] 1 .E . Dennis Jr and R.B. Schnabel Numerical Methods for Unconstrained Optimization and Nonlinear Equations

(Prentice-Hall, Englewood Cliffs, NJ, 1983) .
[3] PE. Gill, W. Murray and M.H . Wright, Practical Optimization (Academic Press, London, 1981) .
[4] R . Lewandowsky, Prognose and Informationssysteme and ihre Anwendungen (Walter de Gruyter, Berlin, 1980) .
15] D.W. Marquardt, An algorithm for least squares estimation of nonlinear parameters, SIAM J. Appl. Math. 2 (1963)

431-441 .
[6] P. Martens, Prognoserechnung (Physica-Verlag, W(irzburg, 1981) .
[7] R. Scitovski, Searching methods and existence of solution of special nonlinear least squares problems, Glas. Mat. 20

(40) (1985) 451-467 .
[8] R. Scitovski, Some special nonlinear least squares problems, Rad, Mat. 4 (1988) 279-298 .
[9] R. Scitovski, Condition of preponderant increase and Tchebycheff's inequality, in : B .S . Jovanovi6, Ed ., VIth Conf on

Applied Mathematics, Faculty Math ., Univ. Belgrade (1989) 189-194 .
[10] G.A.F. Seber and C .J. Wild, Nonlinear Regression (Wiley, New York, 1989) .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9

