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a b s t r a c t

We investigate the permanent of a square matrix over a field
and calculate it using ways different from Ryser’s formula or the
standard definition. One formula is related to symmetric tensors
and has the same efficiency O(2mm) as Ryser’s method. Another
algebraic method in the prime characteristic case uses partial
differentiation.
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1. Introduction

LetM be the set {1, . . . ,m}, (m ∈ Z+). The symmetric group Sm is the group of allm! permutations
ofM . The sign of a permutation γ ∈ Sm is

sgn(γ ) :=
{
1 for γ even
−1 for γ odd.

Let A = (aij) be anm× mmatrix over a field F . The determinant of A is a polynomial of degreem:
det(A) :=

∑
γ∈Sm sgn(γ )

∏m
i=1 ai,γ (i).

The permanent of A is a similar polynomial of degree m: per(A) :=
∑

γ∈Sm

∏m
i=1 ai,γ (i). Note

that if F has characteristic two, the permanent equals the determinant. If the xi’s are commuting
indeterminants per(A) is the coefficient of x1 . . . xn in the polynomial

∏m
j=1
∑m
i=1 xi · ai,j.

H.J. Ryser found an alternativemethod to evaluate per(A) by themethod of inclusion and exclusion.
See [1,5] for some of the theories of permanents. See [2] for some elementary number theories that
we use here.
For S ⊆ M let S̄ be the complementary subsetM \ S. The cardinality of the subset S is denoted |S|.

Then

per(A) =
∑
S⊆M

(−1)|S|
m∏
j=1

∑
i∈S̄

ai,j.
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Withminor modifications (such as using a Gray code tominimise the number of additions) Ryser’s
formula is often used to calculate the permanent on a computer. By counting multiplications it has
efficiency O(2mm).
Here are three ways to calculate per(A) for a general 3× 3 matrix

A :=

(a d g
b e h
c f i

)
.

The last two methods are faster for larger general matrices.

Example 1.1. The classical formula using all the permutations in S3 is

per(A) = aei+ bfg + cdh+ afh+ bdi+ ceg.

Ryser’s method gives

per(A) = (a+ b+ c)(d+ e+ f )(g + h+ i)− (a+ b)(d+ e)(g + h)
− (a+ c)(d+ f )(g + i)− (b+ c)(e+ f )(h+ i)+ adg + beh+ cfi.

Theorem 2.1 gives

22per(A) = (a+ b+ c)(d+ e+ f )(g + h+ i)− (a− b+ c)(d− e+ f )(g − h+ i)
− (a+ b− c)(d+ e− f )(g + h− i)+ (a− b− c)(d− e− f )(g − h− i).

2. The permanent and the polarization identity

There is another formula that has a similar computational efficiency O(2mm) to Ryser’s formula. It
is related to the polarization identity for symmetric tensors.

Theorem 2.1. Let A = (aij) be an m×mmatrix over a field F of characteristic not two. Then

per(A) =

[∑
δ

(
m∏
k=1

δk

)
m∏
j=1

m∑
i=1

δiaij

]/
2m−1,

where the outer sum is over all 2m−1 vectors δ = (δ1, . . . , δm) ∈ {±1}m, with δ1 = 1.

Proof. Consider a general monomial g in the right-hand side (times 2m−1). It has degreem in the aij’s,
one in each column j of A. Let the number of aij’s of g occurring in row i be λi. Clearly

∑m
i=1 λi = m and

0 ≤ λi ≤ m. It is seen that the coefficient c of g will be
∑

δ

∏m
i=1(δi)

λi+1 =
∏m
i=2
∑

δi∈{±1}
(δi)

λi+1. Now∑
δi∈{±1}

(δi)
λi+1 =

{
0 λi even
2 λi odd.

Thus c is zero unless λi is odd for all i > 1, in which case
m∑
i=2

λi

{
=m− 1 λi = 1,∀2 ≤ i ≤ m
≥m+ 1 otherwise.

But the latter is impossible and so only non-zero coefficients for monomials on the right-hand side
appear when all the λi’s are equal to one, and in this case c = 2m−1. Such monomials correspond to
products g =

∏m
i=1 ai,σ (i), where σ ∈ Sm. �

Let Sm(V ) := Sym(V⊗m) be the space of symmetricm-tensors over a vector space V . See [4, Section
B.2.3]. It is the image of the projection

Sym(v1 ⊗ · · · ⊗ vm) :=
∑
s∈Sm

σm(s)(v1 ⊗ · · · ⊗ vm)/m!,

where σm(s) permutes the positions of the factors in the tensor product.
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The polarization identity shows that Sm(V ) is spanned by the m-fold tensor products of type
v⊗m = ⊗mj=1 v, for v ∈ V , and it has the formula:

Sym(v1 ⊗ · · · ⊗ vm) =
∑
δ

(
m∏
k=1

δk

)
m⊗
j=1

(
m∑
i=1

δivi

)
/(m!2m−1),

where the outer sum is over all 2m−1 vectors δ = (δ1, . . . , δm) ∈ {±1}m, with δ1 = 1.
A correspondence between this formula and Theorem 2.1 is given by the transformation
vu1 ⊗ · · · ⊗ vum ↔ au11 . . . aumm.

This is related to the well-known isomorphism between the polynomial algebra over a field, and
the symmetric algebra over a vector space. The latter (if the characteristic over the field does not
interfere) can be identified with the space of symmetric tensors.

3. The permanent from partial derivatives

Theorem 3.1. Let A = (aij) be an m×mmatrix over a field of characteristic p. Then there holds

per(A) = (−1)m
(

∂m

∂a11 . . . ∂amm

)p−2
det(A)p−1.

Proof. The polynomial f := det(A)p−1 is homogeneous of degreem(p− 1) in them2 variables aij. To
obtain a non-zero monomial in these variables from the operator(

∂m

∂a11 · · · ∂amm

)p−2
=

m∏
i=1

∂p−2

∂ap−2ii

that acts upon f , we must consider monomials in f that are of the form K :=
∏m
i=1 a

p−2
ii · k, where k is

a homogeneous polynomial of degree m. Since det(A) is the sum of products of the form
∏m
i=1 ai,γ (i),

it is clear that kmust be of a similar form, corresponding to a unique permutation γ of Sm. Let γ have
r even cycles of sizes a1, . . . , ar , (ai ≥ 2), s odd cycles of sizes b1, . . . , bs, (bi ≥ 3), and c cycles of size
one, i.e. fixed points. Then we note that m ≡ s + c(mod 2), since the even cycles can be neglected
when we calculate the length of the permutation mod 2. Also, γ is an even permutation if and only if
r is even.
When k is produced by the above partial differentiation from K there is a factor of ((p − 2)!)r+s ·

((p− 1)!)c ≡ (−1)c in GF(p). This is because a cycle of size one in γ corresponds to an ap−1ii in K , and
differentiates p−2 times to (p−1)!aii. Otherwise, a

p−2
ii ajk differentiates to (p−2)!ajk, and (p−2)! ≡ 1

while (p− 1)! ≡ −1(mod p). Next, each function from {1, . . . , r + s} → {1, . . . , p− 1} corresponds
to a way that K can appear as a polynomial in the product of det(A), p − 1 times. This is because the
non-diagonal aij’s of k in each non-trivial cycle must be assigned to one of the p− 1 permutations of
the A’s. The number of these functions is (p − 1)r+s ≡ (−1)r+s in GF(p). In addition, each of these
ways of producing k gives the same sign as γ , since the p − 1 permutations from the determinants
have a product that is γ , and so the signs multiply to give sgn(γ ) = (−1)r .
Hence the total coefficient of k in the partial derivative of K and hence of det(A)p−1 is (−1)r ·(−1)c ·

(−1)r+s ≡ (−1)s+c ≡ (−1)m(mod p). Thus the formula in the theorem is correct. �

There is a more general result, with a different proof. These algebraic methods of calculating the
permanent are symbolic, and so cannot be compared directly in efficiency with the methods of Ryser
and Theorem 2.1.

Theorem 3.2. Let A = (aij) be anm×mmatrix over a field of characteristic p. Let B = (bij) be anym×m
integer matrix with 0 ≤ bij ≤ p− 2 and with every row and column sum p− 2. Then there holds

per(A) = (−1)m
m∏
i=1

m∏
j=1

(
∂bij

∂a
bij
ij

)
det(A)p−1.
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Proof. Use the theory of the p-modular hyperdeterminant detp. By [3, Theorem 4.1] det(A)p−1 =
detp(A), and by the formula for detp [3, Theorem 6.1], this implies that (−1)m det(A)p−1 is the sum of
all terms

∏m
i=1
∏m
j=1 a

eij
ij /eij! in the m

2 indeterminates aij, where E = (eij) is a general non-negative
integer matrix with row and column sums p − 1. The result of differentiating this term with respect
to the fixed matrix B, as above, with row and column sums p − 2, will be zero unless bij ≤ eij for all
i, j. In that case, from the row and column sums, this can only happen if E− B is a permutation matrix
and so eij = bij or bij + 1, for all i, j. Then(

∂bij

∂a
bij
ij

)
a
eij
ij /eij! = 1 or aij respectively.

The aij’s occur in the general permutation E − B, and hence we obtain (−1)m times per(A). �

Corollary 3.3. Let A = (aij) be an m×mmatrix over a field of characteristic three. Then

per(A) = (−1)m
∂m

∂a11 . . . ∂amm
det(A)2.

Example 3.4.

per
(
a b
c d

)
= (−1)2

∂2

∂a∂d
det

(
a b
c d

)2
=

∂2

∂a∂d
(ad− bc)2 =

∂

∂a
2a(ad− bc)

= 2(ad− bc)+ 2ad = ad+ bc (mod3).

Theorem 3.5. Let A = (aij) be an m×mmatrix over a field of characteristic three. Then

per(A) = (−1)m−1
∑

U⊂{2,...,m}

det(AU) · det(AŪ),

where AU is the principal submatrix of A induced by the rows and columns of A indexed by U, and Ū is the
complement of U in {1, . . . ,m}.
Proof. For i, j, k, . . . ∈ {1, . . . ,m} define Ai,j,k,... to be the principal submatrix of A induced by
removing the rows and columns indexed by i, j, k, . . . .
From Corollary 3.3

per(A) = (−1)m
(
m∏
i=1

∂

∂aii

)
det(A)2 = (−1)m

(
m∏
i=2

∂

∂aii

)
∂

∂a11
det(A)2

= (−1)m
(
m∏
i=2

∂

∂aii

)
2|A| · |A1| = (−1)m−1

(
m∏
i=3

∂

∂aii

)
∂

∂a22
|A| · |A1|

= (−1)m−1
(
m∏
i=3

∂

∂aii

)
|A2| · |A1| + |A| · |A1,2|

= (−1)m−1
(
m∏
i=4

∂

∂aii

)
∂

∂a33
|A2| · |A1| + |A| · |A1,2|

= (−1)m−1
(
m∏
i=4

∂

∂aii

)
|A2,3| · |A1| + |A2| · |A1,3| + |A3| · |A1,2| + |A| · |A1,2,3|

= · · · = (−1)m−1
∑

U⊂{2,...,m}

|AU | · |AŪ |. �
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