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Abstract

Let G be a Lie group which is the union of an ascending sequence G1 ⊆ G2 ⊆ · · · of Lie groups (all of
which may be infinite-dimensional). We study the question when G = lim−→Gn in the category of Lie groups,
topological groups, smooth manifolds, respectively, topological spaces. Full answers are obtained for G the
group Diffc(M) of compactly supported C∞-diffeomorphisms of a σ -compact smooth manifold M; and for
test function groups C∞

c (M,H) of compactly supported smooth maps with values in a finite-dimensional
Lie group H . We also discuss the cases where G is a direct limit of unit groups of Banach algebras, a Lie
group of germs of Lie group-valued analytic maps, or a weak direct product of Lie groups.
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Introduction

It frequently happens that an infinite-dimensional Lie group G of interest is a union G =⋃
n∈N

Gn of an ascending sequence G1 ⊆ G2 ⊆ · · · of Lie groups which are easier to handle.
Typically, each Gn is finite-dimensional, a Banach–Lie group, or at least a Fréchet–Lie group,
while G is modelled on a more complicated locally convex space (e.g., an LB-space, LF-space,
or a Silva space). Then good tools of infinite-dimensional calculus are available to establish
differentiability properties of mappings on the groups Gn, while properties of mappings (or ho-
momorphisms) on G are more elusive and can be difficult to access.

In this article, we consider mappings f :G → X, where X is a topological space or smooth
manifold; and also homomorphisms f :G → H , where H is a topological group or Lie group.
We analyze the question when continuity (or smoothness) of f |Gn for each n implies continu-
ity (or smoothness) of f . To rephrase this problem in category-theoretical terms, let TOP be
the category of topological spaces and continuous maps, TG the category of topological groups
and continuous homomorphisms, MFD∞ the category of smooth manifolds (modelled on real
locally convex spaces) and smooth maps, and LIE the category of Lie groups (modelled on real
locally convex spaces) and smooth homomorphisms. We consider a Lie group G which is a union
G = ⋃

n∈N
Gn for an ascending sequence G1 ⊆ G2 ⊆ · · · of Lie groups, such that all inclusion

maps in,m :Gm → Gn (for m � n) and in :Gn → G are smooth homomorphisms. Thus S :=
((Gn)n∈N, (in,m)n�m) is a direct system in LIE, and we can consider S also as a direct system
in TOP, TG and MFD∞, forgetting extraneous structure. We are asking whether G = lim−→ Gn

(more precisely, (G, (in)n∈N) = lim−→S) holds in TOP, MFD∞, TG, respectively, LIE.
If each Gn is a finite-dimensional Lie group and G = lim−→ Gn the direct limit Lie group con-

structed in [21] (see also [18,44,45] for special cases), then G = lim−→ Gn holds in each of the
preceding categories [21, Theorem 4.3]. The goal of this article is to shed light on the case where
the Lie groups Gn are infinite-dimensional. Then the situation changes drastically, and some of
the direct limit properties can get lost.

We are interested both in general techniques for the investigation of direct limit properties,
and a detailed analysis of the properties of concrete groups. In the following, we summarize
some of the main results.
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Tools for the identification of direct limits

Direct limit properties of G = ⋃
n∈N

Gn are accessible provided that G admits a “direct limit
chart” composed of charts of the groups Gn (see Definition 2.1 for details). If this is the case,
then the following information becomes available:

• if G = lim−→ Gn as a topological group, then G = lim−→ Gn as a Lie group (Theorem 2.6);
• G = lim−→ G as a topological space if and only if L(G) = lim−→ L(Gn) as a topological space

(Theorem 3.3(a));
• if L(G) is smoothly regular, then G = lim−→ Gn as a smooth manifold if and only if L(G) =

lim−→ L(Gn) as a smooth manifold (Theorem 3.3(b)).

The existence of a direct limit chart is a very weak requirement, which is satisfied by all relevant
examples known to the author. Another result (Proposition 11.8) provides a criterion (also satis-
fied by all relevant examples inspected so far) which ensures that G = lim−→ Gn as a topological
group. This criterion is closely related to investigations in [53]. In this paper, a condition was
formulated which facilitates a quite explicit (“bamboo-shoot”) description of the group topology
on a direct limit of topological groups.

Direct limit properties of the prime examples

We now summarize our results concerning concrete examples of direct limit groups.

1. Groups of compactly supported functions or diffeomorphisms. Let Diffc(M) be the group
of all C∞-diffeomorphisms γ of a σ -compact, non-compact finite-dimensional smooth mani-
fold M which are compactly supported (i.e., γ (x) = x for all x outside some compact subset
of M). Then Diffc(M) is a Lie group modelled on the LF-space C∞

c (M,T M) of compactly
supported smooth vector fields (see [42] or [17]). It is a union Diffc(M) = ⋃

K DiffK(M) of the
Lie subgroups DiffK(M) of diffeomorphisms supported in K (which are Fréchet–Lie groups),
for K ranging through the directed set of compact subsets of M . Given a finite-dimensional
Lie group H , we are also interested in the “test function group” C∞

c (M,H) of compactly sup-
ported smooth H -valued maps, which is a Lie group modelled on the LF-space C∞

c (M,L(H))

(see [14]). It is a union C∞
c (M,H) = ⋃

K C∞
K (M,H) of groups of mappings supported in a

given compact set K . Now assume that M and H are non-discrete. Table 1 (compiled from
Propositions 5.3, 5.4, 7.3 and 7.6) describes in which categories C∞

c (M,H) = lim−→ C∞
K (M,H),

respectively, Diffc(M) = lim−→ DiffK(M) holds.
It was known before that the direct limit topology does not make Diffc(M) a topological group

(see [53, Theorem 6.1]), and Yamasaki’s Theorem [56, Theorem 4] implies that the direct limit
topology does not make C∞

c (M,H) a topological group. Hence, the Lie group topologies must

Table 1

Category\Group C∞
c (M,H) Diffc(M)

Lie groups yes yes
Topological groups yes yes
Smooth manifolds no no
Topological spaces no no
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be properly coarser than the direct limit topologies (as asserted in the last line of the table). The
other results compiled in the table are new.

2. Weak direct products of Lie groups. The weak direct product
∏∗

n∈N
Gn of a sequence

(Gn)n∈N of Lie groups is defined as the group of all (gn)n∈N ∈ ∏
n∈N

Gn such that gn = 1 for
all but finitely many n; it carries a natural Lie group structure [19, Section 7]. We shall see that∏∗

n∈N
Gn = lim−→

∏n
k=1 Gk as a topological group and as a Lie group (Proposition 4.5). The di-

rect limit properties in the categories of topological spaces or smooth manifolds depend on the
sequence (Gn)n∈N (see Remark 4.6).

3. Direct limits of unit groups of Banach algebras. Consider a sequence A1 ⊆ A2 ⊆ · · · of
unital Banach algebras (such that all inclusion maps are continuous homomorphisms of unital
algebras) and equip A := ⋃

n∈N
An with the locally convex direct limit topology. We show that

A× = lim−→ A×
n as a topological group and (provided A is Hausdorff) also as a Lie group (Propo-

sition 12.1). Non-unital Banach algebras are discussed as well (Proposition 12.2). In the case
where each inclusion map is an isometry, the topological result has been obtained earlier by
Edamatsu [10, Theorem 1].

4. Lie groups of germs of analytic mappings. We also discuss the direct limit properties of the
groups Γ (K,H) of germs of H -valued analytic functions on open neighbourhoods of a non-
empty compact set K ⊆ X, where H is a (real or complex) Banach–Lie group and X a (real or
complex) metrizable locally convex space. Such groups are interesting in this context because
they are prototypical examples of direct limits G = ⋃

n∈N
Gn of a direct system (Gn)n∈N which

is not strict (nor (L(Gn))n∈N). For X and H finite-dimensional, Γ (K,H) is modelled on a
Silva space, whence Γ (K,H) has all desired direct limit properties by general results concern-
ing Silva–Lie groups prepared in Section 9 (see Proposition 10.6). For infinite-dimensional X

(or H ), we can still show that Γ (K,H) = lim−→ Gn as a topological group and as a Lie group
(Corollary 13.3).

Finally, we obtain results concerning locally convex direct limits. Consider a Hausdorff locally
convex space E = ⋃

n∈N
En which is the locally convex direct limit lim−→ En of Hausdorff locally

convex spaces En. Then E = lim−→ En as a topological group (see [35, Proposition 3.1]). Our
results imply that E = lim−→ En also as a Lie group (Example 2.8). It is well known that the direct
limit topology on E can be properly finer than the locally convex direct limit topology. We
provide concrete criteria ensuring that E �= lim−→ En as a topological space and smooth mani-
fold (Lemma 3.5). These criteria are also useful for the study of general Lie groups because of
Theorem 3.3 (already mentioned). Similarly, weak direct products of Lie groups (and topological
groups) are useful tools for the study of general direct limits (see Section 11).

Further results

In Section 14, we construct a Lie group structure on a union G = ⋃
n∈N

Gn of infinite-
dimensional Lie groups, under suitable hypotheses. A variant of the construction can be used
to turn the group of germs of analytic diffeomorphisms around a non-empty compact sub-
set K of C

d (or R
d ) into an analytic Lie group (Section 15). Here GermDiff(K,C

d) =⋃
n∈N

Mn, where Mn is the Banach manifold of all germs having a representative γ which is a
bounded C

d -valued holomorphic map on Un with γ |K = idK , for a given fundamental sequence
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U1 ⊇ U2 ⊇ · · · of open neighbourhoods of K . We show that GermDiff(K,C
d) = lim−→ Mn as a

topological space, as a complex analytic manifold, and as a smooth manifold (Proposition 15.9).

1. Preliminaries and notation

We fix notation and terminology concerning differential calculus, direct limits and properties
of locally convex spaces (Cr -regularity and related concepts).

Calculus in locally convex spaces and Lie groups

We recall some basic definitions of Keller’s Cr
c -theory and the theory of analytic mappings

(see [13,31,42,43] for the proofs and further details). Throughout the article, K ∈ {R,C}.

Definition 1.1. Let E and F be Hausdorff locally convex topological K-vector spaces, U ⊆ E

be open, f :U → F be a map, and r ∈ N0 ∪ {∞}. We say that f is Cr
K

(or simply Cr )
if it is continuous and, for all k ∈ N such that k � r , the iterated directional derivatives
dkf (x, y1, . . . , yk) := Dy1 . . .Dyk

f (x) exist for all x ∈ U and y1, . . . , yk ∈ E, and define a con-

tinuous map dkf :U × Ek → F . The C∞
R

-maps are also called smooth.

Occasionally, we shall also encounter analytic maps.

Definition 1.2. If K = C, then f as before is called complex analytic if it is continuous and
given locally by a pointwise convergent series of continuous homogeneous polynomials (see [6,
Definition 5.6] for details). If K = R, we call f real analytic if it extends to a complex analytic
map between open subsets of the complexifications of E and F .

It is well known that f is C∞
C

if and only if it is complex analytic (see, e.g., [31]). Since
compositions of Cr

K
-maps (respectively, K-analytic maps) are Cr

K
(respectively, K-analytic),

Cr
K

-manifolds and K-analytic Lie groups (modelled on Hausdorff locally convex spaces) can
be defined as usual (see [13,31]; cf. [43]). As in [13,31], we shall not presume that the mod-
elling spaces are complete.1 Unlike [43], we do not require that manifolds are regular topological
spaces.

We warn the reader that topological spaces and locally convex spaces are not assumed Haus-
dorff in this article. However, the topological spaces underlying manifolds and Lie groups are
assumed Hausdorff. We remark that switching to the categories of Hausdorff topological groups
(or Hausdorff topological spaces) would not affect the validity (or failure) of direct limit proper-
ties of Lie groups in such categories (as Lie groups are Hausdorff anyway).

General conventions. The word “Lie group” (without further specification) refers to a smooth
Lie group modelled on a real locally convex space. A C∞

K
-Lie group is a smooth real Lie group

(if K = R), respectively, a complex analytic Lie group (if K = C). A Cω
K

-Lie group means a

1 Some readers may prefer to work with categories of Lie groups and manifold modelled on complete, sequentially
complete, or Mackey complete locally convex spaces. This only causes minor changes of our results.
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K-analytic Lie group. Likewise for manifolds. If (E,‖ · ‖) is a normed space, x ∈ E and r > 0,
we set

BE
r (x) := {

y ∈ E: ‖y − x‖ < r
}

and BE
r (x) := {

y ∈ E: ‖y − x‖ � r
}
.

See [31] for the following useful fact (or [4, Lemma 10.1], if r ∈ N0 ∪ {∞}).

Lemma 1.3. Let f :U → F be as in Definition 1.1, and r ∈ N0 ∪ {∞,ω}. If f (U) ⊆ F0 for
a closed vector subspace F0 ⊆ F , then f is Cr

K
if and only if its co-restriction f |F0 :U → F0

is Cr
K

.

Conventions and basic facts concerning direct limits

We recall some basic definitions and facts concerning direct limits.

1.4. A direct system in a category A is a pair S = ((Xi)i∈I , (φi,j )i�j ), where (I,�) is a directed
set, each Xi an object of A, and each φi,j :Xj → Xi a morphism (“bonding map”) such that
φi,i = idXi

and φi,j ◦ φj,k = φi,k if i � j � k. A cone over S is a pair (X, (φi)i∈I ), where
X ∈ ob A and φi :Xi → X is a morphism for i ∈ I such that φi ◦ φi,j = φj if i � j . A cone
(X, (φi)i∈I ) is a direct limit cone over S in the category A if, for every cone (Y, (ψi)i∈I ) over S ,
there exists a unique morphism ψ :X → Y such that ψ ◦ φi = ψi for each i. We then write
(X, (φi)i∈I ) = lim−→S . If the bonding maps and “limit maps” φi are understood, we simply call X

the direct limit of S and write X = lim−→ Xi . If also T = ((Yi)i∈I , (ψi,j )i�j ) is a direct system
over I and (Y, (ψi)i∈I ) a cone over T , we call a family (ηi)i∈I of morphisms ηi :Xi → Yi

compatible if ηi ◦ φi,j = ψi,j ◦ ηj for i � j . Then (Y, (ψi ◦ ηi)i∈I ) is a cone over S ; we write
lim−→ ηi := η for the morphism η :X → Y such that η ◦ φi = ψi ◦ ηi .

1.5. For all direct systems S = ((Xi)i∈I , (φi,j )i�j ) encountered in the article, I will contain a
co-final subsequence. It therefore suffices to state all results for the case where the directed set is
(N,�), i.e., for direct sequences.

1.6. Direct limits of sets, topological spaces, and groups. For basic facts concerning direct limits
of topological spaces and topological groups, the reader is referred to [18,33,35,53] (where also
many of the pitfalls and subtleties of the topic are described). In particular, we shall frequently
use that the set underlying a direct limit of groups is the corresponding direct limit in the category
of sets, and that the direct limit of a direct system of topological spaces in the category of (not
necessarily Hausdorff) topological spaces is its direct limit in the category of sets, equipped
with the final topology with respect to the limit maps. A direct system ((Xi)i∈I , (φi,j )i�j ) of
topological spaces is called strict if each bonding map φi,j :Xj → Xi is a topological embedding.

The following simple fact will be used:

Lemma 1.7. Consider a direct sequence ((Xn)n∈N, (in,m)n�m) of topological spaces Xn and
continuous maps in,m :Xm → Xn, with direct limit (X, (in)n∈N) in the category of topological
spaces. Let Un ⊆ Xn be open subsets such that in,m(Um) ⊆ Un whenever m � n, and U :=⋃

n∈N
in(Un). Then U is open in X, and (U, (in|UUn

)n∈N) = lim−→((Un)n∈N, (in,m|Un

Um
)n�m) in the

category of topological spaces.
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Proof. It is clear that U = lim−→ Un as a set, and that the inclusion map lim−→ Un → lim−→ Xn is
continuous (being continuous on each Un). If V ⊆ lim−→ Un is open (e.g., V = U ), then Vn :=
(in|Un)

−1(V ) is open in Un and hence in Xn, for each n ∈ N. If x ∈ i−1
n (V ), there exists k � n

such that in(x) = ik(y) for some y ∈ Vk . Hence, there is 	 � k such that i	,n(x) = i	,k(y) ∈ V	.
We deduce that i−1

n (V ) = ⋃
	�n i−1

	,n(V	) is open in Xn. Hence V open in X. �
All necessary background concerning direct limits of locally convex spaces can be found

in [7,37,52,54].

General conventions. If we write G = ⋃
n∈N

Gn for a topological group (respectively, C∞
K

-Lie
group) G, we always presuppose that each Gn is a topological group (respectively, C∞

K
-Lie

group), Gn ⊆ Gn+1 for each n ∈ N, and that all of the inclusion maps Gn → Gn+1 and Gn → G

are continuous (respectively, C∞
K

-) homomorphisms. Analogous conventions apply to topologi-
cal spaces X = ⋃

n∈N
Xn and manifolds M = ⋃

n∈N
Mn.

Smooth regularity and related concepts

Definition 1.8. Given r ∈ N0 ∪{∞}, a Hausdorff real locally convex space E is called Cr -regular,
if for each 0-neighbourhood U ⊆ E, there exists a Cr -function f :E → R such that f (0) = 1
and f |E\U = 0. If E is C∞-regular, we also say that E is smoothly regular.

After composing a suitable smooth self-map of R with f , we may assume that f |V = 1 for
some 0-neighbourhood V ⊆ U , f (E) ⊆ [0,1], and supp(f ) ⊆ U .

Remark 1.9. Note that every Hausdorff locally convex space is C0-regular, being a completely
regular topological space (cf. [34, Theorem 8.4]). It is easy to see that every Hilbert space
is smoothly regular. Furthermore, vector subspaces and (finite or infinite) direct products of
Cr -regular locally convex spaces are Cr -regular. This implies that every nuclear locally con-
vex space is smoothly regular, because it can be realized as a vector subspace of a direct product
of Hilbert spaces (cf. [52, Section 7.3, Corollary 2], also [50,54]).

To prove that certain locally convex spaces have pathological properties, at some point we
shall find it useful to use ideas from Convenient Differential Calculus (see [12,39]). We recall
that the final topology on a locally convex space E with respect to the set C∞(R,E) of smooth
curves is called the c∞-topology. We write c∞(E) for E, equipped with the c∞-topology; open
subsets of c∞(E) are called c∞-open. Given locally convex spaces E and F , a map f :U → F

on a c∞-open set U ⊆ E will be called a c∞-map if f ◦ γ : R → F is smooth for each smooth
curve γ : R → E with γ (R) ⊆ U .

Definition 1.10. We say that a locally convex space E is c∞-regular if, for each 0-neighbourhood
U ⊆ c∞(E), there exists a c∞-function f :E → R such that f (0) = 1 and f |E\U = 0.

2. Tools to identify direct limits of Lie groups

Consider a Lie group G = ⋃
n∈N

Gn. If G = lim−→ Gn as a topological group, then automatically
also G = lim−→ Gn as a Lie group, provided that G admits a “direct limit chart” in a sense defined
presently. The existence of a direct limit chart is a very natural requirement, which ties together
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the direct system of Lie groups and its associated direct system of locally convex topological Lie
algebras. The concept can be defined more generally for direct systems of manifolds modelled
on locally convex spaces.

Definition 2.1. Let r ∈ N0 ∪ {∞,ω} and M be a Cr
K

-manifold such that M = ⋃
n∈N

Mn for a se-
quence M1 ⊆ M2 ⊆ · · · of Cr

K
-manifolds, such that all inclusion maps in,m :Mm → Mn (n � m),

and in :Mn → M are Cr
K

. Let E and En be the modelling spaces of M and Mn, respectively.
A chart φ :U → V ⊆ E of M is called a weak direct limit chart if (a) and (b) hold for some
n0 ∈ N:

(a) There exist continuous linear maps jn,m :Em → En for n � m � n0 and jn :En → E

such that S := ((En)n�n0 , (jn,m)n�m�n0) is a direct system of locally convex spaces,
(E, (jn)n�n0) is a cone of locally convex spaces over S , and E = ⋃

n�n0
jn(En).

(b) There exist charts φn :Un → Vn ⊆ En of Mn such that Um ⊆ Un and jn,m(Vm) ⊆ Vn if
n � m � n0, U = ⋃

n�n0
Un, V = ⋃

n�n0
jn(Vn) and

φ ◦ in|Un = jn|Vn ◦ φn for each n � n0. (1)

If, furthermore, (E, (jn)n�n0) = lim−→S as a locally convex space, then φ is called a direct limit
chart. If φ is a direct limit chart and U ∩ Mn = Un for each n � n0, we call φ a strict direct limit
chart. We say that a Lie group G admits a direct limit chart if it has a direct limit chart around 1
(and hence also a direct limit chart around any x ∈ G).

In general, there is no relationship between existence of a strict direct limit chart and strictness
of the direct sequence ((En), (jn,m)) (although both properties frequently occur simultaneously).

Remark 2.2. With notation as in Definition 2.1, we have:

(a) Each of the linear maps jn :En → E (and hence also each jn,m) is injective because jn|Vn =
φ ◦ in ◦ φ−1

n by (1), which is injective. Identifying En with a subspace of E via jn, we may
assume that jn (and each jn,m) simply is the inclusion map. Then (1) becomes φ|Un = φn,
and we have φn|Um = φm if n � m.

(b) If M = ⋃
n∈N

Mn admits a weak direct limit chart φ :U → V (as above) around x ∈ M , we
may assume that x ∈ Mn0 and φ(x) = 0 (after a translation). We shall usually assume this in
the following.

(c) Let φ be a weak direct limit chart around x ∈ M . If r � 1, we can identify TxMn with En

and TxM with E, using the linear automorphisms dφn(x), respectively, dφ(x). Then jn,m =
Tx(in,m) and jn = Tx(in) for all integers n � m � n0.

(d) If φ :U → V is a (weak) direct limit chart around x and W ⊆ U an open neighbourhood of x,
then also φ|W :W → φ(W) is a (weak) direct limit chart, because W = ⋃

n∈N
(W ∩Un) with

W ∩ Un open in Un.

Example 2.3. We shall see later that countable weak direct products of Lie groups, groups of
compactly supported diffeomorphisms and test function groups admit a (strict) direct limit chart
(see Remarks 4.3, 5.2 and 7.2, respectively). The Lie groups of germs encountered in Section 10
admit a direct limit chart (albeit not a strict one).
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In the absence of additional conditions (like existence of a direct limit chart), we cannot
hope to establish direct limit properties. The following examples illustrate some of the possible
pathologies.

Example 2.4. Let G be the additive topological group of the locally convex space R
(N). Give

Gn := R
n and D := R

(N) the discrete topology. Then G = ⋃
n∈N

Gn, but the topologies on the
subgroups Gn are just too fine compared to the topology on G to be of any use, and the discon-
tinuity of the homomorphism id :G → D (which is smooth on each Gn) shows that G �= lim−→ Gn

as a Lie group, topological group, smooth manifold, and as a topological space.

The next example shows that the existence of a weak direct limit chart on a Lie group G =⋃
n∈N

Gn is not enough for the discussion of direct limit properties of G. For other purposes, it
suffices (e.g., for Proposition 2.9).

Example 2.5. If we give G := C∞
c (R,R) = ⋂

k∈N0
Ck

c (R,R) the (unusually coarse!) topology

of the projective limit of LB-spaces lim←−k∈N0
Ck

c (R,R), then Gn := C∞[−n,n](R,R) is a closed
vector subspace (and hence a Lie subgroup) of G, and idG :G → G is a weak direct limit chart
for G = ⋃

n∈N
Gn. Let H := C∞

c (R,R), with the usual LF-topology. The discontinuity of the
homomorphism id :G → H (which is smooth on each Gn) shows that G �= lim−→ Gn as a Lie
group, topological group, topological space, and smooth manifold.

Recall a well-known fact: if f :G → H is C∞
K

-homomorphism, and x ∈ G, then λH
f (x) ◦ f =

f ◦ λG
x holds with left translations as indicated, whence

Tx(f ) = T1
(
λH

f (x)

) ◦ T1(f ) ◦ Tx

(
λG

x−1

)
. (2)

Theorem 2.6 (Reduction to topological groups). Consider a C∞
K

-Lie group G = ⋃
n∈N

Gn. If
G = lim−→ Gn as a topological group and G admits a direct limit chart, then G = lim−→ Gn as a
C∞

K
-Lie group.

Proof. In view of Remark 2.2(a) and (c), we can identify L(Gm) with a subalgebra of L(Gn)

(if n � m) and L(G). Let f :G → H be a homomorphism to a C∞
K

-Lie group H such that
fn := f |Gn is C∞

K
, for each n ∈ N. Then f is continuous, by the direct limit property of G as

a topological group. Pick a chart ψ :P → Q ⊆ L(H) of H around 1 such that ψ(1) = 0. Let
φ = lim−→ φn :U → V be a direct limit chart of G around 1 with f (U) ⊆ P , where φn :Un → Vn

and φ(0) = 0. To see that f is C1
K

, we pass to local coordinates: we define h := ψ ◦ f |U ◦ φ−1 :
V → Q and hn := ψ ◦ f |U ◦ φ−1

n :Vn → Q. If x ∈ V , then x ∈ Vn0 for some n0. Given n � n0
and y ∈ L(Gn), the limit

dh(x, y) = d

dt

∣∣∣∣
t=0

h(x + ty) = d

dt

∣∣∣∣
t=0

hn(x + ty) = dhn(x, y) (3)

exists in L(H). We abbreviate θ := dh(0,•) :L(G) → L(H) and h′
n(0) := dhn(0,•) :L(Gn) →

L(H). Since θ |L(Gn) = h′
n(0) for each n � n0 by (3), which is a continuous linear map, and

L(G) = limL(Gn) as a locally convex space, we deduce that θ is continuous linear. Since fn is a
−→
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C∞
K

-homomorphism, (2) implies that dhn(x, y) = dλH
hn(x)(0, h′

n(0).dλ
Gn

x−1(x, y)) for all x and y

as before (using the respective locally defined left translation maps in local coordinates). Hence

dh(x, y) = dλH
h(x)

(
0, θ.dλG

x−1(x, y)
)
,

entailing that dh :V × L(G) → L(H) is continuous. Thus h is C1
K

and hence also f |U is C1
K

.
Since f is a homomorphism, it readily follows that f is C1

K
(see [24, Lemma 3.1]) and

hence C∞
K

, by [22, Lemma 2.1]. �
We recall a simple fact (cf. [35, Proposition 3.1] and [7, Chapter II, Exercise 14 to Section 4]).

Lemma 2.7. Let ((En)n∈N, (fn,m)n�m) be a direct sequence of topological K-vector spaces,
with direct limit (E, (fn)n∈N) in the category of topological K-vector spaces. Then E = lim−→ En

as a topological group. If each En is locally convex, then E = lim−→ En also as a locally convex
space.

Proof. It is well known that the box topology on S := ⊕
n∈N

En is a vector topology which
makes S the direct sum in the category of topological vector spaces (cf. [37, Section 4.1, Propo-
sition 4]) and in the category of topological abelian groups (cf. also Lemma 4.4). If each En is
locally convex, then also S, and the box topology coincides with the locally convex direct sum
topology (cf. [7, Chapter II, Exercise 14 to Section 4]). Let in :En → E be the canonical embed-
ding. Then the subgroup R := 〈⋃n�m im((in ◦ fn,m) − im)〉 ⊆ S is a vector subspace of S. The
direct limit E in each of the categories described in (a) can be realized as S/R. �
Example 2.8. Let E = ⋃

n∈N
En be a Hausdorff locally convex space over K ∈ {R,C} such that

E = lim−→ En as a locally convex space. Then the identity map E → E is a direct limit chart. Since
E = lim−→ En as a topological group (by Lemma 2.7), Theorem 2.6 shows that E = lim−→ En also as
a C∞

K
-Lie group.

The following application of weak direct limit charts is the main result of [29]. Information
on homotopy groups (notably on π1(G) and π2(G)) is important for the extension theory of
infinite-dimensional groups (see [47–49]).

Proposition 2.9. If a Lie group G = ⋃
n∈N

Gn admits a weak direct limit chart, then its con-
nected component of the identity is G0 = ⋃

n∈N
(Gn)0. Furthermore, πk(G) = lim−→ πk(Gn) for

each k ∈ N.

Further applications of direct limit charts can be found in [26].

3. Tools to identify direct limits of topological spaces and manifolds

Given a Lie group G = ⋃
n∈N

Gn, it is natural to hope that G = lim−→ Gn as a topological
space if and only if L(G) = lim−→ L(Gn) as a topological space. In this section, we show that
this hope is justified if G has a direct limit chart. The analogous problem for the category of
smooth manifolds is also addressed. At the end of the section, we consider a locally convex
direct limit E = lim−→ En and compile conditions ensuring that E �= lim−→ En as a topological space
(respectively, smooth manifold).
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Lemma 3.1 (Localization Lemma). Let M be a Cr -manifold modelled on a real locally convex
space E, where r ∈ N0 ∪{∞}, such that M is a regular topological space (e.g., M is a Lie group).
If r � 1, we assume that E is Cr -regular. Let P ⊆ M be open and x ∈ P . Then there exists a
Cr -map ρ :M → P with the following properties:

(a) ρ(y) = y for all y in an open neighbourhood Q ⊆ P of x;
(b) the closure of {y ∈ M: ρ(y) �= x} in M is a subset of P .

Furthermore, the following can be achieved:

(c) If M = ⋃
n∈N

Mn and M admits a direct limit chart around x, then for every n ∈ N and
y ∈ Mn there exists m � n and a neighbourhood W of y in Mn such that ρ(W) ⊆ Mm and
ρ|W :Mn ⊇ W → Mm is Cr .

(d) If M = ⋃
n∈N

Mn and M admits a strict direct limit chart around x, then it can be achieved
that ρ(Mn) ⊆ Mn for all n � n0 and that ρ|Mn :Mn → Mn is a Cr -map, for a suitable
n0 ∈ N.

Proof. If r = 0, then E is C0-regular (see Remark 1.9).
(a), (b) After shrinking P if necessary, we may assume that there exists a chart φ :P → V ⊆ E

of M such that φ(x) = 0 and [0,1]V = V . Since M is a regular topological space, we find a 0-
neighbourhood B ⊆ V such that A := φ−1(B) is closed in M . Since E is a Cr -regular, there
exists a Cr -function β :E → R such that supp(β) ⊆ B , im(β) ⊆ [0,1], and such that β|R = 1
for some 0-neighbourhood R ⊆ V . Set Q := φ−1(R). Then

ψ :P → V, ψ(x) = β
(
φ(x)

) · φ(x)

is a Cr -mapping such that ψ |Q = φ|Q and ψ(x) = 0 for each x ∈ P \ A. Extending ψ by 0, we
obtain a Cr -map ψ̃ :M → V . Then ρ := φ−1 ◦ ψ̃ is a Cr -map M → M such that ρ(M) ⊆ P ,
ρ|Q = idQ and ρ|M\A = x.

(c) Because we can always pass to a cofinal subsequence (Mn+n0)n∈N, we may assume
that x ∈ M1. After shrinking P if necessary, we may assume that φ :P → V is a direct limit
chart, say φ = ⋃

n∈N
φn with P = ⋃

n∈N
Pn and V = ⋃

n∈N
Vn for certain compatible charts

φn :Pn → Vn ⊆ En around x, where En is the modelling space of Mn. Let y ∈ M , say y ∈ Mn.
If y /∈ A, then W := Mn \ A is an open neighbourhood of y in Mn such that ρ|W is constant
(with value x) and hence a Cr -map into Mn. If y ∈ P , let z := φ(y) ∈ V . Then z ∈ Vk for some
k � n and β(z)z ∈ Vm for some m � k. By continuity of β , scalar multiplication in Em and the
inclusion map Ek → Em, there exists an open neighbourhood Z of z in Vk such that β(v)v ∈ Vm

for all v ∈ Z. Then W := Mn ∩ φ−1
k (Z) is an open neighbourhood of y in Mn such that ρ|W is a

Cr -map into Um ⊆ Mm.
(d) If M admits a strict direct limit chart at x, then we may assume that V ∩ En = Vn for

each n. Given y and n as in the proof of (c), we can now take m := k := n, from which (d)
follows. �
Lemma 3.2. Let r ∈ N ∪ {∞} and M = ⋃

n∈N
Mn be a Cr -manifold which is a regular topolog-

ical space and admits a direct limit chart around some x ∈ M .

(a) If TxM �= limTxMn as a topological space, then also M �= limMn as a topological space.
−→ −→



30 H. Glöckner / Journal of Functional Analysis 245 (2007) 19–61
(b) If TxM �= lim−→ TxMn as a Cr
R

-manifold and M is modelled on a Cr -regular locally convex
space, then M �= lim−→ Mn as a Cr

R
-manifold.

Proof. We may assume that x ∈ M1. To prove (a), set s := 0; for (b), set s := r . Let φ :P →
V ⊆ TxM be a direct limit chart around x and ρ :M → P be a Cs -map as in Lemma 3.1(c).
Since TxM �= lim−→ TxMn as a topological space (respectively, Cr -manifold), there exists a map
h :TxM → X to a topological space (respectively, Cr -manifold) X that is not Cs , although h|Mn

is Cs for each n. Hence, there is z ∈ TxM such that h is not Cs on any open neighbourhood of z.
We may assume that z ∈ TxM1; after replacing h with h(•− z), we may assume that z = 0. Then
f := h ◦ φ ◦ ρ is not Cs . We claim that f |Mn is Cs for each n ∈ N; thus M is not the direct limit
topological space (respectively, Cr -manifold). To prove the claim, let A ⊆ P be a closed subset
of M such that ρ|M\A = x, and y ∈ Mn. If y /∈ A, then W := Mn \ A is an open neighbourhood
of y in Mn such that f (w) = h(0) for each w ∈ W ; thus f |W is Cs . If y ∈ P , let m and W be as in
the proof of Lemma 3.1(c). Then ρ(W) ⊆ Un and f |W = h|Vn ◦ φn ◦ ρ|Un

W is Cs , as claimed. �
Replacing the topological space X by a C0-manifold in the proof of (a), we see that M �=

lim−→ Mn as a C0-manifold if TxM �= lim−→ TxMn as a C0-manifold.

Theorem 3.3 (Reduction to the Lie algebra level). Let G = ⋃
n∈N

Gn be a real Lie group admit-
ting a direct limit chart.

(a) Then L(G) = lim−→ L(Gn) as a topological space if and only if G = lim−→ Gn as a topological
space.

(b) If L(G) is Cr -regular for r ∈ N0 ∪ {∞}, then L(G) = lim−→ L(Gn) as a Cr -manifold if and
only if G = lim−→ Gn as a Cr -manifold.

Proof. We set r := 0 in the situation of (a). If L(G) �= lim−→ L(Gn) as a topological space (re-
spectively, as a Cr -manifold, in the situation of (b)), then G �= lim−→ Gn as a topological space
(respectively, Cr -manifold), by Lemma 3.2.

Conversely, assume that G �= lim−→ Gn as a topological space (respectively, as a Cr -manifold,
in the situation of (b)). Then there exists a map f :G → X to a topological space (respectively,
Cr -manifold) X which is not Cr , although f |Gn is Cr for each n ∈ N. There is x ∈ G such that f

is not Cr on any open neighbourhood of x. After replacing f with y �→ f (x−1y), we may assume
that x = 1. Let φ :U → V ⊆ L(G) be a direct limit chart of G around 1 such that φ(1) = 0, with
φ = ⋃

n∈N
φn, U = ⋃

n∈N
Un and V = ⋃

n∈N
Vn for charts φn :Un → Vn ⊆ L(Gn) such that

φn+1|Un = φn. By Lemma 3.1, there exists a Cr -map ρ :L(G) → V such that ρ|Q = idQ for an
open 0-neighbourhood Q ⊆ L(G) such that ρ|Vn locally is a Cr -map into some Vm, m � n. Then
f ◦ φ−1 ◦ ρ is not Cr , although (f ◦ φ−1 ◦ ρ)|L(Gn) is Cr for each n ∈ N. �
Remark 3.4. Theorem 3.3 complements Yamasaki’s Theorem [56, Theorem 4]:

Consider a group G = ⋃
n∈N

Gn, where each Gn is a metrizable topological group and each
inclusion map Gn → Gn+1 a topological embedding. Assume that neither (a) nor (b) holds:
(a) for each m ∈ N, there exists n � m and an identity neighbourhood U ⊆ Gm whose closure

in Gn is compact;
(b) there exists m ∈ N such that Gm is open in Gn for each n � m.
Then the direct limit topology does not make G a topological group.
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Stimulated by Theorem 3.3, we turn to locally convex direct limits and their direct limit prop-
erties as topological spaces and manifolds.

Lemma 3.5. Let E1 ⊆ E2 ⊆ · · · be an ascending sequence of Hausdorff locally convex spaces
which is a strict direct sequence and does not become stationary. Let E := ⋃

n∈N
En, equipped

with the locally convex direct limit topology.

(a) If each En is infinite-dimensional and metrizable, then E �= lim−→ En as a topological space.
(b) If each En is an infinite-dimensional nuclear Fréchet space, then E �= lim−→ En as a Cr -

manifold, for each r ∈ N0 ∪ {∞}. Furthermore, E is smoothly regular.

Proof. (a) (Cf. [39, Theorem 4.11(3) and Proposition 4.26(ii)] if each En is a Fréchet space.) Let
E1 ⊂ E2 ⊂ · · · be a strict direct sequence of infinite-dimensional metrizable topological vector
spaces which is strictly increasing. Then Em is not open in En for any integers m < n, and
the closure of a 0-neighbourhood U of Em in En cannot be compact because then U would
be pre-compact and thus dim(Em) < ∞. Now Yamasaki’s Theorem (see Remark 3.4) shows
that the direct limit topology does not make E = ⋃

n∈N
En a topological group. The assertion

follows.
(b) It is well known that the c∞-topology on E coincides with the direct limit topology

(cf. [39, Theorem 4.11(3)]). By part (a) just established (or [39, Proposition 4.26(ii)]), the
latter is properly finer than the locally convex direct limit topology. Therefore, there exists a
0-neighbourhood U ⊆ c∞(E) which is not a 0-neighbourhood of E. Since E is c∞-regular (see
[39, Theorem 16.10]), there exists a c∞-function f :E → R such that f (0) = 1 and f |E\U = 0.
Then f |En is a c∞-map and hence smooth (as En is metrizable), for each n ∈ N. However,
f is discontinuous (and hence not Cr for any r ∈ N0 ∪ {∞}). In fact, if f was continuous, then
f −1(R×) ⊆ U would be a 0-neighbourhood in E and hence also U , contradicting our choice
of U . Like any countable locally convex direct limit of nuclear spaces, E is nuclear [52, Sec-
tion 7.4, Corollary] and hence smoothly regular (see Remark 1.9). �

We close this section with a variant of Yamasaki’s Theorem for Lie groups.

Proposition 3.6. Let G = ⋃
n∈N

Gn be a Lie group, where L(Gn) is metrizable for each n ∈ N.
Assume that condition (i) or (ii) is satisfied:

(i) G has a direct limit chart, and the direct sequence (L(Gn))n∈N is strict;
(ii) for each n ∈ N, the Lie group Gn has an exponential function which is a local homeomor-

phism at 0, and the direct sequence (Gn)n∈N is strict.

If G = lim−→ Gn as a topological space, then (a) or (b) holds:

(a) Gn is a finite-dimensional Lie group, for each n ∈ N; or
(b) there exists m ∈ N such that Gm is open in Gn for each n � m.

Proof. If (i) holds but neither (a) nor (b), then we find n0 ∈ N such that L(Gn0) ⊆ L(Gn0+1) ⊆
· · · is a strict direct sequence of infinite-dimensional Fréchet spaces which does not become
stationary, whence G �= limGn as a topological space by Theorem 3.3(a) and Lemma 3.5(a).
−→
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If (ii) holds, then (L(Gn))n∈N is strict. To see this, given n � m define j := L(in,m) and let
V ⊆ L(Gm) and W ⊆ L(Gn) be open 0-neighbourhoods such that φ := expGm

|V is a homeo-

morphism onto an open identity neighbourhood Ṽ ⊆ Gm, ψ := expGn
|W is a homeomorphism

onto an open identity neighbourhood W̃ ⊆ Gn, and j (V ) ⊆ W . Since in,m is a topological em-
bedding, there exists an open identity neighbourhood X̃ ⊆ W̃ such that X̃ ∩ Gm = Ṽ ; define
X := ψ−1(X̃) ⊆ W . Since expGn

◦ j |V = in,m ◦ expGm
|V is a topological embedding, also j |V

is an embedding, whence the continuous linear map j is injective. To see that j is a topological
embedding, let (xk)k∈N be a sequence in L(Gm) such that j (xk) → 0 in L(Gn). After omit-
ting finitely many terms, we may assume that j (xk) ∈ X for each k. Then expGn

(j (xk)) =
in,m(expGm

(xk)) ∈ X̃ ∩ Gm = Ṽ and yk := φ−1(expGn
(j (xk))) → 0 in L(Gm). Since yk ∈ V ,

we have that j (yk) ∈ W . Now ψ(j (xk)) = expGn
(j (xk)) = in,m(expGm

(yk)) = expGn
(j (yk)) =

ψ(j (yk)) by the definition of yk and naturality of exp. Since ψ is injective, we deduce that
j (xk) = j (yk) and hence xk = yk → 0. Thus j is an embedding.

Now assume that (ii) holds but neither (a) nor (b). After passing to a suitable subsequence
(Gnk

)k∈N, we may assume that each Gm is infinite-dimensional and Gm is not open in Gn

whenever n > m. Then L(Gm) (identified with L(in,m).L(Gm)) is a proper vector subspace
of L(Gn), because otherwise in,m(Gm) ⊇ in,m(expGm

(L(Gm))) = expGn
(L(in,m).L(Gm)) =

expGn
(L(Gn)) would contain an open identity neighbourhood and hence be an open subgroup

(which we just ruled out). For any identity neighbourhood U ⊆ Gm, we now show that its clo-
sure K := U in Gn cannot be compact. To see this, suppose to the contrary that K was compact.
Let V , W , φ and ψ be as earlier in the proof. Since Gn is a regular topological space, it has
a closed identity neighbourhood A ⊆ Gn such that A ⊆ W̃ . Then Q := φ−1(Gm ∩ A ∩ K) is
a 0-neighbourhood in L(Gm) such that ψ(Q) has compact closure ψ(Q) ⊆ A ∩ K , whence
Q has compact closure ψ−1(ψ(Q)) in L(Gn). The inclusion map L(Gm) → L(Gn) being an
embedding, this entails that Q is precompact and thus dim(L(Gm)) < ∞ (which is absurd).

Now Yamasaki’s Theorem shows that the direct limit topology does not make G a topological
group. It therefore differs from given topology on G. �
4. Example: Weak direct products of Lie groups

In this section, we recall the definition of weak direct products of Lie groups and analyze their
direct limit properties. In 4.1 and 4.2, I is an arbitrary set (which need not be countable).

4.1. If (Gi)i∈I is a family of topological groups, we let
∏∗

i∈I Gi �
∏

i∈I Gi be the subgroup
of all families (gi)i∈I such that gi = 1 for all but finitely many i. A box is a set of the form∏∗

i∈I Ui := (
∏∗

i∈I Gi) ∩ ∏
i∈I Ui , where Ui ⊆ Gi is open and 1 ∈ Ui for all but finitely many i.

It is well known that the set of boxes is a basis for a topology on
∏∗

i∈I Gi making it a topological
group.

4.2. If (Gi)i∈I is a family of Cr
K

-Lie groups, where r ∈ {∞,ω}, then
∏∗

i∈I Gi can be made a
Cr

K
-Lie group, modelled on the locally convex direct sum

⊕
i∈I L(Gi) (see [19]). The Lie group

structure is characterized by the following property (cf. [19, proof of Proposition 7.3]):

For each i ∈ I , let φi : Ũi → Ṽi ⊆ L(Gi) be a chart of Gi around 1 such that φi(1) = 0. Let
Ui ⊆ Ũi be an open, symmetric identity neighbourhood such that UiUi ⊆ Ũi , Vi := φ̃(Ui),
and φi := φ̃i |Vi . Then
Ui
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κ :=
⊕
i∈I

φi :
∏
i∈I

∗
Ui →

⊕
i∈I

Vi, (xi)i∈I �→ (
φi(xi)

)
i∈I

is a chart for
∏∗

i∈I Gi .

If I is countable, then
⊕

i∈I L(Gi) carries the box topology, entailing that the topology un-
derlying the Lie group

∏∗
i∈I Gi is the box topology from 4.1 (because the sets of identity

neighbourhoods coincide).

Remark 4.3. Assume that I = N in the preceding situation. Then, as is clear,
∏∗

n∈N
Gn =

lim−→n∈N

∏n
k=1 Gk as an abstract group. Since κ restricts to the chart

∏n
k=1 φk :

∏n
k=1 Uk →∏n

k=1 Vk of
∏n

k=1 Gk , we see that
∏∗

n∈N
Gn = ⋃

n∈N

∏n
k=1 Gk admits a strict direct limit chart.

Lemma 4.4. Let (Gn)n∈N be a sequence of topological groups, H be a topological group and
fn :Gn → H for n ∈ N be a map which is continuous at 1 and such that fn(1) = 1. Then the
map f :

∏∗
n∈N

Gn → H taking x = (xn)n∈N to

f (x) := f1(x1)f2(x2) · · ·fN(xN) if xn = 1 for all n > N

is continuous at 1. In particular,
∏∗

n∈N
Gn = lim−→n∈N

∏n
k=1 Gk in the category of topological

groups.

Proof. Given an identity neighbourhood V0 ⊆ H , there is a sequence (Vn)n∈N of identity neigh-
bourhoods of H such that VnVn ⊆ Vn−1 for each n ∈ N. Then V1V2 · · ·Vn ⊆ V0, for each n ∈ N.
Since fn is continuous at 1, the preimage Un := f −1

n (Vn) is an identity neighbourhood in Gn.
Then U := ∏∗

n∈N
Un is an identity neighbourhood in G := ∏∗

n∈N
Gn such that f (U) ⊆ V0. In

fact, if x ∈ U and xn = 1 for all n > N , then f (x) = f1(x1) · · ·fN(xN) ∈ V1 · · ·VN ⊆ V0. Hence
f is continuous at 1. To prove the final assertion, let f :G → H be a homomorphism to a topo-
logical group H such that fn := f |Gn :Gn → H is continuous for each n ∈ N. Since f is a
homomorphism, given x ∈ G with xn = 1 for n > N we have

f (x) = f (x1 · · ·xN) = f (x1) · · ·f (xN) = f1(x1) · · ·fN(xN).

Thus f is a mapping of the form just discussed. Therefore f is continuous at 1 and hence
continuous, being a homomorphism. �
Proposition 4.5. Let (Gn)n∈N be a sequence of C∞

K
-Lie groups modelled on locally convex

spaces. Then

∏
n∈N

∗
Gn = lim−→

n∈N

n∏
k=1

Gk (4)

holds as a topological group, and as a C∞
K

-Lie group.

Proof. By Lemma 4.4, G := ∏∗
n∈N

Gn has the desired direct limit property in the category of
topological groups. Since G admits a direct limit chart (see Remark 4.3), it also is the desired
direct limit in the category of C∞

K
-Lie groups, by Theorem 2.6. �
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Remark 4.6. There is no uniform answer concerning the validity of (4) in the categories of
topological spaces respectively, smooth manifolds.

(a) If each Gn is modelled on a Silva space (or on a kω-space, as in 9.2), then (4) holds in the
category of topological spaces and the category of Cr

K
-manifolds, for each r ∈ N0 ∪ {∞}

(see Proposition 9.8(ii)). In particular, this is the case if each Gn is finite-dimensional.
(b) If each Gn is modelled on an infinite-dimensional Fréchet space, then

∏∗
n∈N

Gn �=
lim−→

∏n
k=1 Gk as a topological space, by Theorem 3.3(a) and Lemma 3.5(a). If L(Gn) is

an infinite-dimensional nuclear Fréchet space for each n ∈ N, then
∏∗

n∈N
Gn �= lim−→

∏n
k=1 Gk

as a Cr
R

-manifold for each r ∈ N0 ∪ {∞}, by Theorem 3.3(b) and Lemma 3.5(b).

5. Example: Groups of compactly supported diffeomorphisms

In this section, we outline the proofs of the results concerning diffeomorphism groups de-
scribed in the introduction.

5.1. Recall that the Lie group Diffc(M) is modelled on the space C∞
c (M,T M) of compactly

supported smooth vector fields. To obtain a chart around idM , one chooses a smooth Riemannian
metric g on M , with associated exponential map expg . Then there is an open 0-neighbourhood
V ⊆ C∞

c (M,T M) with the following properties: for each γ ∈ V , the composition ψ(γ ) :=
expg ◦ γ makes sense and is a C∞-diffeomorphism of M ; ψ :V → Diffc(M) is injective; and
φ := ψ−1 :U → V (with U := ψ(V )) is a chart for Diffc(M). Furthermore, it can be achieved
that, for each compact subset K ⊆ M , φ(U ∩DiffK(M)) = V ∩C∞

K (M,T M) and the restriction
of φ to a map U ∩ DiffK(M) → V ∩ C∞

K (M,T M) is a chart for DiffK(M) (see [17]; cf. [42]).

Remark 5.2. Let K1 ⊆ K2 ⊆ · · · be an exhaustion of M by compact sets, i.e., M = ⋃
n∈N

Kn and
Kn ⊆ K◦

n+1 for each n ∈ N, where K◦
n+1 is the interior of Kn+1. Then (Kn)n∈N is a cofinal sub-

sequence of the directed set of all compact subsets of M . It is clear that any chart φ of Diffc(M)

of the form just described is a strict direct limit chart of Diffc(M) = ⋃
n∈N

DiffKn(M).

We begin with the negative results.

Proposition 5.3. Let M be a σ -compact, non-compact, finite-dimensional smooth manifold of
positive dimension. Then there exists a discontinuous function f : Diffc(M) → R whose restric-
tion to DiffK(M) is smooth, for each compact set K ⊆ M . Hence Diffc(M) �= lim−→ DiffK(M) as
a topological space and as a Cr -manifold, for each r ∈ N0 ∪ {∞}.

Proof. Let (Kn)n∈N be an exhaustion of M by compact sets. Then the space C∞
Kn

(M,T M) of
smooth vector fields on M supported in Kn is a nuclear Fréchet space (cf. [50,52,54]), and the
direct sequence (C∞

Kn
(M,T M))n∈N is strict (each topology being induced by C∞(M,T M)) and

does not become stationary. Hence Lemma 3.5(b) and its proof show that the locally convex
direct limit C∞

c (M,T M) = lim−→ C∞
Kn

(M,T M) is smoothly regular, and that there is a discon-
tinuous map h :C∞

c (M,T M) → R which is smooth on C∞
Kn

(M,T M) for each n ∈ N. After
composing with a translation, we may assume that h is discontinuous at 0. Since Diffc(M) =⋃

n∈N
DiffKn(M) has a direct limit chart (Remark 5.2), the proof of Lemma 3.2(b) enables us to

manufacture a function f : Diffc(M) → R which is discontinuous at idM , although its restriction
to DiffKn(M) is smooth for each n ∈ N. �
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Proposition 5.4. Let M be a non-compact, σ -compact finite-dimensional smooth manifold. Then
Diffc(M) = lim−→ DiffK(M) in the category of topological groups, and in the category of Lie
groups.

The proof hinges on the technique of fragmentation. The idea of fragmentation is to write a
compactly supported diffeomorphism as a composition of diffeomorphisms supported in given
sets (cf. [3, Section 2.1] and the references therein; cf. also [32] for fragmentation in the conve-
nient setting of analysis). The following lemma (proved in Section 6) establishes a link between
fragmentation and weak direct products; it asserts that, close to idM , diffeomorphisms can be
decomposed smoothly into pieces supported in some locally finite cover of compact sets.

Lemma 5.5 (Fragmentation Lemma for diffeomorphism groups). For any finite-dimensional, σ -
compact C∞-manifold M , the following holds:

(a) There exists a locally finite cover (Kn)n∈N of M by compact sets, an open identity neigh-
bourhood Ω ⊆ Diffc(M) and a smooth map

Φ :Ω →
∏
n∈N

∗
DiffKn(M), γ �→ Φ(γ ) =: (γn)n∈N

such that Φ(1) = 1 and γ = γ1 ◦ · · · ◦ γn for each γ ∈ Ω and each sufficiently large n.
(b) If (Un)n∈N is a locally finite cover of M by relatively compact, open sets, then (Kn)n∈N in (a)

can be chosen such that Kn ⊆ Un for all n ∈ N.

Proof of Proposition 5.4. Because the hypotheses of Theorem 2.6 are satisfied by Diffc(M) and
a cofinal subsequence of its Lie subgroups DiffK(M) (see Remark 5.2), we only need to show
that Diffc(M) = lim−→ DiffK(M) as a topological group. To this end, let f : Diffc(M) → H be a
homomorphism to a topological group H whose restriction fK : DiffK(M) → H to DiffK(M)

is continuous, for each compact subset K ⊆ M . We have to show that f is continuous.
Let (Kn)n∈N and Φ be as in the Fragmentation Lemma and consider the auxiliary function
h :

∏∗
n∈N

DiffKn(M) → H ,

h
(
(γn)n∈N

) := fK1(γ1) · · · · · fKN
(γN) if γn = 1 for all n > N,

which is continuous at 1 by Lemma 4.4. Then f |Ω = h ◦ Φ , since f is a homomorphism. Thus
also f is continuous at 1 and hence continuous. �
6. Proof of the Fragmentation Lemma for diffeomorphism groups

In this section, we prove the Fragmentation Lemma for diffeomorphism groups (Lemma 5.5).
We start with a preparatory lemma.

Lemma 6.1. Let r ∈ N0 ∪ {∞} and π :E → M be a Cr -vector bundle over a σ -compact
finite-dimensional Cr -manifold M . Let P ⊆ Cr

c (M,E) be a 0-neighbourhood in the space of
compactly supported Cr -sections, and (sn)n∈N be a sequence in Cr(M,R) such that, for each
compact set K ⊆ M , there exists N ∈ N such that sn|K = sm|K for all n,m � N . Then there is a
0-neighbourhood Q ⊆ P such that sn · Q ⊆ P for all n ∈ N.
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Proof. Let (Un)n∈N be a locally finite cover of M by relatively compact, open sets. Then the
linear map

p :Cr
c (M,E) →

⊕
n∈N

Cr(Un,E|Un), γ �→ (γ |Un)n∈N

is a topological embedding (see [16] or [27, Proposition F.19]). Hence, there are open
0-neighbourhoods Vn ⊆ Cr(Un,E|Un) such that p−1(

⊕
n∈N

Vn) ⊆ P . The hypothesis entails
that Fn := {sk|Un : k ∈ N} is a finite set, for each n ∈ N. Fix n ∈ N. Since Cr(Un,E|Un) is a topo-
logical Cr(Un,R)-module (see [16] or [27, Corollary F.13]), for each s ∈ Fn the multiplication
operator Cr(Un,E|Un) → Cr(Un,E|Un), γ �→ s · γ is continuous. Hence, there exists an open
0-neighbourhood Wn ⊆ Vn such that s ·Wn ⊆ Vn for all s ∈ Fn. Then Q := p−1(

⊕
n∈N

Wn) ⊆ P

is an open 0-neighbourhood such that sn · Q ⊆ P for each n ∈ N. The proof is complete. �
6.2. To prove Lemma 5.5, let (Un)n∈N be a locally finite cover of M by relatively compact, open
subsets Un ⊆ M , and (hn)n∈N be a smooth partition of unity of M such that Kn := supp(hn) ⊆
Un for each n ∈ N. For each n ∈ N0, we set sn := ∑n

i=1 hi . We define U0 := K0 := ∅. For each
n ∈ N, we set Wn := Un ∪ Un−1 and choose ξn ∈ C∞

c (Wn,R) such that ξn|Kn∪Kn−1 = 1. We
abbreviate Ln := supp(ξn).

6.3. Let φ̃ : Ũ → Ṽ ⊆ C∞
c (M,T M) be a chart of Diffc(M) around idM such that φ̃(idM) = 0

and φ̃ restricts to a chart Ũ ∩ DiffK(M) → Ṽ ∩ C∞
K (M,T M) of DiffK(M), for each compact

subset K ⊆ M (see 5.1). There exists an open, symmetric identity neighbourhood U ⊆ Ũ such
that UU ⊆ Ũ . Set V := φ̃(U), φ := φ̃|VU , and let φn :U ∩ DiffKn(M) → V ∩ C∞

Kn
(M,T M) be

the restriction of φ to a chart of DiffKn(M). By 4.2, the map

κ :=
⊕
n∈N

φn :
∏
n∈N

∗(
U ∩ DiffKn(M)

) →
⊕
n∈N

(
V ∩ C∞

Kn
(M,T M)

)
(5)

sending (ηn)n∈N to (φn(ηn))n∈N is a chart of
∏∗

n∈N
DiffKn(M) around 1.

6.4. Pick an open, symmetric identity neighbourhood P ⊆ U such that PP ⊆ U . Let Q := φ(P ).
By Lemma 6.1, there is an open 0-neighbourhood S ⊆ Q such that sn · S ⊆ Q for all n ∈ N.
We set R := φ−1(S). In local coordinates, the group multiplication of Diffc(M) corresponds to
the smooth map μ :Q × Q → V , μ(σ, τ) := σ ∗ τ := φ(φ−1(σ ) ◦ φ−1(τ )). The group inver-
sion corresponds to the smooth map Q → Q, σ �→ σ−1 := φ(φ−1(σ )−1). For each compact
set K ⊆ M , the local multiplication restricts to a smooth map (Q ∩ C∞

K (M,T M))2 → V ∩
C∞

K (M,T M), and the local inversion to a smooth map Q∩C∞
K (M,T M) → Q∩C∞

K (M,T M).

6.5. Given γ ∈ R and n ∈ N0, we define sn � γ ∈ P via sn � γ := φ−1(sn · φ(γ )). For each
n ∈ N, we let γn := (sn−1 � γ )−1 ◦ (sn � γ ) ∈ U . Since (sn � γ )(x) = (sn−1 � γ )(x) for all
x ∈ M \ Kn, we have γn(x) = x for such x and thus γn ∈ C∞

Kn
(M,T M) ∩ U . Given γ , there is

N ∈ N such that Un ∩ supp(γ ) = ∅ for all n > N . Then sn|supp(γ ) = 1 and thus sn � γ = γ for
all n � N , whence γ1 ◦ · · · ◦ γn = sn � γ = γ for all n � N . Thus

Φ :R →
∏∗

DiffKn(M), Φ(γ ) := (γn)n∈N
n∈N
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has the desired properties, except for smoothness. To complete the proof, we show that Φ|Ω is
smooth for some open identity neighbourhood Ω ⊆ R.

6.6. Since (Wn)n∈N is a locally finite cover of M by relatively compact, open sets, the map

p :C∞
c (M,T M) →

⊕
n∈N

C∞(Wn,T Wn), γ �→ (γ |Wn)n∈N

is continuous linear (and in fact an embedding onto a closed vector subspace, see [16] or [27,
Proposition F.19]). Because C∞(Wn,T Wn) is a topological C∞(Wn,R)-module (see [16] or
[27, Corollary F.13]), the multiplication operators μn :C∞(Wn,T Wn) → C∞

Ln
(Wn,T Wn), γ �→

ξn · sn|Wn · γ and λn :C∞(Wn,T Wn) → C∞
Ln

(Wn,T Wn), γ �→ ξn · sn−1|Wn · γ are continuous
linear. Then

λ :=
⊕
n∈N

(λn,μn) :
⊕
n∈N

C∞(Wn,T Wn) →
⊕
n∈N

C∞
Ln

(Wn,T Wn) × C∞
Ln

(Wn,T Wn)

is continuous linear. The restriction map ρn :C∞
Ln

(M,T M) → C∞
Ln

(Wn,T Wn) is an isomorphism
of topological vector spaces for each n ∈ N (see [16] or [27, Lemma F15(b)]), whence so is

ρ :=
⊕
n∈N

(
ρ−1

n × ρ−1
n

)
:
⊕
n∈N

C∞
Ln

(Wn,T Wn)
2 →

⊕
n∈N

C∞
Ln

(M,T M)2.

6.7. Then Z := {γ ∈ V : (ρ ◦ λ ◦ p)(γ ) ∈ ⊕
n∈N

(Q ∩ C∞
Ln

(M,T M))2} is an open identity neigh-
bourhood in V . For each n ∈ N, the map

gn :
(
Q ∩ C∞

Ln
(M,T M)

)2 → V ∩ C∞
Ln

(M,T M), gn(σ, τ ) := σ−1 ∗ τ

is smooth. Hence g := ⊕
n∈N

gn :
⊕

n∈N
(Q ∩ C∞

Ln
(M,T M))2 → ⊕

n∈N
(V ∩ C∞

Ln
(M,T M)) is

smooth, by [19, Proposition 7.1]. Then g ◦ ρ ◦ λ ◦ p|Z is a smooth map with values in the closed
vector subspace

⊕
n∈N

C∞
Kn

(M,T M) of
⊕

n∈N
C∞

Ln
(M,T M), and hence is C∞ also as a map

into this vector subspace (see Lemma 1.3). We now consider g ◦ρ ◦λ◦p|Z as a C∞-map into the
open 0-neighbourhood

⊕
n∈N

(V ∩ C∞
Kn

(M,T M)) ⊆ ⊕
n∈N

C∞
Kn

(M,T M). Then Ω := φ−1(Z)

is an open identity neighbourhood in Diffc(M), and the formula

Φ|Ω = κ−1 ◦ g ◦ ρ ◦ λ ◦ p|Z ◦ φ|Ω
shows that Φ is smooth. This completes the proof of Lemma 5.5.

Remark 6.8. Closer inspection shows that Ω can be chosen of the form Ω = Diffc(M) ∩ Ω1
for some open identity neighbourhood Ω1 ⊆ Diff1

c(M) in the topological group of compactly
supported C1-diffeomorphisms.

The function Φ in the Fragmentation Lemma is not unique, and in fact various construc-
tions give rise to such functions. The simple construction used in this section has been adapted
from [32].
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7. Example: Test function groups

In this section, we prove the results concerning direct limit properties of test function groups
described in the Introduction. More generally, we discuss Cr

c (M,H) for r ∈ N0 ∪ {∞} and H an
arbitrary (not necessarily finite-dimensional) smooth or K-analytic Lie group.

7.1. We recall: if r ∈ N0 ∪ {∞} and s ∈ {∞,ω}, M is a σ -compact finite-dimensional Cr
R

-
manifold and H a Cs

K
-Lie group, then the group Cr

c (M,H) of all compactly supported H -valued
Cr

R
-maps on M is a Cs

K
-Lie group, modelled on the locally convex direct limit Cr

c (M,L(H)) =
lim−→ Cr

K(M,L(H)). Its Lie group structure is characterized by the following property:

Let φ̃ : Ũ → Ṽ ⊆ L(H) be a chart of H around 1 such that φ̃(1) = 0, and U ⊆ Ũ be an open,
symmetric identity neighbourhood such that UU ⊆ Ũ . Set V := φ̃(U) and φ := φ̃|VU . Then
Cr

c (M,U) := {γ ∈ Cr
c (M,H): γ (M) ⊆ U} is open in Cr

c (M,H) and

Cr
c (M,φ) :Cr

c (M,U) → Cr
c (M,V ), γ �→ φ ◦ γ

is a chart for Cr
c (M,H) (cf. [14, Section 4.2]).

Remark 7.2. Let K1 ⊆ K2 ⊆ · · · be an exhaustion of M by compact sets Kn. Since Cr
Kn

(M,φ) :
Cr

Kn
(M,U) → Cr

Kn
(M,V ) ⊆ Cr

Kn
(M,L(H)) is a chart of Cr

Kn
(M,H) for each n ∈ N (see [14,

Section 3.2]), where Cr
Kn

(M,U) = Cr
c (M,U)∩Cr

Kn
(M,H), we deduce that Cr

c (M,φ) is a strict
direct limit chart for Cr

c (M,H) = ⋃
n∈N

Cr
Kn

(M,H).

We begin our discussion of direct limit properties with the negative results.

Proposition 7.3. Let M be a σ -compact, non-compact, finite-dimensional smooth manifold of
positive dimension and H be a non-discrete Lie group whose locally convex modelling space is
smoothly regular (for instance, a finite-dimensional Lie group). Then there exists a discontinuous
map

f :C∞
c (M,H) → C∞

c (M,R)

whose restriction to C∞
K (M,H) is C∞

R
, for each compact set K ⊆ M . Hence C∞

K (M,H) �=
lim−→ C∞

K (M,H) as a topological space and as a Cs
R

-manifold, for any s ∈ N0 ∪ {∞}.

The proof uses the following variant of Lemma 3.1.

Lemma 7.4. Given r ∈ N0 ∪ {∞}, let M be a σ -compact finite-dimensional Cr -manifold, H be
a Lie group modelled on a locally convex space which is smoothly regular, and P ⊆ H be an
open identity neighbourhood. Then there exists a smooth map ρ :Cr

c (M,H) → Cr
c (M,H) with

the following properties:

(a) the image of ρ is contained in Cr
c (M,P );

(b) there exists an open identity neighbourhood Q ⊆ P such that ρ(γ ) = γ for each γ ∈
Cr

c (M,Q); and
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(c) ρ restricts to a smooth map from Cr
K(M,H) to Cr

K(M,P ) ⊆ Cr
K(M,H), for each compact

subset K ⊆ M .

Proof. Using Lemma 3.1, we find a smooth map f :H → P and an open identity neighbourhood
Q ⊆ P such that f |Q = idQ. By [14, Propositions 3.20 and 4.20], the map

ρ := Cr
c (M,f ) :Cr

c (M,H) → Cr
c (M,H), γ �→ f ◦ γ

is smooth and induces smooth self-maps of Cr
K(M,H) for each compact subset K ⊆ M . By

construction, it also has all other desired properties. �
Proof of Proposition 7.3. By [23, Proposition 3.1], there exists a mapping h :C∞(M,L(H)) →
C∞

c (M,R) which is discontinuous at 0, and such that h|C∞
K (M,L(H)) is smooth for each compact

subset K ⊆ M . Choose a chart φ :U → V ⊆ L(H) of H around 1 such that φ(1) = 0 and
such that Ψ := C∞

c (M,φ) :C∞
c (M,U) → C∞

c (M,V ) is a chart of C∞
c (M,H) and restricts to a

chart of C∞
K (M,H) with domain C∞

K (M,U), for each compact subset K ⊆ M . Let P ⊆ U and
ρ :C∞

c (M,H) → C∞
c (M,P ) be as in Lemma 7.4. Then the map

f := h ◦ Ψ ◦ ρ :C∞
c (M,H) → C∞

c (M,R)

is discontinuous at 1. Since ρ restricts to a smooth map from C∞
K (M,H) to C∞

K (M,U) and Ψ

to a smooth map from C∞
K (M,U) to C∞

K (M,V ) ⊆ C∞
K (M,L(H)), it follows that h is smooth

on each C∞
K (M,H). �

Remark 7.5. Given r ∈ N0 ∪ {∞}, let M be a σ -compact, non-compact, finite-dimensional
Cr -manifold of positive dimension, and H be a Lie group modelled on a metrizable locally
convex space �= {0}. Then Cr

K(M,H) is metrizable (cf. [27, Proposition 4.19(c) and (d)]). Using
Proposition 3.6(i), we deduce that Cr

c (M,H) �= lim−→ Cr
K(M,H) as a topological space.

Next, we establish the positive results.

Proposition 7.6. Let M be a σ -compact, finite-dimensional Cr
R

-manifold, where r ∈ N0 ∪
{∞}, and H be a C∞

K
-Lie group modelled on a locally convex space. Then Cr

c (M,H) =
lim−→ Cr

K(M,H) as a topological group and as a C∞
K

-Lie group.

The next lemma (proved in Section 8) helps us to prove Proposition 7.6.

Lemma 7.7 (Fragmentation Lemma for test function groups). For r ∈ N0 ∪ {∞} and s ∈ {∞,ω},
let H be a Cs

K
-Lie group modelled on a locally convex space and M be a σ -compact, finite-

dimensional Cr
R

-manifold.

(a) Then there exists a locally finite cover (Kn)n∈N of M by compact sets, an open identity
neighbourhood Ω ⊆ Cr

c (M,H) and a Cs
K

-map

Φ :Ω →
∏
n∈N

∗
Cr

Kn
(M,H), γ �→ Φ(γ ) =: (γn)n∈N

such that Φ(1) = 1 and γ = γ1γ2 · · ·γn for each γ ∈ Ω and each sufficiently large n.
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(b) If (Un)n∈N is a locally finite cover of M by relatively compact, open sets, then it can be
achieved in (a) that Kn ⊆ Un for each n ∈ N.

Remark 7.8. Considering a finite-dimensional Lie group as a real analytic Lie group, Lemma 7.7
provides a real analytic fragmentation map in this case.

Proof of Proposition 7.6. By Remark 7.2, the hypotheses of Proposition 2.6 are satisfied
by Cr

c (M,H) and any cofinal subsequence of its Lie subgroups Cr
K(M,H). Therefore, we only

need to show that Cr
c (M,H) = lim−→ Cr

K(M,H) as a topological group. Using Lemma 7.7 instead
of Lemma 5.5, we can show this exactly as in the proof of Proposition 5.4. �
Remark 7.9. While the case of a complex Lie group H is included in Proposition 7.6, we had to
exclude it from Proposition 7.3, and the direct limit properties of Cr

c (M,H) in the category of
complex manifolds remain elusive (because localization arguments do not work in the complex
case). The following example makes it clear that the direct limit property can fail in some cases
(but there is no argument for the general case). We consider the map

f :C∞
c (M,C) → C∞

c (M × M,C), γ �→ γ ⊗ γ

with (γ ⊗ γ )(x, y) := γ (x)γ (y), which is a homogeneous polynomial of degree 2. It is clear
from [15, Proposition 7.1] and [14, Lemma 3.7] that the restriction of f to C∞

K (M,C) is a
continuous homogeneous polynomial of degree 2 and hence complex analytic. However, f is
discontinuous because the symmetric bilinear map C∞

c (M,C)2 → C∞
c (M × M,C) associated

to f via polarization is discontinuous (cf. [53, Theorem 2.4]).

Remark 7.10. If H is a real analytic Lie group, then also Cr
c (M,H) and Cr

K(M,H) are real
analytic Lie groups, and one may ask whether Cr

c (M,H) = lim−→ Cr
K(M,H) as a Cω

R
-Lie group or

as a Cω
R

-manifold. However, since real analyticity is an even more delicate property than complex
analyticity, one cannot expect results except in special situations. We therefore refrain from any
attempt in this direction, and merely remind the reader of a notorious pathology: already on
R

(N) = Cr
c (N,R), non-analytic real-valued functions exist which are Cω

R
on R

n = Cr{1,...,n}(N,R)

for each n ∈ N [39, Example 10.8].

8. Proof of the Fragmentation Lemma for test function groups

This section is devoted to the proof of the Fragmentation Lemma for test function groups
(Lemma 7.7). We proceed in steps.

8.1. Let (Un)n∈N be a locally finite cover of M be relatively compact, open subsets Un ⊆ M ,
and (hn)n∈N be a Cr -partition of unity of M such that Kn := supp(hn) ⊆ Un for each n ∈ N.
For each n ∈ N0, we set sn := ∑n

i=1 hi . We define U0 := K0 := ∅. For each n ∈ N, we set
Wn := Un ∪ Un−1 and choose ξn ∈ Cr

c (Wn,R) such that ξn(Wn) ⊆ [0,1] and ξn|Kn∪Kn−1 = 1.
We abbreviate Ln := supp(ξn).

8.2. Pick a chart φ′′ :U ′′ → V ′′ ⊆ L(H) of H around 1 such that φ′′(1) = 0. Let U ′ ⊆ U

be an open, symmetric identity neighbourhood with U ′U ′ ⊆ U ′′. Set V ′ := φ′′(U ′) and φ′ :=
φ′′|V ′

′ . Then Cr
c (M,φ′) :Cr

c (M,U ′) → Cr
c (M,V ′) ⊆ Cr

c (M,L(H)) is a chart of Cr
c (M,H) and
U
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Cr
K(M,φ′) :Cr

K(M,U ′) → Cr
K(M,V ′) ⊆ Cr

K(M,L(H)) is a chart of Cr
K(M,H), for each com-

pact subset K ⊆ M . Let U ⊆ U ′ be an open, symmetric identity neighbourhood with UU ⊆ U ′,
and set V := φ′(U) and φ := φ′|VU . Then the map

κ :=
⊕
n∈N

Cr
Kn

(M,φ) :
∏
n∈N

∗
Cr

Kn
(M,U) →

⊕
n∈N

Cr
Kn

(M,V ), (6)

(ηn)n∈N �→ (φ ◦ ηn)n∈N is a chart of
∏∗

n∈N
Cr

Kn
(M,H) around 1 (see 4.2).

8.3. There exists an open, symmetric identity neighbourhood P ⊆ U such that PP ⊆ U . We
set Q := φ(P ), let S ⊆ Q be an open 0-neighbourhood such that [0,1]S = S, and define R :=
φ−1(S). In local coordinates, the group multiplication of Cr

c (M,H) corresponds to the map
μ :Q × Q → V , μ(σ, τ) := σ ∗ τ := φ(φ−1(σ )φ−1(τ )). We write τ−1 := φ(φ−1(τ )−1) for
τ ∈ Q.

8.4. Given γ ∈ Cr
c (M,R) and h ∈ Cr

c (M,R) such that h(M) ⊆ [0,1], we define h � γ ∈
Cr

c (M,R) via (h � γ )(x) := φ−1(h(x) · φ(γ (x))). For each n ∈ N, set γn := (sn−1 � γ )−1

(sn � γ ) ∈ Cr
c (M,U). Since (sn � γ )(x) = (sn−1 � γ )(x) for all x ∈ M \ Kn, we have

γn ∈ Cr
Kn

(M,U). Given γ , there is N ∈ N such that Un ∩ supp(γ ) = ∅ for all n > N . Then
sn � γ = γ for all n � N , whence γ1 · · ·γn = γ for all n � N . Thus

Φ :Cr
c (M,R) →

∏
n∈N

∗
Cr

Kn
(M,H), Φ(γ ) := (γn)n∈N

will have the desired properties, if we can show that this map is Cs
K

.

8.5. Since (Wn)n∈N is a locally finite cover of M by relatively compact, open sets, the map

p :Cr
c

(
M,L(H)

) →
⊕
n∈N

Cr
(
Wn,L(H)

)
, γ �→ (γ |Wn)n∈N

is continuous linear (and in fact an embedding onto a closed vector subspace, see [16] or [27,
Proposition 8.13]). Because Cr(Wn,L(H)) is a topological Cr(Wn,R)-module (see [16] or [27,
Proposition 9.1(b)]), the multiplication operators μn :Cr(Wn,L(H)) → Cr

Ln
(Wn,L(H)), γ �→

ξn · sn|Wn · γ and λn :Cr(Wn,L(H)) → Cr
Ln

(Wn,L(H)), γ �→ ξn · sn−1|Wn · γ are continuous

linear. Identifying Cr
Ln

(Wn,L(H))2 with Cr
Ln

(Wn,L(H) × L(H)) in the natural way (cf. [14,

Lemma 3.4]), we can consider (λn,μn) as a continuous linear map into Cr
Ln

(Wn,L(H)2). Then

λ :=
⊕
n∈N

(λn,μn) :
⊕
n∈N

Cr
(
Wn,L(H)

) →
⊕
n∈N

Cr
Ln

(
Wn,L(H)2)

is continuous linear. Now λ ◦ p is a continuous linear map which restricts to a Cs
K

-map
f :Cr

c (M,S) → ⊕
n∈N

Cr
Ln

(Wn,S × S). Now define gn :Cr
Ln

(Wn,S × S) → Cr
Ln

(Wn,V ) via

gn(τ, σ ) := τ−1 ∗ σ,
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using local inversion, respectively, the local multiplication ∗ pointwise. Then each gn is Cs
K

, as
a consequence of [14, Corollaries 3.11 and 3.12], and thus also

g :=
⊕
n∈N

gn :
⊕
n∈N

Cr
Ln

(Wn,S) →
⊕
n∈N

Cr
Ln

(Wn,V )

is Cs
K

by [19, Proposition 7.1 and Corollary 7.2]. Note that g ◦ λ ◦ p has image in the closed
vector subspace

⊕
n∈N

Cr
Kn

(Wn,L(H)) of
⊕

n∈N
Cr

Ln
(Wn,L(H)); we may therefore consider

g ◦ f as a Cs
K

-map into
⊕

n∈N
Cr

Kn
(Wn,V ) now (by Lemma 1.3). For each n ∈ N, the map

ρn :Cr
Kn

(M,L(H)) → Cr
Kn

(Wn,L(H)), γ �→ γ |Wn is an isomorphism of locally convex spaces
(see [27, Lemma 4.24] or [16]), whence also

ψ :=
⊕
n∈N

ρ−1
n :

⊕
n∈N

Cr
Kn

(
Wn,L(H)

) →
⊕
n∈N

Cr
Kn

(
M,L(H)

)

is an isomorphism of locally convex spaces. Consequently, the composition

Φ = κ−1 ◦ ψ ◦ g ◦ f ◦ Cr
c

(
M,φ|SR

)

is a Cs
K

-map from Cr
c (M,R) to

∏∗
n∈N

Cr
Kn

(M,H), where κ is as in (6). This completes the proof
of Lemma 7.7.

Remark 8.6. The proof shows that (Kn)n∈N can be chosen independently of r and H , and that
Ω can be chosen of the form Cr

c (M,U).

9. Direct limit properties of Lie groups modelled on Silva spaces or kω-spaces

We describe conditions ensuring that a Lie group G = ⋃
n∈N

Gn carries the direct limit topol-
ogy and is the direct limit in all categories of interest. In particular, the result applies to many
typical examples of Lie groups modelled on Silva spaces. We also obtain information on certain
Lie groups modelled on kω-spaces.

9.1. Recall that a locally convex space E is called a Silva space (or (LS)-space) if it is the locally
convex direct limit E = ⋃

n∈N
En = lim−→ En of a sequence E1 ⊆ E2 ⊆ · · · of Banach spaces

such that each inclusion map En → En+1 is a compact linear operator. Then E is Hausdorff
(cf. [11, Section 7.3, Satz]) and E = lim−→ En as a topological space [11, Section 7.1, Satz]. The
ascending sequence (En)n∈N can always be chosen such that, for a suitable norm on En defining
its topology, all closed balls B

En
r (x), x ∈ En, r > 0, are compact in En+1 (cf. [36, Section 7.3,

Proposition 1]). It is clear from the definition that finite direct products of Silva spaces are Silva
spaces; this will be useful later.

9.2. A Hausdorff topological space X is called a kω-space if there exists an ascending sequence
K1 ⊆ K2 ⊆ · · · of compact subsets of X such that X = ⋃

n∈N
Kn and U ⊆ X is open if and only

if U ∩ Kn is open in Kn, for each n ∈ N (i.e., X = lim−→ Kn as a topological space). Then (Kn)n∈N

is called a kω-sequence for X. For background information concerning kω-spaces with a view
towards direct limit constructions, see [30].
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Example 9.3. The dual space E′ of every metrizable locally convex space E is a kω-space when
equipped with the topology of compact convergence (cf. [1, Corollary 4.7 and Proposition 5.5]).
We write E′

c if this topology is used.

Example 9.4. Every Silva space E is a kω-space. In fact, E is reflexive by [11, Section 9, Satz 6]
and thus E ∼= (E′

b)
′
b, using the topology of bounded convergence. Since E′

b is a Fréchet–Schwartz
space [11, Section 9, Satz 6], bounded subsets in E′

b are relatively compact and hence (E′
b)

′
b =

(E′
b)

′
c. But (E′

b)
′
c is kω, by Example 9.3.

Example 9.5. If E is an infinite-dimensional Banach space (or, more generally, a Fréchet space
which is not a Schwartz space), then E′

c is a locally convex space which is a kω-space but not
a Silva space. In fact, if E′

c was Silva, then (E′
c)

′
b would be a Fréchet–Schwartz space [11,

Section 9, Satz 6]. Here (E′
c)

′
b = (E′

c)
′
c since bounded subsets of Silva spaces are relatively

compact [11, Section 7.6]. Since E ∼= (E′
c)

′
c holds for every Fréchet space [2, Proposition 15.2],

we deduce that E is a Fréchet–Schwartz space, contradicting our hypotheses.

The following facts concerning kω-spaces will be used.

Lemma 9.6.

(a) If X and Y are kω-spaces, then also X × Y .
(b) Let ((Xn)n∈N, (in,m)n�m) be a direct sequence of kω-spaces and continuous maps in,m :

Xm → Xn, with direct limit Hausdorff topological space X. Then X is a kω-space. If
each in,m is injective, then the direct limit topological space lim−→ Xn is Hausdorff.

(c) Let ((En)n∈N, (in,m)n�m) be a direct sequence of locally convex spaces which are kω-spaces,
and continuous linear maps in,m :Em → En. Then the Hausdorff locally convex direct
limit E coincides with the direct limit Hausdorff topological space (as discussed in (b)).

Proof. (a) See, e.g., [30, Proposition 4.2(c)].
(b) The case of injective direct sequences is covered by [30, Proposition 4.5]. In the general

case, let in :Xn → X be the limit map, and Xn := in(Xn), equipped with the quotient topology,
which is Hausdorff and hence kω by [30, Proposition 4.2]. Then X = lim−→ Xn as a topological
space, and so X is kω by [30, Proposition 4.5].

(c) As in (b), after passing to Hausdorff quotients we may assume that each in (and in,m) is
injective. But this case is [30, Proposition 7.12]. �

The following situation arises frequently. We are given a map f :U → F , where E and F

are Hausdorff locally convex topological K-vector spaces and U a subset of E; we would like
to show that U is open and f is Cr

K
for some r ∈ N0 ∪ {∞}. We are given the following in-

formation: E is the Hausdorff locally convex direct limit of a sequence ((En)n∈N, (in,m)n�m)

of Hausdorff locally convex spaces En and continuous homomorphisms in,m :Em → En, with
limit maps in :En → E. Also, U = ⋃

n∈N
in(Un), where Un ⊆ En is an open subset such that

in,m(Um) ⊆ Un if n � m. Finally, we assume that fn := f ◦ in|Un :Un → F is Cr
K

for each n ∈ N.

Lemma 9.7. In the preceding situation, suppose that (a) or (b) holds:

(a) Each En is a Banach space and each of the linear maps in,m is compact.
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(b) Each En is a Silva space or, more generally, a kω-space.

Then U is open in E and f is Cr
K

.

Proof. Let Nn be the kernel of the limit map En → E. Then En := En/Nn is a Banach space
(respectively, kω-space). Let qn :En → En be the quotient map, and īn,m :Em → En be the
continuous linear map determined by īn,m ◦ qm = qn ◦ in,m (which is again a compact operator
in case (a)). Then E = lim−→ En as a locally convex space, together with the continuous linear
maps īn :En → E determined by īn ◦ qn = in. The set Un := qn(Un) is open in En and fn

factors to a map gn := f ◦ īn :Un → F determined by gn ◦ qn|Un = fn, which is Cr
K

by [4,
Lemma 10.4]. Furthermore, U = ⋃

n∈N
īn(Un). After replacing En by En, we may thus assume

now that each in,m is injective.
Recall that E = lim−→ En as a topological space (see 9.1 in the situation of (a), respectively,

Lemma 9.6(b) and (c) in the situation of (b)). Hence U is open in E and U = lim−→ Un, by
Lemma 1.7.

To see that f is Cr
K

, we may assume that r ∈ N0, and proceed by induction. If r = 0, then f

is continuous since U = lim−→ Un as a topological space. Now assume that the assertion holds

for r and that each f ◦ in is Cr+1
K

. Then f is continuous. Given x′ ∈ U and y′ ∈ E, there
exists n ∈ N and x ∈ Un, y ∈ En such that x′ = in(x), y′ = in(y). Then the directional deriv-
ative d(f ◦ in)(x, y) = d

dt
|t=0f (in(x + ty)) = d

dt
|t=0f (in(x) + t in(y)) = d

dt
|t=0f (x′ + ty′) =

df (x′, y′) exists. The preceding calculation shows that

df ◦ (in × in)|Un×En = d(f ◦ in) (7)

for each n ∈ N, which is a Cr
K

-map. Since E × E = lim−→ En × En is a locally convex direct limit
of the form described in (a), respectively, (b) (see 9.1 respectively, Lemma 9.6(a)), the map df

is Cr
K

by induction and hence f is Cr+1
K

. �
Note that E in Lemma 9.7 is a kω-space, by 9.4, respectively, Lemma 9.6(b) and (c).

Proposition 9.8. Let G = ⋃
n∈N

Gn be a C∞
K

-Lie group admitting a direct limit chart and assume
that at least one of the following conditions is satisfied:

(i) Gn is a Banach-Lie group for each n ∈ N, and the inclusion map L(Gm) → L(Gn) is a
compact linear operator, for all m < n.

(ii) L(Gn) is a kω-space, for each n ∈ N.

Then G = lim−→ Gn as a topological space, topological group, C∞
K

-Lie group, and as a Cr
K

-
manifold, for each r ∈ N0 ∪ {∞}.

Proof. Let φ :U → V ⊆ L(G) be a direct limit chart around 1, where U = ⋃
n∈N

Un, V =⋃
n∈N

Vn and φ = ⋃
n∈N

φn for charts φn :Un → Vn ⊆ L(Gn) of Gn around 1. Suppose that
f :G → X is a map to a topological space (respectively, Cr

K
-manifold) X, such that f |Gn is con-

tinuous (respectively, Cr
K

), for each n ∈ N. Then (f ◦ φ)|Vn is continuous (respectively, Cr
K

) for
each n ∈ N and hence f ◦ φ is continuous (respectively, Cr

K
) and thus also f |U , by Lemma 9.7.

Given x ∈ G, applying the same argument to h :G → X, h(y) := f (xy), we see that h|U (and
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hence also f |xU ) is continuous, respectively, Cr
K

. Hence f is continuous (respectively, Cr
K

). We
have shown that G = lim−→ Gn as a topological space and as a Cr

K
-manifold. The remaining direct

limit properties follow. �
10. Example: Groups of germs of Lie group-valued analytic maps

In this section, we begin our discussion of the Lie group Γ (K,H) of germs of analytic
mappings with values in a Banach–Lie group H , where K is a non-empty compact subset of
a metrizable locally convex space X. For X and H finite-dimensional, Γ (K,H) is modelled
on a Silva space, and we obtain a prime example for the type of direct limit groups just dis-
cussed in Proposition 9.8(i). This facilitates a complete clarification of the direct limit properties
of Γ (K,H) (Proposition 10.6). In Section 11, we develop tools to tackle Γ (K,H) also for
infinite-dimensional X and H (see Section 13).

10.1. Let H be a Banach–Lie group over K ∈ {R,C} and K �= ∅ a compact subset of a metrizable
locally convex topological K-vector space X. Then the group G := Γ (K,H) of germs [γ ] of K-
analytic maps γ :U → H on open neighbourhoods U ⊆ X of K is a Cω

K
-Lie group in a natural

way, with the multiplication of germs induced by pointwise multiplication of functions (see [20]).
We now recall the relevant aspects of the construction of the Lie group structure, starting with the
case K = C. In this case, Γ (K,H) is modelled on the locally convex direct limit Γ (K,L(H)) =
lim−→ Holb(Un,L(H)), where U1 ⊇ U2 ⊇ · · · is a fundamental sequence of open neighbourhoods
of K . Here Holb(Un,L(H)) =: An is the Banach space of bounded holomorphic functions
from Un to L(H), equipped with the supremum norm ‖ · ‖An . The space Γ (K,H) is Haus-
dorff [20, Section 2]. We can (and will always) assume that each connected component of Un

meets K ; then all bonding maps jn,m : Holb(Um,L(H)) → Holb(Un,L(H)), γ �→ γ |Un , n � m,
are injective and hence also all limit maps jn : Holb(Un,L(H)) → Γ (K,L(H)), γ �→ [γ ]. We
occasionally identify γ ∈ Holb(Un,L(H)) with jn(γ ) = [γ ].

10.2. If K = R, choose open neighbourhoods Un as before and set Ũn := Un + iVn ⊆
XC, where (Vn)n∈N is a basis of open, balanced 0-neighbourhoods in X. We set Cn :=
{γ ∈ Holb(Ũn,L(H)C): γ (Un) ⊆ L(H)} and

An := {γ |Un : γ ∈ Cn}.

Then Cn is a closed real vector subspace of Holb(Ũn,L(H)C). Because γ ∈ Holb(Ũn,L(H)C) is
uniquely determined by γ |Un , we see that ‖γ |Un‖An := ‖γ ‖∞ (supremum-norm) for γ as before
with γ (Un) ⊆ L(H) defines a norm ‖ · ‖An on An making it a Banach space isomorphic to Cn.
We give Γ (K,L(H)) the vector topology making it the locally convex direct limit lim−→ An.

10.3. We may assume that the norm ‖.‖ on h := L(H) defining its topology has been chosen such
that ‖[x, y]‖ � ‖x‖ · ‖y‖ for all x, y ∈ h. Choose ε ∈ ]0, 1

2 log 2] such that expH|
B

h
ε (0)

is a dif-
feomorphism onto an open identity neighbourhood in H . Then the Baker–Campbell–Hausdorff
series converges to a K-analytic function ∗ :Bh

ε (0) × B
h
ε (0) → h (see [8, Chapter II, Section 7,

No. 2]). We choose δ ∈ ]0, ε] such that B
h

δ (0) ∗ B
h

δ (0) ⊆ B
h
ε (0). Define

Exp :Γ
(
K,L(H)

) → Γ (K,H), Exp
([γ ]) := [expH ◦ γ ].
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Then Γ (K,H) can be given a K-analytic Lie group structure such that Ψ := Exp|Q is a Cω
K

-
diffeomorphism onto an open identity neighbourhood in the group Γ (K,H), where Q :=
{[γ ] ∈ Γ (K,L(H)): γ (K) ⊆ B

h

δ (0)} (see [20, Section 5]). We set P := Ψ (Q) and φ := Ψ −1.

10.4. We now show that Γ (K,H) = ⋃
n∈N

Gn for some Banach–Lie groups Gn, and that
φ :P → Q is a direct limit chart. To this end, let Cω(Un,H) be the group of all K-analytic
H -valued maps on Un. The BCH-series defines a K-analytic map ∗ :BAn

ε (0) × B
An
ε (0) → An,

such that B
An

δ (0) ∗ B
An

δ (0) ⊆ B
An
ε (0). The mapping Expn :An → Cω(Un,H), Expn(γ ) :=

expH ◦ γ is injective on B
An
ε (0), and application of point evaluations shows that Expn(γ ∗ η) =

Expn(γ )Expn(η) for all γ,η ∈ B
An
ε (0). Set Qn := B

An

δ (0) and Pn := Expn(Qn). Now stan-
dard arguments show that the subgroup G0

n of Cω(Un,H) generated by Expn(An) can be
made a Banach–Lie group with Lie algebra An and such that Expn|Qn is a Cω

K
-diffeomorphism

onto Pn, which is open in G0
n (cf. [8, Chapter III, Section 1, No. 9, Proposition 18]). Thus

φn := (Expn|Pn

Qn
)−1 :Pn → Qn is a chart for G0

n. If K = C, let Gn be the group of all γ ∈
Cω(Un,H) such that sup{‖AdH

γ (x)‖: x ∈ Un} < ∞, a condition which ensures that the Lie al-

gebra homomorphism An → An, η �→ (x �→ AdH
γ (x)(η(x))), is continuous linear. If K = R, let

Gn be the group of all γ ∈ Cω(Un,H) such that Un → Aut(hC), x �→ (AdH
γ (x))C has a complex

analytic extension Ũn → Aut(hC) which is bounded. Then G0
n ⊆ Gn, and standard arguments

provide a unique K-analytic manifold structure on Gn making it a Banach–Lie group with G0
n

as an open subgroup (cf. [8, Chapter III, Section 1, No. 9, Proposition 18]). The restriction map
in,m :Gm → Gn, γ �→ γ |Un is an injective homomorphism for n � m, which is K-analytic be-
cause Expn ◦ jn,m = in,m ◦ Expm with jn,m :Am → An continuous linear. Likewise, in :Gn →
Γ (K,H), γ �→ [γ ] is an injective homomorphism and K-analytic because Exp ◦ jn = in ◦ Expn.
We identify Gn with its image in(Gn) in Γ (K,H). Then Γ (K,H) = ⋃

n∈N
Gn. To see this,

let [γ ] ∈ Γ (K,H). If K = C, then Un → Aut(h), x �→ AdH
γ (x) is bounded for some n ∈ N. If

K = R, then Un → Aut(hC), x �→ (AdH
γ (x))C has a bounded complex analytic extension to Ũn

for some n. Since Q = ⋃
n∈N

Qn, P = ⋃
n∈N

Pn and φ = ⋃
n∈N

φn, we see that φ is a direct limit
chart.

10.5. If dim(X) < ∞, we assume that Un+1 is relatively compact in Un, for each n ∈ N (and
Vn+1 relatively compact in Vn, if K = R). If, furthermore, dim(H) < ∞, then L(in,m) = jn,m :
Am → An, γ �→ γ |Un is a compact operator whenever n > m. If K = C, this is a simple conse-
quence of Montel’s Theorem; if K = R, it follows from the compactness of the corresponding
restriction map Holb(Ũm,L(H)C) → Holb(Ũn,L(H)C).

Proposition 10.6. For K ∈ {R,C}, consider a Lie group of germs Γ (K,H) as in 10.1–10.3
and let Gn be as in 10.4. If X and H are finite-dimensional, then Γ (K,H) = lim−→ Gn in the
categories of C∞

K
-Lie groups, topological groups, topological spaces and Cr

K
-manifolds, for each

r ∈ N0 ∪ {∞}.

Proof. 10.4 and 10.5 guarantee the conditions of Proposition 9.8(i). �
Remark 10.7. If dim(H) < ∞ and X is an infinite-dimensional Fréchet–Schwartz space, then
Γ (K,L(H)) still is a Silva space (cf. [5, Theorem 7]). The preceding proposition extends to this
situation.
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Remark 10.8. By Lemma 2.9, we have Γ (K,H)0 = ⋃
n∈N

G0
n, with G0

n as in 10.4. Replacing
Γ (K,H) by its connected component Γ (K,H)0 and Gn by G0

n, all of the results of Proposi-
tion 10.6 (and likewise those of Proposition 13.1 and Corollary 13.3) remain valid, by trivial
modifications of the proofs. In many cases, Γ (K,H) is connected (e.g., if H is connected and
K a singleton); then simply Γ (K,H) = lim−→ G0

n in all relevant categories.

11. Tools to identify direct limits of topological groups

We describe a criterion ensuring that a topological group G = ⋃
n∈N

Gn is the direct limit
topological group lim−→ Gn. In combination with Theorem 2.6, this facilitates to identify Lie groups
as direct limits in the category of Lie groups, under quite weak hypotheses. The criterion, requir-
ing that “product sets are large,” is satisfied in all situations known to the author.

Definition 11.1. Let G be a topological group which is a union G = ⋃
n∈N

Gn of a sequence
G1 ⊆ G2 ⊆ · · · of topological groups such that all of the inclusion maps Gm → Gn and Gn → G

are continuous homomorphisms. We say that product sets are large in G if the product map

π :
∏
n∈N

∗
Gn → G, (gn)n∈N �→ g1g2 · · ·gN if gn = 1 for all n > N,

takes identity neighbourhoods in the weak direct product to identity neighbourhoods in G. If the
product map

π̃ :
∏

n∈N∪(−N)

∗
Gn → G, (gn)n∈N∪(−N) �→ g−N · · ·g−1g1g2 · · ·gN

(with N so large that gn = 1 whenever |n| > N ) takes identity neighbourhoods to such, then we
say that two-sided product sets are large in G.

Remark 11.2. Thus product sets are large in G = ⋃
n∈N

Gn if and only if
⋃

n∈N
U1U2 · · ·Un is

an identity neighbourhood in G, for each choice of identity neighbourhoods Uk ⊆ Gk , k ∈ N. If
product sets are large in G, then also two-sided product sets are large.

The following observation provides first examples with large product sets.

Proposition 11.3. Consider a topological group G = ⋃
n∈N

Gn such that G = lim−→ Gn as a topo-
logical space. Then product sets are large in G.

Proof. Consider a product set U = ⋃
n∈N

U1U2 · · ·Un with Un an open identity neighbourhood
in Gn. Then U1 · · ·Un is open in Gn and thus U is open in G, by Lemma 1.7. �
Example 11.4. The Lie groups G = ⋃

n∈N
Gn considered in Proposition 9.8 satisfy the hypoth-

esis of Proposition 11.3, whence product sets are large in G.

The following observation provides more interesting examples.
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Remark 11.5. If the product map π :
∏∗

n∈N
Gn → G admits a local section σ :U → ∏∗

n∈N
Gn

on an identity neighbourhood U ⊆ G which is continuous at 1 and takes 1 to 1, then product sets
are large in G. This condition is satisfied in particular if π admits a continuous (or smooth) local
section σ around 1 ∈ G, such that σ(1) = 1.

Example 11.6. Consider a test function group Cr
c (M,G), where M is a σ -compact finite-

dimensional Cr -manifold and G a Lie group modelled on a locally convex space. Let
(An)n∈N be any exhaustion of M by compact sets. Then the product map π of Cr

c (M,G) =⋃
n∈N

Cr
An

(M,G) admits a smooth local section around 1 taking 1 to 1, and hence product
sets are large in Cr

c (M,G) = ⋃
n∈N

Cr
An

(M,G). To see this, we use a map Φ :Cr
c (M,G) ⊇

Ω → ∏
n∈N

Cr
Kn

(M,G) as described in Fragmentation Lemma 7.7. Pick a sequence m1 <

m2 < · · · of positive integers such that Kn ⊆ Amn for each n ∈ N, and let ψn :Cr
Kn

(M,G) →
Cr

Amn
(M,G) be the inclusion map, which is a smooth homomorphism. Consider the map

ψ :
∏∗

n∈N
Cr

Kn
(M,G) → ∏∗

n∈N
Cr

An
(M,G) sending γ = (γn)n∈N to (ηk)k∈N, where ηk := γn

if k = mn for some (necessarily unique) n ∈ N and ηk := 1 otherwise. Then ψ is smooth (cf. [19,
Proposition 7.1]) and π ◦ ψ ◦ Φ = idΩ . Thus σ := ψ ◦ Φ is the desired smooth section for π .

Example 11.7. Using Lemma 5.5, the same argument shows that the product map π of
Diffc(M) = ⋃

n∈N
DiffAn(M) admits a smooth local section around 1 which takes 1 to 1, for

each σ -compact smooth manifold M and exhaustion (An)n∈N of M by compact sets. Thus prod-
uct sets are large in Diffc(M) = ⋃

n∈N
DiffAn(M).

Proposition 11.8. If two-sided product sets are large in a topological group G = ⋃
n∈N

Gn (in
particular, if product sets are large in G), then G = lim−→ Gn in the category of topological groups.

Proof. Let f :G → H be a homomorphism to a topological group H such that fn := f |Gn is
continuous for all n ∈ N. Consider h :

∏∗
n∈N∪(−N) G|n| → H ,

(xn)n∈N∪(−N) �→ fN(x−N) · · ·f1(x−1)f1(x1) · · ·fN(xN),

with N so large that xn = 1 for all n ∈ N ∪ (−N) such that |n| > N . A simple modification of
the proof of Lemma 4.4 shows that h is continuous at 1. Therefore, for each identity neighbour-
hood V ⊆ H there exists a family (Un)n∈N∪(−N) of identity neighbourhoods Un ⊆ G|n| such
that h(U) ⊆ V , for U := ∏∗

n∈N∪(−N) Un. Let π̃ :
∏∗

n∈N∪(−N) Gn → G be the product map. Then
h(U) = f (π̃(U)) where π̃(U) ⊆ G is an identity neighbourhood because two-sided product sets
are large in G. As a consequence, f is continuous. �
Remark 11.9. Following [35, Section 3.1], an ascending sequence G1 � G2 � · · · of topological
groups with continuous inclusion maps is said to satisfy the “passing through assumption” (PTA,
for short), if each Gn has a basis of symmetric identity neighbourhoods U such that, for each m >

n and identity neighbourhood V ⊆ Gm, there exists an identity neighbourhood W ⊆ Gm such that
WU ⊆ UV (cf. also [53] for a slightly different, earlier concept). If condition PTA is satisfied,
then the two-sided product sets (or “bamboo-shoot neighbourhoods”)

⋃
n∈N

Un · · ·U1U1 · · ·Un

form a basis of identity neighbourhoods for the topology O on G = ⋃
n∈N

Gn making G the
direct limit topological group (cf. [53, Proposition 2.3]). In this case, O is called the “bamboo-
shoot topology” in [53]. Hence two-sided product sets are large in the direct limit topological
group G if condition PTA is satisfied.
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Remark 11.10. Let G = ⋃
n∈N

Gn be a topological group such that (Gn)n∈N satisfies condi-
tion PTA. A priori, this only provides information concerning the direct limit group topology O;
it does not help us to see that the given topology on G coincides with O.

Proposition 11.11. Assume that G1 ⊆ G2 ⊆ · · · is an ascending sequence of Banach–Lie groups,
such that each inclusion map Gn → Gn+1 is a smooth homomorphism. Then (Gn)n∈N satis-
fies the PTA.

Proof. For each n ∈ N, fix a norm ‖.‖n on L(Gn) defining its topology and such that ‖[x, y]‖n �
‖x‖·‖y‖ for all x, y ∈ L(Gn). The sets U

(n)
ε := expGn

(B
L(Gn)
ε (0)), ε > 0, form a basis of identity

neighbourhoods in Gn. For each m > n, the set B
L(Gn)
ε (0) is bounded in L(Gm) and thus Mm :=

sup‖BL(Gn)
ε (0)‖m < ∞. Given δ > 0, set τ := e−Mmδ. Then ‖AdGm

u (y)‖m = ‖eadL(Gm)
x .y‖m �

eMm‖y‖m for each u ∈ U
(n)
ε and y ∈ L(Gm), where u = expGn

(x) with x ∈ B
L(Gn)
ε (0), say. Thus

AdGm
u

(
BL(Gm)

τ (0)
) ⊆ B

L(Gm)
δ (0) for each u ∈ U(n)

ε . (8)

Given w ∈ U
(m)
τ and u ∈ U

(n)
ε , say w = expGm

(y) with y ∈ B
L(Gm)
τ (0), we see that wu =

uu−1wu = uu−1 expGm
(y)u = u expGm

(AdGm

u−1(y)) ∈ U
(n)
ε U

(m)
δ , using (8). Hence U

(m)
τ U

(n)
ε ⊆

U
(n)
ε U

(m)
δ . We have verified the PTA. �

12. Example: Unit groups of direct limit algebras

The following proposition generalizes [10, Theorem 1] (where all inclusion maps are isome-
tries) and complements it by a Lie theoretic perspective.

Proposition 12.1. Let A1 ⊆ A2 ⊆ · · · be an ascending sequence of unital Banach algebras An

over K, such that each inclusion map An → An+1 is a continuous homomorphism of unital
algebras. Then the following holds:

(a) The locally convex direct limit topology makes A := ⋃
n∈N

An a locally m-convex topological
algebra. Its unit group A× = ⋃

n∈N
A×

n is open, and is a topological group when equipped
with the topology induced by A.

(b) A× = lim−→ A×
n as a topological group.

(c) Product sets are large in A× = ⋃
n∈N

A×
n , and (A×

n )n∈N satisfies the PTA.

If A is Hausdorff (which is automatic if the direct sequence is strict), then A× is a Cω
K

-Lie group
and A× = lim−→ A×

n as a C∞
K

-Lie group.

Proof. The PTA holds by Proposition 11.11. By [9, Theorem 1], A is a locally m-convex topo-
logical algebra, i.e., the vector topology of A can be defined by a family of sub-multiplicative
seminorms (see [41]). Thus A× is a topological group. It is known that A× is open (Wengenroth
communicated a proof [55]), but we need not use this fact here, as an alternative proof is part of
the following arguments. Consider a product set P := ⋃

n∈N
U1 · · ·Un, with identity neighbour-

hoods Un ⊆ A×
n . After shrinking Un, we may assume that Un = 1+B

An
εn (0) for some εn ∈ ]0, 1 ].
2



50 H. Glöckner / Journal of Functional Analysis 245 (2007) 19–61
Then ‖x−1‖ �
∑∞

k=0 2−k � 2 for each x ∈ Un, whence U−1
n is bounded in An and hence also

in Am for each m � n. Thus Mm,n := sup{‖x−1‖m: x ∈ Un} < ∞.

We claim that

1 +
⋃
n∈N

n∑
k=1

B
Ak

δk
(0) ⊆ P,

where δ1 := ε1 and δn := M−1
n,1 · · ·M−1

n,n−1εn for integers n � 2.

If this claim is true, then P is a neighbourhood of 1 in A, whence A× an open subset of A (cf. [15,
Lemma 2.6]) and product sets are large in A×. Therefore A× = lim−→ A×

n as a topological group
(Proposition 11.8). Since A× is open in A and inversion is continuous, A× is a Cω

K
-Lie group

provided A is Hausdorff [15, Proposition 3.2, respectively, 3.4]. The identity map A× → A×
being a direct limit chart, Theorem 2.6 shows that A× = lim−→ A×

n also as a Lie group.

Proof of the claim. We show that 1 + ∑n
k=1 B

Ak

δk
(0) ⊆ U1 · · ·Un ⊆ P , by induction on n.

If n = 1, then 1 + B
A1
δ1

(0) = U1 ⊆ P . Let n � 2 now and suppose that 1 + ∑n−1
k=1 B

Ak

δk
(0) ⊆

U1 · · ·Un−1. Let yk ∈ B
Ak

δk
(0) for k ∈ {1, . . . , n}. There are xj ∈ Uj for j ∈ {1, . . . , n − 1} such

that

y := 1 + y1 + · · · + yn−1 = x1 · · ·xn−1.

Set xn := y−1(y+yn) = 1+y−1yn. Then ‖y−1yn‖n = ‖x−1
n−1 · · ·x−1

1 yn‖n < Mn,n−1 · · ·Mn,1δn =
εn and thus xn ∈ Un. By construction, 1 + ∑n

k=1 yk = y + yn = yxn = x1 · · ·xn. �
If the direct sequence A1 ⊆ A2 ⊆ · · · in Proposition 12.1 is strict, then A× �= lim−→ A×

n as a
topological space unless each An is finite-dimensional or the sequence An becomes stationary
(by Yamasaki’s Theorem, see Remark 3.4).

We also have a variant for not necessarily unital associative algebras and algebra homomor-
phisms which need not take units to units (if units do exist). Recall that if A is an associative
K-algebra (where K is R or C), then Ae := Ke ⊕ A is a unital algebra via (re + a)(se + b) =
rse + (rb + sa + ab). Then (A,�) with a � b := a + b − ab is a monoid with neutral element 0,
whose unit group is denoted Q(A). The inverse of a ∈ Q(A) is called the quasi-inverse of a and
denoted q(a). The map (A,�) → (Ae, ·), a �→ e − x is a homomorphism of monoids (see, e.g.,
[15, Section 2] for all of this).

Proposition 12.2. Let A1 ⊆ A2 ⊆ · · · be a sequence of (not necessarily unital) associative
Banach algebras over K, such that each inclusion map An → An+1 is a continuous algebra
homomorphism. Then we have:

(a) The locally convex direct limit topology makes A := ⋃
n∈N

An a locally m-convex associative
topological algebra with an open group Q(A) of quasi-invertible elements and a continuous
quasi-inversion map q :Q(A) → A. Thus Q(A) is a topological group.

(b) Q(A) = lim−→ Q(An) as a topological group.
(c) Product sets are large in Q(A) = ⋃

n∈N
Q(An), and (Q(An))n∈N satisfies the PTA.
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If the locally convex direct limit topology on A is Hausdorff, then Q(A) is a Cω
K

-Lie group and
Q(A) = lim−→ Q(An) in the category of C∞

K
-Lie groups.

Proof. (a) The locally convex direct limit topology on Ae = lim−→(K ⊕ An) makes Ae the direct
product K × A, where A = lim−→ An carries the locally convex direct limit topology. Since Ae is a
topological algebra with open unit group and continuous inversion, it follows that Q(A) is open
in A and q is continuous [15, Lemma 2.8]. Since Ae is locally m-convex, so is A.

(b), (c) Consider a product set P := ⋃
n∈N

B
A1
ε1 (0) � · · · � B

An
εn (0), with εn ∈ ]0, 1

2 ]. In Ae , we

then have e−P = ⋃
n∈N

U1 · · ·Un with Un = e−B
An
εn (0) = e+B

An
εn (0). Extend the norm on An

to (An)e via ‖re + a‖ := |r| + ‖a‖, and define Mm,n and δm as in the proof of Proposition 12.1.
Re-using the arguments from the proof just cited, we see that e + ⋃

n∈N

∑n
k=1 B

Ak

δk
(0) ⊆ e − P .

Hence P is a neighbourhood of 0 in A and thus product sets are large in Q(A). Therefore Q(A) =
lim−→ Q(An) as a topological group, by Proposition 11.8. The PTA holds by Proposition 11.11.

Now assume that A is Hausdorff. Then (Ae)
× ∼= Q(Ae) is a Cω

K
-Lie group and Q(A) =

Q(Ae) ∩ A (see [15, Lemma 2.5]) is a subgroup and submanifold of Q(Ae) and therefore a
Cω

K
-Lie group as well. The identity map Q(A) → Q(A) being a direct limit chart, Theorem 2.6

shows that Q(A) = lim−→ Q(An) as a C∞
K

-Lie group. �
13. Example: Lie groups of germs beyond the Silva case

For all X, K , H as in 10.1 and (Gn)n∈N as in 10.4, we show:

Proposition 13.1. Product sets are large in Γ (K,H) = ⋃
n∈N

Gn.

Lemma 13.2. Let (h,‖ · ‖) be a Banach–Lie algebra over K and R > 0 such that the BCH-
series converges to a K-analytic mapping B

h

R(0) × B
h

R(0) → h, (x, y) �→ x ∗ y. Then there exist

r ∈ ]0,R], a K-analytic mapping F :Bh
r (0) × B

h
r (0) → B

h

R(0) and C > 0 such that

x + y = x ∗ F(x, y) and (9)∥∥F(x, y) − y
∥∥ � C‖x‖‖y‖, (10)

for all x, y ∈ B
h
r (0).

Proof. Choosing r ∈ ]0,R] sufficiently small, we can achieve that F(x, y) := (−x) ∗ (x + y)

is defined, F(x, y) ∈ B
h

R(0) and that (9) holds, for all x, y ∈ B
h
r (0). Since F(x,0) = 0 and

F(0, y) = y for all x, y ∈ B
h
r (0), the second order Taylor expansion of F entails (10), after

shrinking r further if necessary (see [24, Lemma 1.7]). �
Multiple products with respect to the BCH-multiplication ∗ are formed recursively in the order

x1 ∗ · · · ∗ xn := (x1 ∗ · · · ∗ xn−1) ∗ xn (provided that all partial products are defined).

Proof of Proposition 13.1. Let R > 0, r , C and ∗ be as in Lemma 13.2, applied with h := L(H)

if K = C (respectively, h := L(H)C if K = R). After shrinking r , we may assume that Cr � 1
2 .

Now let (Wn)n∈N be a sequence of identity neighbourhoods Wn ⊆ Gn. After shrinking Wn, we
may assume that Wn = Expn(B

An
εn (0)) for some εn > 0, with An as in 10.1 (respectively, 10.2).
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Let δn := min{r2−n, εn/2} for n ∈ N. Then S := ⋃
n∈N

∑n
k=1 B

An

δn
(0) is a 0-neighbourhood in

Γ (K,L(H)). We claim that

π

( ∏
n∈N

∗
Wn

)
⊇ Exp(S), (11)

where π :
∏∗

n∈N
Gn → Γ (K,H) is the product map. Therefore π(

∏∗
n∈N

Wn) is an identity neigh-
bourhood in Γ (K,H), and hence product sets are large in Γ (K,H). To prove the claim, let
z ∈ Exp(S). Thus z = Exp(

∑∞
n=1[γn]) for some sequence (γn)n∈N ∈ ⊕

n∈N
B

An

δn
(0). Choose

N ∈ N such that [γn] = 0 for all n > N . If K = C, we set η1 := γ1. If n ∈ {2, . . . ,N}, then
ηn(x) := F(γ1(x) + · · · + γn−1(x), γn(x)) makes sense for each x ∈ Un since ‖γn(x)‖ < r

and ‖γ1(x) + · · · + γn−1(x)‖ < r , and defines a bounded holomorphic function ηn :Un →
L(H). We have ‖ηn‖∞ � (1 + Cr)‖γn‖∞ � 3

2δn < εn by (10), whence ηn ∈ B
An
εn (0) and thus

Expn(ηn) ∈ Wn. Furthermore, γ1(x) + · · · + γn(x) = (γ1(x) + · · · + γn−1(x)) ∗ ηn(x) and hence
γ1(x) + · · · + γn(x) = η1(x) ∗ η2(x) ∗ · · · ∗ ηn(x) for each n ∈ {1, . . . ,N} and x ∈ Un, by induc-
tion. Therefore,

γ1(x) + · · · + γN(x) = η1(x) ∗ η2(x) ∗ · · · ∗ ηN(x) for each x ∈ UN,

entailing that
∑∞

n=1[γn] = [x �→ η1(x) ∗ · · · ∗ ηN(x)] and z = Exp(
∑∞

n=1[γn]) = [x �→
expH (η1(x) ∗ · · · ∗ ηN(x))] = [x �→ expH (η1(x)) · · · expH (ηN(x))] = Exp([η1]) · · ·Exp([ηN ]) ∈
π(

∏∗
n∈N

Wn). Thus (11) holds. If K = R, we use the unique bounded holomorphic extension
γ̃n : Ũn → h of each γn in place of γn to define bounded holomorphic maps η̃n : Ũn → h along
the lines of the construction of ηn. Set ηn := η̃n|Un . Then ‖ηn‖An = ‖η̃n‖∞ < εn for each n and
we see as above that z = Exp([η1]) · · ·Exp([ηN ]) ∈ π(

∏∗
n∈N

Wn). �
Combining Proposition 11.8 with Theorem 2.6, we obtain:

Corollary 13.3. Γ (K,H) = lim−→ Gn holds in the category of C∞
K

-Lie groups, and in the category
of topological groups.

14. Construction of Lie group structures on direct limit groups

Consider an abstract group G = ⋃
n∈N

Gn which is the union of an ascending sequence G1 ⊆
G2 ⊆ · · · of C∞

K
-Lie groups Gn, such that the inclusion maps in,m :Gm → Gn (for m � n) are

C∞
K

-homomorphisms and each Gn is a subgroup of G. In this section, we describe conditions
which facilitate to construct a C∞

K
-Lie group structure on G such that G = lim−→ Gn as a C∞

K
-Lie

group. For finite-dimensional Lie groups Gn, such a Lie group structure has been constructed
in [21] (cf. [44,45], [39, Theorem 47.9] and [18] for special cases). The conditions formulated in
this section apply just as well to suitable infinite-dimensional Lie groups Gn.

14.1. We shall always assume that G has a candidate for a direct limit chart, viz. we assume that
there exist charts φn :Gn ⊇ Un → Vn ⊆ L(Gn) of Gn around 1 for n ∈ N such that Um ⊆ Un and
φn|Um = L(in,m)◦φm if m � n, and V := ⋃

n∈N
Vn is open in the locally convex direct limit E :=

lim−→ L(Gn), which we assume Hausdorff. Here, we identify L(Gm) with the image of L(in,m)

in L(Gn); this is possible because L(in,m) is injective by an argument as in Remark 2.2(a). We
define U := ⋃

n∈N
Un and φ := limφn :U → V ⊆ E.
−→
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It is natural to wonder whether φ (or its restriction to a smaller identity neighbourhood in U )
can always be used as a chart around 1 for a Lie group structure on G. Unfortunately, the answer
is negative (without extra hypotheses): even if φ is globally defined on all of G, it need not make
G = ⋃

n Gn a Lie group.

Example 14.2. Let A1 ⊆ A2 ⊆ · · · be any ascending sequence of locally convex unital associative
topological algebras such that:

1. The inclusion maps are homomorphisms of unital algebras and topological embeddings;
2. The locally convex direct limit topology renders the algebra multiplication on the union

A := ⋃
n∈N

An discontinuous at (1,1);
3. The unit group A× is open in A.

(See [15, Section 10] for such algebras.) Then A× = ⋃
n∈N

A×
n is a union of Lie groups and A×

admits the global chart φ := idA× , which is a candidate for a direct limit chart around 1. However,
A× is not a Lie group because the group multiplication is discontinuous at (1,1).

We now describe additional requirements ensuring that the question just posed has an affir-
mative answer. They are satisfied in many situations.

Proposition 14.3. Consider an abstract group G = ⋃
n∈N

Gn which is the union of an ascending
sequence of C∞

K
-Lie groups. Assume that G admits a candidate φ :U → V ⊆ E := lim−→ L(Gn)

for a direct limit chart, and assume that condition (i) or (ii) from Proposition 9.8 is satisfied.
Then there exists a unique C∞

K
-Lie group structure on G making φ|W a direct limit chart for G

around 1, for an open identity neighbourhood W ⊆ U .

Remark 14.4. By Proposition 9.8, the Lie group structure described in Proposition 14.3 makes
G the direct limit lim−→ Gn as a C∞

K
-Lie group, topological group, topological space, and as a

Cr
K

-manifold, for each r ∈ N0 ∪ {∞}.

We shall deduce Proposition 14.3 from a technical lemma. It requires further terminology.
Consider a set M which is an ascending union M = ⋃

n∈N
Mn of C∞

K
-manifolds, and x ∈ M .

Changing 14.1 in the obvious way,2 we obtain the definition of a candidate for a direct limit
chart around x.

Lemma 14.5. Let G be an abstract group which is the union G = ⋃
n∈N

Mn of an ascending
sequence M1 ⊆ M2 ⊆ · · · of C∞

K
-manifolds, such that 1 ∈ M1 and (a)–(d) hold:

(a) the inclusion maps Mm → Mn are C∞
K

for all m � n;
(b) G admits a candidate φ :U → V ⊆ E := lim−→ T1(Mn) for a direct limit chart around 1;
(c) for each n ∈ N and x, y ∈ Mn, there exists k � n and open neighbourhoods A,B ⊆ Mn of x,

respectively, y such that AB ⊆ Mk and the group multiplication A × B → Mk is C∞
K

; and
(d) for each n ∈ N, there exists k � n and an open identity neighbourhood A ⊆ Mn such that

A−1 ⊆ Mk and the group inversion A → Mk , x �→ x−1 is C∞
K

.

2 Replace G by M , L(Gn) by TxMn, and L(in,m) by Tx(in,m).
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Furthermore, we assume that (i) or (ii) is satisfied:

(i) Mn is modelled on a Banach space for each n ∈ N, and the inclusion map T1(Mm) →
T1(Mn) is a compact operator for all m < n.

(ii) The modelling locally convex space of each Mn is a kω-space.

Then there is a unique C∞
K

-Lie group structure on G making φ a chart for G around 1. Further-
more, G = lim−→ Mn as a topological space and as a Cr

K
-manifold, for each r ∈ N0 ∪ {∞}.

Proof. Suppose that φ = lim−→ φn with φn :Un → Vn. Equip G with the topology T turning it into
the direct limit topological space lim−→ Mn. Given x ∈ Mn, consider λx :G → G, λx(y) := xy.
Hypothesis (c) implies that λx |Mm is continuous for each m ∈ N. Hence λx is continuous, and
hence a homeomorphism. Likewise, all right translations are homeomorphisms. Let S be the
topology on G × G making it the direct limit lim−→(Mn × Mn). By Lemma 1.7, the topology
induced by T on U makes U the direct limit topological space U = lim−→ Un, and S induces
on U × U the topology making it the direct limit lim−→(Un × Un). This topology is the product
topology on U ×U ; this follows from the fact that the product topology on E ×E coincides with
the locally convex direct limit topology on E × E = lim−→ T1Mn × T1Mn, which makes E × E the
direct limit topological space lim−→ T1Mn × T1Mn by 9.1 (respectively, Lemma 9.6(b) and (c)).
As a consequence of (c), the group multiplication μ restricts to a continuous map U × U =
lim−→(Un × Un) → G. Since μ is continuous on the identity neighbourhood U × U and all left
and right translations are homeomorphisms, it follows that μ is continuous. Let ι :G → G be the
inversion map. Since y−1 = (x−1y)−1x−1 for x ∈ Mn and y ∈ Mn, combining (c) and (d) we see
that ι|Mn is continuous on a neighbourhood of x and hence continuous. Hence ι is continuous
and hence G is a topological group, which is Hausdorff because the intersection of all identity
neighbourhoods is {1}. For x ∈ G, define φx :xU → V , φx(y) = φ(x−1y). Given x, y ∈ G,
the map φx ◦ φ−1

y is defined on the open set φ(U ∩ y−1xU) and takes z to φ(x−1yφ−1(z)).

In view of (c), we easily deduce from Lemma 9.7 that φx ◦ φ−1
y is C∞

K
. Hence the charts are

compatible and thus G is a C∞
K

-manifold. Since φxy ◦λx ◦φ−1
y = idV is C∞

K
, each left translation

map λx is C∞
K

and hence a C∞
K

-diffeomorphism. Let W ⊆ U be an open, symmetric identity
neighbourhood such that WW ⊆ U . Replacing continuity by smoothness in the above arguments,
we see (with the help of Lemma 9.7) that the group multiplication W × W → U and inversion
W → W are C∞

K
. Similarly, (c) implies that each inner automorphism cx :G → G takes some

identity neighbourhood smoothly into U . Now standard arguments provide a unique C∞
K

-Lie
group structure on G making W an open smooth submanifold (see, e.g., [14, Proposition 1.13]).
Since λx is a diffeomorphism from W onto xW for each x ∈ G, both for the manifold structure
making G a Lie group and the manifold structure constructed before, we deduce that the two
manifold structures coincide. �
Remark 14.6. If each Mn is a finite-dimensional C∞

K
-manifold in the situation of Lemma 14.5

and each inclusion map Mm → Mn, m � n, a smooth immersion, then a direct limit chart
around 1 exists by [21, Theorem 3.1] and thus condition (b) of Lemma 14.5 is automatically
satisfied.

Proof of Proposition 14.3. This is a special case of Lemma 14.5, applied with Mn := Gn (we
use k := n, A := B := Gn in (c) and k := n, A := Gn in (d)). �



H. Glöckner / Journal of Functional Analysis 245 (2007) 19–61 55
15. Example: Lie groups of germs of analytic diffeomorphisms

Let K be a non-empty compact subset of X := K
d , where d ∈ N, and let GermDiff(K,X) be

the group of all germs [γ ] around K of K-analytic maps γ :U → X on an open neighbourhood U

of K such that γ |K = idK , γ (U) is open in X and γ :U → γ (U) is a K-analytic diffeomorphism.
Then GermDiff(K,X) is a group in a natural way, with group operation [γ ][η] := [γ ◦ η|η−1(U)]
(for γ :U → X). To illustrate the usefulness of Lemmas 9.7 and 14.5, we apply them to turn
GermDiff(K,X) into a K-analytic Lie group, modelled on the space Γ (K,X)K of germs [γ ]
around K of X-valued K-analytic maps γ :U → X such that γ |K = 0.

Monoids of germs of complex analytic self-maps

It simplifies the construction (and provides additional information) to consider in a first step
the monoid GermEnd(K,X) of all germs [γ ] around K of K-analytic maps γ :U → X on an
open neighbourhood of K such that γ |K = idK (with multiplication given by composition of
representatives). We equip GermEnd(K,X) with a K-analytic manifold structure which makes
the monoid multiplication a K-analytic map. In a second step, we show that the unit group
GermDiff(K,X) of GermEnd(K,X) is open and has a K-analytic inversion map. Until Re-
mark 15.10, we let K = C.

15.1. Choose a norm on X. For n ∈ N, the sets Un := K + BX
1/n(0) form a fundamental se-

quence of open neighbourhoods of K in X. The supremum norm makes the space Holb(Un,X)

of bounded X-valued Cω
C

-maps on Un a complex Banach space, and Holb(Un,X)K := {γ ∈
Holb(Un,X): γ |K = 0} is a closed vector subspace. Let jn,m : Holb(Um,X)K → Holb(Un,X)K
be the restriction map, for n � m. Given an open neighbourhood U of K , let Hol(U,X) be the
Fréchet space of all X-valued Cω

C
-maps on U (equipped with the compact-open topology) and

Hol(U,X)K be its closed subspace of functions vanishing on K . Since Un+1 = K +BX
1/(n+1)(0)

is a compact subset of Un, we then have continuous linear restriction maps

Holb(Un,X)K → Hol(Un,X)K → Holb(Un+1,X)K, (12)

whose composition jn+1,n is a compact operator due to Montel’s Theorem. Thus, the locally
convex direct limit Γ (K,X)K = lim−→ Holb(Un,X)K is a Silva space. Since each connected com-
ponent of Un meets K and hence meets Un+1, the Identity Theorem implies that each bonding
map jn,m is injective and hence also each limit map jn : Holb(Un,X)K → Γ (K,X)K , γ �→ [γ ].

15.2. It is useful to note that the map

ρ :Γ (K,X)K → C
(
K,L(X)

)
, [γ ] �→ γ ′|K (13)

is continuous, where L(X) is the Banach algebra of continuous endomorphisms of X with
the operator norm, and C(K,L(X)) is given the supremum norm. Since Γ (K,X)K =
lim−→ Holb(Un,X)K as a locally convex space, this follows from the fact that the inclusion maps
Holb(Un,X) → Hol(Un,X) and Hol(Un,X) → C∞

C
(Un,X) are continuous (see [46, Proposi-

tion III.15]).
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15.3. It is clear from the definition that the map

Φ :Γ (K,X)K → GermEnd(K,X), Φ
([γ ]) := [idX + γ ]

is a bijection. We use Φ to give GermEnd(K,X) a complex manifold structure with Φ−1 as a
global chart. For γ,η ∈ Γ (K,X)K , we then have

Φ−1(Φ([γ ])Φ([η])) = [η] + [
γ ◦ (idX + η)

]
. (14)

Proposition 15.4. GermEnd(K,X) is a complex analytic monoid, i.e., the multiplication map
GermEnd(K,X) × GermEnd(K,X) → GermEnd(K,X), ([γ ], [η]) �→ [γ ][η] = [γ ◦ η] is com-
plex analytic.

Proof. For k ∈ N, let Ωk be the set of all [γ ] ∈ Γ (K,X)K such that sup{‖γ ′(x)‖: x ∈ K} < k.
Then Γ (K,X)K = ⋃

k∈N
Ωk , and each of the sets Ωk is an open 0-neighbourhood in Γ (K,X)K ,

by continuity of ρ (from (13). Hence, in view of (14), the multiplication map will be C∞
C

if the
map

f :Γ (K,X)K × Ωk → Γ (K,X)K, f
([γ ], [η]) := [

γ ◦ (idX + η)
]

is C∞
C

for each k ∈ N. Fix k. For n ∈ N, set 	n := (n + 1)(k + 1), mn := 	n + 1, Pn :=
Holb(Un,X)K , and let Qn be the set of all γ ∈ Holb(Un,X)K with sup{‖γ ′(x)‖: x ∈ Un+1} < k.
Then Qn is open in Holb(Un,X)K . Hence

Γ (K,X)K × Ωk =
⋃
n∈N

jn(Pn) × jn(Qn),

here Pn ×Qn is open in Holb(Un,X)K × Holb(Un,X)K , n ∈ N, and (jn,m × jn,m)(Pm ×Qm) ⊆
Pn × Qn if m � n. Using Lemma 9.7(a), we see that f will be C∞

C
if f |Pn×Qn is C∞

C
for

each n ∈ N (identifying Holb(Un,X)K with its image in Γ (K,X)K using jn). Note that if η ∈ Qn

and y ∈ U	n , say y ∈ BX

	−1
n

(x) with x ∈ K , then

∥∥(
y + η(y)

) − x
∥∥ = ∥∥y − x + η(y) − η(x)

∥∥ � ‖x − y‖ +
∥∥∥∥∥

1∫
0

η′(x + t (y − x)
)
.(y − x)dt

∥∥∥∥∥

� (1 + k)‖y − x‖ � 1 + k

	n

<
1

n

and thus y + η(y) ∈ BX
1/n(x). Hence (idX + η)(U	n) ⊆ Un, enabling us to define

gn :Pn × Qn → Holb(Umn,X)K, gn(γ, η) := γ ◦ (idX + η)|Umn
.

Since f |Pn×Qn = jmn ◦ gn, it remains to show that gn is C∞
C

. The set Sn := {η ∈ Hol(Un,X)K :
(idX + η)(U	n) ⊆ Un} is open in Rn := Hol(Un,X)K . Using continuous linear inclusion and
restriction maps and the mapping

hn :Rn × Sn → Hol(U	n,X)K, hn(γ, η) := γ ◦ (idX + η)|U	
,

n
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we can write gn as a composition

Pn × Qn → Rn × Sn
hn→ Hol(U	n,X)K → Holb(Umn,X)K.

Therefore, gn will be C∞
C

if we can show that hn is C∞
C

. To this end, we exploit that
Hol(Un,X) = C∞

C
(Un,X), equipped with the compact-open C∞-topology (cf. [46, Proposi-

tion III.15]). By [27, Lemma 11.4], the map

C∞
C

(Un,X) × �U	n,Un�∞ → C∞
C

(U	n,X), (γ, η) �→ γ ◦ η|U	n

is C∞
C

, where �U	n,Un�∞ := {η ∈ C∞
C

(Un,X): η(U	n) ⊆ Un}. It easily follows that hn is C∞
C

as
a map into Hol(U	n,X) and hence also as a map into the closed vector subspace Hol(U	n,X)K
(by Lemma 1.3). �
Lie groups of germs of complex analytic diffeomorphisms

Lemma 15.5. The complex analytic monoid GermEnd(K,X) has an open unit group
GermEnd(K,X)×. It is given by

GermEnd(K,X)× = GermDiff(K,X)

= {[γ ] ∈ GermEnd(K,X): γ ′(K) ⊆ GL(X)
}
. (15)

Proof. If γ :U → γ (U) ⊆ X is a diffeomorphism between open neighbourhoods of K ,
then [γ ] ∈ GermEnd(K,X)× and thus GermDiff(K,X) ⊆ GermEnd(K,X)×. If [γ ], [η] ∈
GermEnd(K,X)× with [η] = [γ ]−1, then η ◦ γ |W = idW on some open neighbourhood W of K ,
whence γ |W is injective and γ ′(x) ∈ GL(X) for each x ∈ W . Hence γ |W is a diffeomorphism
onto an open neighbourhood of K and thus [γ ] ∈ GermDiff(K,X).

If [γ ] ∈ GermDiff(K,X), then γ ′(K) ⊆ GL(X). As the converse follows from the next
lemma, we see that (15) holds. Since C(K,GL(X)) = C(K,L(X))× is open in the Banach
algebra C(K,L(X)) and ρ from (13) is continuous, we deduce that {[γ ] ∈ GermEnd(K,X):
γ ′(K) ⊆ GL(X)} = ρ−1(C(K,GL(X))) is open in GermEnd(K,X). �
Lemma 15.6. Let X be a Banach space over K ∈ {R,C}, K ⊆ X be a non-empty compact set,
r ∈ N ∪ {∞,ω} and f :U → E be a Cr

K
-map on an open neighbourhood U of K such that

f |K is injective and f ′(K) ⊆ GL(X). If r = 1, assume dim(X) < ∞. Then there is an open
neighbourhood V ⊆ U of K such that f (V ) ⊆ X is open and f |V is a Cr

K
-diffeomorphism

onto f (V ).

Proof. Define Un := K + BX
1/n(0). There is n0 ∈ N such that Un ⊆ U and γ ′(Un0) ⊆ GL(X).

Then γ |Un0
is a local Cr

K
-diffeomorphism by the Inverse Function Theorem (see [28, Theo-

rem 5.1] if r �= ω; the analytic case is well known). In particular, γ (Un) is open in X, for
each n � n0. If γ |Un fails to be injective for each n � n0, we find vn �= wn ∈ Un such that
f (vn) = f (wn). Then vn ∈ BX

1/n(xn) and wn ∈ BX
1/n(yn) for certain xn, yn ∈ K . There exist

k1 < k2 < · · · such that xnk
→ x and ynk

→ y for certain x, y ∈ K . Then vnk
→ x and wnk

→ y,
whence f (x) = f (y) by continuity and hence x = y. Let W be a neighbourhood of x on which f

is injective. Then vnk
∈ W and wnk

∈ W for large k. Since vnk
�= wnk

and f (vnk
) = f (wnk

), this
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contradicts the injectivity of f |W . Hence, there exists n � n0 such that f is injective on V := Un.
Then f |V :V → f (V ) is a Cr

K
-diffeomorphism. �

We return to the default notations of this section. The following quantitative variant of
Lemma 15.6 will be needed.

Lemma 15.7. Given γ ∈ Holb(Un,X)K with C := sup{‖γ ′(x)‖: x ∈ Un} < 1, set η := idX + γ :
Un → X. Then η|U6n

is injective.

Proof. Let v,w ∈ U6n such that η(v) = η(w). There are x, y ∈ K with v ∈ BX
1/(6n)(x) and w ∈

BX
1/(6n)(y). Let [x, v] be the line segment joining x and v. Since [x, v] ⊆ BX

1/(6n)(x) ⊆ Un, the
Mean Value Theorem yields ‖η(v) − η(x)‖ � ‖v − x‖ · max{‖η′(z)‖: z ∈ [x, v]} � 2‖v − x‖ <

1/(3n). Likewise, ‖η(w) − η(y)‖ < 1/(3n) and hence ‖y − x‖ = ‖η(y) − η(x)‖ < 2/(3n),
entailing that [v,w] ⊆ BX

1/n(x) ⊆ Un and therefore 0 = ‖η(v) − η(w)‖ � ‖v − w‖ − ‖(η −
idX)(v) − (η − idX)(w)‖ � ‖v − w‖ − C · ‖v − w‖. If v �= w, we get the contradiction
0 � (1 − C)‖v − w‖ > 0. Hence v = w and thus η|U6n

is injective. �
15.8. Lemma 15.5 enables us to consider GermDiff(K,X) as an open C∞

C
-submanifold of

GermEnd(K,X). Then D := Φ−1(GermDiff(K,X)) is an open 0-neighbourhood in Γ (K,X)K ,
and the restriction Ψ of Φ−1 to a map Ψ : GermDiff(K,X) → D is a global chart for
GermDiff(K,X). We set Mn := Ψ −1(D ∩ Holb(Un,X)K) and give Mn the complex Banach
manifold structure with Ψ |Mn :Mn → D ∩ Holb(Un,X)K as a global chart.

Proposition 15.9. GermDiff(K,X) is a complex Lie group. Furthermore, GermDiff(K,X) =
lim−→ Mn holds as a topological space, as a Cr

C
-manifold, and as a Cr

R
-manifold, for each r ∈

N0 ∪ {∞}.

Proof. We check the hypotheses of Lemma 14.5. Here (a) is clear and also (b), since Ψ is a can-
didate for a direct limit chart. Condition (i) holds because the restriction maps Holb(Un,X)K →
Holb(Un+1,X)K are compact. The validity of condition (c) is clear from the proof of Proposi-
tion 15.4.

Condition (d) concerning the inversion map. It suffices to show that, for each n ∈ N, there exist
k > 	 > n and an open 0-neighbourhood P ⊆ Holb(Un,X)K such that ηγ := (idX + γ )|U	

is
injective for each γ ∈ P , Uk ⊆ ηγ (U	), g(γ ) := η−1

γ |Uk
− idX ∈ Holb(Uk,X)K , and that g :P →

Holb(Uk,X)K is C∞
C

. Because we can build in continuous linear restriction maps, it suffices to
find an open 0-neighbourhood Q ⊆ Hol(Un,X)K and m > 	 > n such that ηγ := (idX + γ )|U	

is injective for each γ ∈ Q, Um ⊆ ηγ (U	), h(γ ) := (η−1
γ − idX)|Um ∈ Hol(Um,X)K , and that

h :P → Hol(Um,X)K is C∞
C

(then take k := m + 1). We set m := 12(n + 1), 	 := 6(n + 1)

and let Q be the set of all γ ∈ Hol(Un,X)K such that sup{‖γ ′(x)‖: x ∈ Un+1 } < 1
2 . Then Q is

open in Hol(Un,X)K and ηγ := (idX + γ )|U	
is injective for each γ ∈ Q, by 15.7. Furthermore,

BX
1/(2	)(x) ⊆ ηγ (BX

1/	(x)) for each x ∈ K by [28, Theorem 5.3(d)] (applied with A := idX) and
thus Um ⊆ ηγ (U	). The map

f :Q × U	 → X, f (γ, x) := (idX + γ )(x)



H. Glöckner / Journal of Functional Analysis 245 (2007) 19–61 59
is C∞
C

since the evaluation map is C∞
C

(see [27, Proposition 11.1]). Also, the mapping
fγ := f (γ,•) :U	 → X is injective by the preceding, and is a local C∞

C
-diffeomorphism (by

the Inverse Function Theorem). Furthermore, the map

ψ :Q × Um → X, ψ(γ, x) := f −1
γ (x) = (idX + γ )−1(x) = η−1

γ (x)

is C∞
C

by the Inverse Function Theorem with parameters (see [25, Theorem 2.3(c)] or [28, The-
orem 5.13(b)]). Then, by the exponential law [27, Lemma 12.1(a)]), also the map

ψ∨ :Q → C∞
C

(Um,X) = Hol(Um,X), γ �→ ψ(γ,•) = η−1
γ

∣∣
Um

is C∞
C

, whence also Q → Hol(Um,X), γ �→ ψ∨(γ ) − idX = h(γ ) is C∞
C

. As this map takes
values in the closed vector subspace Hol(Um,X)K of Hol(Um,X), Lemma 1.3 shows that also
its co-restriction h is C∞

C
, as required. �

Remark 15.10. For K a singleton (say, the origin), it is well known that GermDiff({0},C
d) is a

Lie group. The Lie group structure has first been constructed in [51], where this group is denoted
by Gh(d,C).

Lie groups of germs of real analytic diffeomorphisms

Let K = R now. It is clear that Γ (K,X)K can be identified with the set of germs
[γ ] ∈ Γ (K,XC)K such that γ (U) ⊆ X for some neighbourhood U of K in X. In the same
way, we identify GermEnd(K,X) with a subset of GermEnd(K,XC). We give Γ (K,X)K
the topology induced by Γ (K,XC)K . Then Γ (K,X)K is a closed real vector subspace
of Γ (K,XC) and Γ (K,XC)K = (Γ (K,X)K)C as a locally convex space (cf. [20, Sections 4.2–
4.4]). Then Φ−1 : GermEnd(K,XC) → Γ (K,XC)K (defined as before) is a global chart
of GermEnd(K,XC) such that Φ(GermEnd(K,X)) = Γ (K,X)K , showing that GermEnd(K,X)

is a real analytic submanifold of GermEnd(K,XC). As a consequence, GermDiff(K,X) =
GermDiff(K,XC) ∩ GermEnd(K,X) is open in GermEnd(K,X). The real analyticity of the
monoid multiplication and group inversion is inherited by the submanifolds. Summing up:

Corollary 15.11. If K = R, then GermDiff(K,X) is a real analytic Lie group modelled
on Γ (K,X)K . Furthermore, GermEnd(K,X) is a real analytic monoid with open unit group
GermEnd(K,X)× = GermDiff(K,X).

Remark 15.12. It is clear that Cn := {γ ∈ Holb(Un,XC): γ (Un ∩ X) ⊆ X} is a closed vec-
tor subspace, enabling us to make An := {γ |Un∩X: γ ∈ Cn} a real Banach space isometrically
isomorphic to Cn. It is easy to see that Γ (K,X)K = lim−→ An as a locally convex space. Setting
Mn := Φ−1(An ∩ D), we easily deduce from the proofs of Lemma 15.5 and Proposition 15.9
that the conditions of Lemma 14.5 are satisfied. We deduce:

GermDiff(K,X) = lim−→ Mn as a topological space and as a Cr
R

-manifold,
for each r ∈ N0 ∪ {∞}.
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Remark 15.13. Note that, since ρ in (13) is continuous linear, the set E := {[γ ] ∈ Γ (K,X)K :
γ ′|K = 0} is a closed K-vector subspace of Γ (K,X)K (in both cases, K ∈ {R,C}). Then

GermDiff(K,X)∗ := {[γ ] ∈ GermDiff(K,X): γ ′|K = idX

}

is a Lie subgroup of GermDiff(K,X), since the chart Φ from above (respectively, its restriction
the group of germs of Cω

R
-diffeomorphisms) takes GermDiff(K,X)∗ onto D ∩ E = E. Because

ρ is continuous linear, the homomorphism

θ : GermDiff(K,X) → C
(
K,GL(X)

)
, θ

([γ ]) := γ ′|K
is K-analytic. We therefore have an exact sequence of Cω

K
-Lie groups

1 → GermDiff(K,X)∗ ↪→ GermDiff(K,X)
θ→ C

(
K,GL(X)

)
, (16)

where GermDiff(K,X)∗ is Cω
K

-diffeomorphic to E and hence contractible.

Remark 15.14. The Lie group GermDiff({0},R)∗ has also been discussed in [40], using different
notation. Lie groups of germs of real analytic (and more general) diffeomorphisms around a point
have been studied in [38].
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