The permanent of a square matrix

David G. Glynn
CSEM, Flinders University, P.O. Box 2100, Adelaide, South Australia 5001, Australia

ARTICLE INFO

Article history:

Received 10 December 2009
Accepted 25 January 2010
Available online 10 February 2010

Abstract

We investigate the permanent of a square matrix over a field and calculate it using ways different from Ryser's formula or the standard definition. One formula is related to symmetric tensors and has the same efficiency $O\left(2^{m} m\right)$ as Ryser's method. Another algebraic method in the prime characteristic case uses partial differentiation.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Let M be the set $\{1, \ldots, m\},\left(m \in \mathbb{Z}^{+}\right)$. The symmetric group S_{m} is the group of all m ! permutations of M. The sign of a permutation $\gamma \in S_{m}$ is

$$
\operatorname{sgn}(\gamma):= \begin{cases}1 & \text { for } \gamma \text { even } \\ -1 & \text { for } \gamma \text { odd. }\end{cases}
$$

Let $A=\left(a_{i j}\right)$ be an $m \times m$ matrix over a field F. The determinant of A is a polynomial of degree m : $\operatorname{det}(A):=\sum_{\gamma \in S_{m}} \operatorname{sgn}(\gamma) \prod_{i=1}^{m} a_{i, \gamma(i)}$.

The permanent of A is a similar polynomial of degree $m: \operatorname{per}(A):=\sum_{\gamma \in S_{m}} \prod_{i=1}^{m} a_{i, \gamma(i)}$. Note that if F has characteristic two, the permanent equals the determinant. If the x_{i} 's are commuting indeterminants $\operatorname{per}(A)$ is the coefficient of $x_{1} \ldots x_{n}$ in the polynomial $\prod_{j=1}^{m} \sum_{i=1}^{m} x_{i} \cdot a_{i, j}$.
H.J. Ryser found an alternative method to evaluate per (A) by the method of inclusion and exclusion. See [1,5] for some of the theories of permanents. See [2] for some elementary number theories that we use here.

For $S \subseteq M$ let \bar{S} be the complementary subset $M \backslash S$. The cardinality of the subset S is denoted $|S|$. Then

$$
\operatorname{per}(A)=\sum_{S \subseteq M}(-1)^{|S|} \prod_{j=1}^{m} \sum_{i \in \bar{S}} a_{i, j} .
$$

[^0]0195-6698/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2010.01.010

With minor modifications (such as using a Gray code to minimise the number of additions) Ryser's formula is often used to calculate the permanent on a computer. By counting multiplications it has efficiency $O\left(2^{m} m\right)$.

Here are three ways to calculate $\operatorname{per}(A)$ for a general 3×3 matrix

$$
A:=\left(\begin{array}{llc}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right)
$$

The last two methods are faster for larger general matrices.
Example 1.1. The classical formula using all the permutations in S_{3} is

$$
\operatorname{per}(A)=a e i+b f g+c d h+a f h+b d i+c e g .
$$

Ryser's method gives

$$
\begin{aligned}
\operatorname{per}(A)= & (a+b+c)(d+e+f)(g+h+i)-(a+b)(d+e)(g+h) \\
& -(a+c)(d+f)(g+i)-(b+c)(e+f)(h+i)+a d g+b e h+c f i .
\end{aligned}
$$

Theorem 2.1 gives

$$
\begin{aligned}
2^{2} \operatorname{per}(A)= & (a+b+c)(d+e+f)(g+h+i)-(a-b+c)(d-e+f)(g-h+i) \\
& -(a+b-c)(d+e-f)(g+h-i)+(a-b-c)(d-e-f)(g-h-i) .
\end{aligned}
$$

2. The permanent and the polarization identity

There is another formula that has a similar computational efficiency $O\left(2^{m} m\right)$ to Ryser's formula. It is related to the polarization identity for symmetric tensors.

Theorem 2.1. Let $A=\left(a_{i j}\right)$ be an $m \times m$ matrix over a field F of characteristic not two. Then

$$
\operatorname{per}(A)=\left[\sum_{\delta}\left(\prod_{k=1}^{m} \delta_{k}\right) \prod_{j=1}^{m} \sum_{i=1}^{m} \delta_{i} a_{i j}\right] / 2^{m-1}
$$

where the outer sum is over all 2^{m-1} vectors $\delta=\left(\delta_{1}, \ldots, \delta_{m}\right) \in\{ \pm 1\}^{m}$, with $\delta_{1}=1$.
Proof. Consider a general monomial g in the right-hand side (times 2^{m-1}). It has degree m in the $a_{i j}$'s, one in each column j of A. Let the number of $a_{i j}$'s of g occurring in row i be λ_{i}. Clearly $\sum_{i=1}^{m} \lambda_{i}=m$ and $0 \leq \lambda_{i} \leq m$. It is seen that the coefficient c of g will be $\sum_{\delta} \prod_{i=1}^{m}\left(\delta_{i}\right)^{\lambda_{i}+1}=\prod_{i=2}^{m} \sum_{\delta_{i} \in\{ \pm 1\}}\left(\delta_{i}\right)^{\lambda_{i}+1}$. Now

$$
\sum_{\delta_{i} \in\{ \pm 1\}}\left(\delta_{i}\right)^{\lambda_{i}+1}= \begin{cases}0 & \lambda_{i} \text { even } \\ 2 & \lambda_{i} \text { odd. }\end{cases}
$$

Thus c is zero unless λ_{i} is odd for all $i>1$, in which case

$$
\sum_{i=2}^{m} \lambda_{i} \begin{cases}=m-1 & \lambda_{i}=1, \forall 2 \leq i \leq m \\ \geq m+1 & \text { otherwise. }\end{cases}
$$

But the latter is impossible and so only non-zero coefficients for monomials on the right-hand side appear when all the λ_{i} 's are equal to one, and in this case $c=2^{m-1}$. Such monomials correspond to products $g=\prod_{i=1}^{m} a_{i, \sigma(i)}$, where $\sigma \in S_{m}$.

Let $S^{m}(V):=\operatorname{Sym}\left(V^{\otimes m}\right)$ be the space of symmetric m-tensors over a vector space V. See [4, Section B.2.3]. It is the image of the projection

$$
\operatorname{Sym}\left(v_{1} \otimes \cdots \otimes v_{m}\right):=\sum_{s \in S_{m}} \sigma_{m}(s)\left(v_{1} \otimes \cdots \otimes v_{m}\right) / m!
$$

where $\sigma_{m}(s)$ permutes the positions of the factors in the tensor product.

The polarization identity shows that $S^{m}(V)$ is spanned by the m-fold tensor products of type $v^{\otimes m}=\otimes_{j=1}^{m} v$, for $v \in V$, and it has the formula:

$$
\operatorname{Sym}\left(v_{1} \otimes \cdots \otimes v_{m}\right)=\sum_{\delta}\left(\prod_{k=1}^{m} \delta_{k}\right) \bigotimes_{j=1}^{m}\left(\sum_{i=1}^{m} \delta_{i} v_{i}\right) /\left(m!2^{m-1}\right)
$$

where the outer sum is over all 2^{m-1} vectors $\delta=\left(\delta_{1}, \ldots, \delta_{m}\right) \in\{ \pm 1\}^{m}$, with $\delta_{1}=1$.
A correspondence between this formula and Theorem 2.1 is given by the transformation

$$
v_{u_{1}} \otimes \cdots \otimes v_{u_{m}} \leftrightarrow a_{u_{1} 1} \ldots a_{u_{m} m}
$$

This is related to the well-known isomorphism between the polynomial algebra over a field, and the symmetric algebra over a vector space. The latter (if the characteristic over the field does not interfere) can be identified with the space of symmetric tensors.

3. The permanent from partial derivatives

Theorem 3.1. Let $A=\left(a_{i j}\right)$ be an $m \times m$ matrix over a field of characteristic p. Then there holds

$$
\operatorname{per}(A)=(-1)^{m}\left(\frac{\partial^{m}}{\partial a_{11} \ldots \partial a_{m m}}\right)^{p-2} \operatorname{det}(A)^{p-1} .
$$

Proof. The polynomial $f:=\operatorname{det}(A)^{p-1}$ is homogeneous of degree $m(p-1)$ in the m^{2} variables $a_{i j}$. To obtain a non-zero monomial in these variables from the operator

$$
\left(\frac{\partial^{m}}{\partial a_{11} \cdots \partial a_{m m}}\right)^{p-2}=\prod_{i=1}^{m} \frac{\partial^{p-2}}{\partial a_{i i}^{p-2}}
$$

that acts upon f, we must consider monomials in f that are of the form $K:=\prod_{i=1}^{m} a_{i i}^{p-2} \cdot k$, where k is a homogeneous polynomial of degree m. Since $\operatorname{det}(A)$ is the sum of products of the form $\prod_{i=1}^{m} a_{i, \gamma(i)}$, it is clear that k must be of a similar form, corresponding to a unique permutation γ of S_{m}. Let γ have r even cycles of sizes $a_{1}, \ldots, a_{r},\left(a_{i} \geq 2\right)$, s odd cycles of sizes $b_{1}, \ldots, b_{s},\left(b_{i} \geq 3\right)$, and c cycles of size one, i.e. fixed points. Then we note that $m \equiv s+c(\bmod 2)$, since the even cycles can be neglected when we calculate the length of the permutation mod 2 . Also, γ is an even permutation if and only if r is even.

When k is produced by the above partial differentiation from K there is a factor of $((p-2)!)^{r+s}$. $((p-1)!)^{c} \equiv(-1)^{c}$ in $\operatorname{GF}(p)$. This is because a cycle of size one in γ corresponds to an $a_{i i}^{p-1}$ in K, and differentiates $p-2$ times to $(p-1)!a_{i i}$. Otherwise, $a_{i i}^{p-2} a_{j k}$ differentiates to $(p-2)!a_{j k}$, and $(p-2)!\equiv 1$ while $(p-1)!\equiv-1(\bmod p)$. Next, each function from $\{1, \ldots, r+s\} \rightarrow\{1, \ldots, p-1\}$ corresponds to a way that K can appear as a polynomial in the product of $\operatorname{det}(A), p-1$ times. This is because the non-diagonal $a_{i j}$'s of k in each non-trivial cycle must be assigned to one of the $p-1$ permutations of the A 's. The number of these functions is $(p-1)^{r+s} \equiv(-1)^{r+s}$ in $\mathrm{GF}(p)$. In addition, each of these ways of producing k gives the same sign as γ, since the $p-1$ permutations from the determinants have a product that is γ, and so the signs multiply to give $\operatorname{sgn}(\gamma)=(-1)^{r}$.

Hence the total coefficient of k in the partial derivative of K and hence of $\operatorname{det}(A)^{p-1}$ is $(-1)^{r} \cdot(-1)^{c}$. $(-1)^{r+s} \equiv(-1)^{s+c} \equiv(-1)^{m}(\bmod p)$. Thus the formula in the theorem is correct.

There is a more general result, with a different proof. These algebraic methods of calculating the permanent are symbolic, and so cannot be compared directly in efficiency with the methods of Ryser and Theorem 2.1.

Theorem 3.2. Let $A=\left(a_{i j}\right)$ be an $m \times m$ matrix over a field of characteristic p. Let $B=\left(b_{i j}\right)$ be any $m \times m$ integer matrix with $0 \leq b_{i j} \leq p-2$ and with every row and column sum $p-2$. Then there holds

$$
\operatorname{per}(A)=(-1)^{m} \prod_{i=1}^{m} \prod_{j=1}^{m}\left(\frac{\partial^{b_{i j}}}{\partial a_{i j}^{b_{i j}}}\right) \operatorname{det}(A)^{p-1} .
$$

Proof. Use the theory of the p-modular hyperdeterminant det_{p}. By [3, Theorem 4.1] $\operatorname{det}(A)^{p-1}=$ $\operatorname{det}_{p}(A)$, and by the formula for det_{p} [3, Theorem 6.1], this implies that $(-1)^{m} \operatorname{det}(A)^{p-1}$ is the sum of all terms $\prod_{i=1}^{m} \prod_{j=1}^{m} a_{i j}^{e_{i j}} / e_{i j}$! in the m^{2} indeterminates $a_{i j}$, where $E=\left(e_{i j}\right)$ is a general non-negative integer matrix with row and column sums $p-1$. The result of differentiating this term with respect to the fixed matrix B, as above, with row and column sums $p-2$, will be zero unless $b_{i j} \leq e_{i j}$ for all i, j. In that case, from the row and column sums, this can only happen if $E-B$ is a permutation matrix and so $e_{i j}=b_{i j}$ or $b_{i j}+1$, for all i, j. Then

$$
\left(\frac{\partial^{b_{i j}}}{\partial a_{i j}^{b_{i j}}}\right) a_{i j}^{e_{i j}} / e_{i j}!=1 \quad \text { or } a_{i j} \text { respectively. }
$$

The $a_{i j}$'s occur in the general permutation $E-B$, and hence we obtain $(-1)^{m}$ times $\operatorname{per}(A)$.
Corollary 3.3. Let $A=\left(a_{i j}\right)$ be an $m \times m$ matrix over a field of characteristic three. Then

$$
\operatorname{per}(A)=(-1)^{m} \frac{\partial^{m}}{\partial a_{11} \ldots \partial a_{m m}} \operatorname{det}(A)^{2} .
$$

Example 3.4.

$$
\begin{aligned}
\operatorname{per}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =(-1)^{2} \frac{\partial^{2}}{\partial a \partial d} \operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{2} \\
& =\frac{\partial^{2}}{\partial a \partial d}(a d-b c)^{2}=\frac{\partial}{\partial a} 2 a(a d-b c) \\
& =2(a d-b c)+2 a d=a d+b c \quad(\bmod 3) .
\end{aligned}
$$

Theorem 3.5. Let $A=\left(a_{i j}\right)$ be an $m \times m$ matrix over a field of characteristic three. Then

$$
\operatorname{per}(A)=(-1)^{m-1} \sum_{U \subset\{2, \ldots, m\}} \operatorname{det}\left(A_{U}\right) \cdot \operatorname{det}\left(A_{\bar{U}}\right),
$$

where A_{U} is the principal submatrix of A induced by the rows and columns of A indexed by U, and \bar{U} is the complement of U in $\{1, \ldots, m\}$.
Proof. For $i, j, k, \ldots \in\{1, \ldots, m\}$ define $A_{i, j, k, \ldots}$ to be the principal submatrix of A induced by removing the rows and columns indexed by i, j, k, \ldots.

From Corollary 3.3

$$
\begin{aligned}
\operatorname{per}(A) & =(-1)^{m}\left(\prod_{i=1}^{m} \frac{\partial}{\partial a_{i i}}\right) \operatorname{det}(A)^{2}=(-1)^{m}\left(\prod_{i=2}^{m} \frac{\partial}{\partial a_{i i}}\right) \frac{\partial}{\partial a_{11}} \operatorname{det}(A)^{2} \\
& =(-1)^{m}\left(\prod_{i=2}^{m} \frac{\partial}{\partial a_{i i}}\right) 2|A| \cdot\left|A_{1}\right|=(-1)^{m-1}\left(\prod_{i=3}^{m} \frac{\partial}{\partial a_{i i}}\right) \frac{\partial}{\partial a_{22}}|A| \cdot\left|A_{1}\right| \\
& =(-1)^{m-1}\left(\prod_{i=3}^{m} \frac{\partial}{\partial a_{i i}}\right)\left|A_{2}\right| \cdot\left|A_{1}\right|+|A| \cdot\left|A_{1,2}\right| \\
& =(-1)^{m-1}\left(\prod_{i=4}^{m} \frac{\partial}{\partial a_{i i}}\right) \frac{\partial}{\partial a_{33}}\left|A_{2}\right| \cdot\left|A_{1}\right|+|A| \cdot\left|A_{1,2}\right| \\
& =(-1)^{m-1}\left(\prod_{i=4}^{m} \frac{\partial}{\partial a_{i i}}\right)\left|A_{2,3}\right| \cdot\left|A_{1}\right|+\left|A_{2}\right| \cdot\left|A_{1,3}\right|+\left|A_{3}\right| \cdot\left|A_{1,2}\right|+|A| \cdot\left|A_{1,2,3}\right| \\
& =\cdots=(-1)^{m-1} \sum_{U \subset\{2, \ldots, m\}}\left|A_{U}\right| \cdot\left|A_{\bar{U}}\right| .
\end{aligned}
$$

References

[1] R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, in: Encyclopedia of Mathematics and its Applications, vol. 39, Cambridge University Press, Cambridge, 1991.
[2] L.E. Dickson, History of the Theory of Numbers. Vol. 1: Divisibility and Primality, Chelsea Publishing Company, New York, 1966.
[3] D.G. Glynn, The modular counterparts of Cayley's hyperdeterminants, Bull. Aust. Math. Soc. 57 (1998) 479-492.
[4] R. Goodman, N.R. Wallach, Representations and Invariants of the Classical Groups, in: Encyclopedia of Mathematics and its Applications, vol. 68, Cambridge University Press, Cambridge, 1968.
[5] J.H. van Lint, R.M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge, 1991.

[^0]: E-mail addresses: davidg@csem.flinders.edu.au, dglynn@me.com.

