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Abstract

The double angle theorems of Davis and Kahan bound the change in an invariant subspace
when a Hermitian matrixA is subject to an additive perturbationA → Ã = A+1A. This
paper supplies analogous results whenA is subject to a congruential, or multiplicative, per-
turbationA → Ã = D∗AD. The relative gaps that appear in the bounds involve the spectrum
of only one matrix, eitherA or Ã, in contrast to the gaps that appear in the single angle
bounds. The double angle theorems do not directly bound the difference between the old
invariant subspaceS and the new onẽS but instead bound the difference betweenS̃ and
its reflectionJS̃ where the mirror isS and J reversesS⊥, the orthogonal complement
of S. The double angle bounds are proportional to the departure from the identity and from

orthogonality of the matrix̃D
def= D−1JDJ . Note thatD̃ is invariant under the transformation

D → D/α for α /= 0, whereas the single angle theorems give bounds proportional toD’s
departure from the identity and from orthogonality. The corresponding results for the singular
value problem when a (nonsquare) matrixB is perturbed toB̃ = D∗

1BD2 are also presented.
© 2000 Elsevier Science Inc. All rights reserved.

1. Introduction

Eigenvalue and singular value computations to high relative accuracy have been
attracting lots of attention over the last 10 years or so. Tremendous progress has
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been made both in theoretical understanding and numerical algorithms, see [1,4,7–
14,18,25–28] and references therein. On the algorithmic side there are Demmel–
Kahan QR methods for bidiagonal singular value computations [8], (two-sided)
Jacobi methods for the eigenvalue problems of positive definite matrices and for
the singular value computations [9,25,28], bisection method for scaled diagonally
dominant matrices [1] and for matrices with acyclic graphs [7,17], new implemen-
tations of the qd method [14,27], and Demmel’s algorithms for structured matrices
[6], and more recently [10] showed how to compute singular value decompositions
(SVDs) to high relative accuracy for matrices that can be factored accurately as
B = XCY ∗ whereC is diagonal andX and Y are any well-conditioned matrices;
on the theoretical side, analogous results to many celebrated theorems for absolute
perturbationsA → Ã = A+1A are obtained for perturbations that are multiplica-
tive A → Ã = D∗AE (E = D whenA is Hermitian) [12,13,16,18,20–22], though
exceptions remain.

This paper presents analogues to the double angle theorems of Davis and
Kahan [3] in the case of multiplicative perturbations. For one-dimensional eigen-
space, Demmel [5, Theorem 5.7, p. 208] obtained an analogue, but his approach
does not seem to be easily adaptable to eigenspaces of higher dimensions. Our new
double angle theorems that work for eigenspaces of any arbitrary dimension have
two advantages over the existing single angle theorems. Consider the Hermitian
eigenvalue problem forA andÃ = D∗AD, whereD is nonsingular. The first advan-
tage, also presented in Davis and Kahan sin 2θ theorems, is that (relative) gaps are
defined using exclusively eigenvalues of eitherA or Ã but not both. We observe that
if D = αI , a multiple of the identity,A andÃ = |α|2A share the same eigenspaces,
but the existing bounds, e.g., [21, Theorem 3.1], do not reflect this. In fact, as long
asD is closeto some multiple of the identity, the eigenspaces ofA and Ã, when
properly matched, are close. The new sin 2θ theorems provide upper bounds that are
invariant under rescalingD → D/α for α /= 0. This is the second advantage.

The rest of this paper is organized as follows. Section 2 derives relative sin 2θ

theorems for the Hermitian eigenvalue problem. Section 3 develops relative sin 2θ

theorems for singular value problem.

Notation. We shall follow the notation set forth in the first two parts of this series
[20,21]. For convenience, we spell out some of them here. Forrelative distanceswe
use, besides theclassicalone|α − α̃|/|α|,

%p(α, α̃) = |α − α̃|
p
√|α|p + |α̃|p for 1 6 p 6 ∞ and χ(α, α̃) = |α − α̃|√|αα̃| ,

with convention 0/0 = 0 for convenience. It was proved in [20] that%p is indeed
a metric on the set of real numbers and recently Barrlund [2] went further to show
that it is a metric on the set of complex numbers, also.χ fails to satisfy the trian-
gle inequality and thus is not a metric. Nevertheless all those relative distances are
topologically equivalent [20], and thus for the purpose of bounding relative errors,
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any relative metric is just as good as others.‖X‖2 and‖X‖F denote the spectral and
Frobenius norms of matrixX, respectively.λ(X) is the set of the eigenvalues ofX,
andσ(X) is the set of the singular values ofX. X∗ is the conjugate transpose.In
denotes then× n identity matrix (we may simply writeI instead if no confusion).

2. Relative sin 2θ theorems for eigenspace variations

Let A andÃ be two Hermitian matrices whose eigendecompositions are

A = (U1U2)

(
K1

K2

)(
U∗

1

U∗
2

)
,

(2.1)
Ã = (Ũ1 Ũ2)

(
K̃1

K̃2

)(
Ũ∗

1

Ũ∗
2

)
,

where
k

(U1
n−k
U2) and

k

(Ũ1

n−k
Ũ2) are unitary, and

K1 = diag(λ1, . . . , λk), K2 = diag(λk+1, . . . , λn), (2.2)

K̃1 = diag(λ̃1, . . . , λ̃k), K̃2 = diag(λ̃k+1, . . . , λ̃n). (2.3)

We shall treatÃ as a perturbed matrix ofA, and derive bounds on the changes in

subspaceS
def= span(U1), A’s invariant subspace spanned byU1’s columns. We do

this by bounding the sines of the double canonical angles betweenS and S̃
def=

span(Ũ1). Define

J
def= (U1 U2)

(
Ik

−In−k
)(

U∗
1

U∗
2

)
, Â

def= J ÃJ. (2.4)

The matrixJ was implicitly used but not explicitly formed by Davis and Kahan [3]
in deriving double angle theorems. It can be verified that

J ∗ = J, J 2 = In, J−1 = J, JAJ = A.

So,J is unitary, andÃ andÂ are unitarily similar and thus have the same eigenvalues.
In fact, a complete eigendecomposition ofÂ is

Â = (Û1 Û2)

(
K̃1

K̃2

)(
Û∗

1

Û∗
2

)
, (2.5)

whereÛi = J Ũi for i = 1,2. Geometrically,1 J S̃ is a reflection ofS̃, where the
mirror for J isS andJ reversesS⊥, the orthogonal complement ofS. This explains
the following lemma that relatesH(Ũ1 Û1) to H(U1 Ũ1).

1 I am grateful to Professor B.N. Parlett who pointed out this geometric interpretation to me.
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Lemma 2.1 (Davis–Kahan [3]).We haveσ(sinH(Ũ1, Û1)) = σ(sin 2H(U1, Ũ1)).
This is equivalent to say that for all unitarily invariant norms||| · |||

||| sinH(Ũ1, Û1)||| = ||| sin 2H(U1, Ũ1)|||.

Proof. It is essential in [3], and more explicitly embedded in the proofs in [19,29]
with the help of Van Loan [30, Theorem 2].�

Write Ã = A+H , thenÂ = A+ JHJ , one of which will be considered as a
perturbed one of the other. What we have so far is due to Davis and Kahan [3]
who then continued to combine sinθ theorems already proved and thatÂ− Ã =
JHJ −H easily bounded in term of norms ofH. But such a combination does not
work for us. We need to interpret the change fromÃ to Â as caused by some multi-
plicative perturbation that is close to the identity. AlthoughÂ = J ÃJ̃ by definition,
thisJ, as a multiplicative perturbation, is too far away from a multiple of the identity
αI since

‖J − αI‖2 = max{|1 − α|, |1 + α|} > 1

always for anyα unlessk = n. So we have to do something different.

2.1. Multiplicatively perturbed A tõA = D∗AD

NoticeJAJ = A and thus

Â = J ÃJ = JD∗ADJ = J ∗D∗JAJDJ = J ∗D∗JD−∗ÃD−1JDJ.

Therefore

Â = D̃∗ÃD̃, D̃
def= D−1JDJ. (2.6)

This D̃ is close to the identity ifD is close to some multiple of the identity, andD̃ is
close to some unitary matrix ifD is close to some multiple of a unitary matrix. We
shall return to this later in this section. (2.6) is the key to our success. With it and
Lemma 2.1, double angle theorems follow from the existing single angle theorems.
To keep this paper fairly short, we provide a detailed account of only one double
angle theorem with full discussion while briefly stating others.

The following single angle theorem is in [21, Theorem 3.1], where the subscript
in ηc is an indication of it being defined with theclassical relative measurement.

Theorem 2.1(Li [21]). Let A andÃ = D∗AD be twon× nHermitian matrices with
eigendecompositions(2.1)–(2.3), where D is nonsingular. Ifλ(K1) ∩ λ(K̃2) = ∅,
then

|| sin H(U1, Ũ1)||F6

√
‖(I −D−1)U1‖2

F + ‖(I −D∗)U1‖2
F

η2
, (2.7)
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|| sin H(U1, Ũ1)||F6‖(I −D∗)U1‖F + ‖(D∗ −D−1)U1‖F

ηc
, (2.8)

where

η2
def= min

µ∈λ(K1),µ̃∈λ(K̃2)

%2(µ, µ̃) and ηc
def= min

µ∈λ(K1),µ̃∈λ(K̃2)

|µ− µ̃|
|µ̃| .

Our first double angle theorem is a consequence of Theorem 2.1.

Theorem 2.2. Let A andÃ = D∗AD be twon× n Hermitian matrices with eig-
endecompositions(2.1)–(2.3), where D is nonsingular. Ifλ(K̃1) ∩ λ(K̃2) = ∅, then

|| sin 2H(U1, Ũ1)||F6

√
‖(I − D̃−1)Ũ1‖2

F + ‖(I − D̃∗)Ũ1‖2
F

η̃2
, (2.9)

|| sin 2H(U1, Ũ1)||F6‖(I − D̃∗)Ũ1‖F + ‖(D̃∗ − D̃−1)Ũ1‖F

η̃c
, (2.10)

whereD̃ is defined in(2.6),

η̃2
def= min

µ∈λ(K̃1),ν∈λ(K̃2)

%2(µ, ν), η̃c
def= min

µ∈λ(K̃1),ν∈λ(K̃2)

|µ− ν|
|ν| .

Proof. Bear (2.1) and (2.5) in mind, and then apply Theorem 2.1 toÃ andÂ to get

‖ sin H(Ũ1, Û1)‖F 6 [RHS of (2.9)],
‖ sin H(Ũ1, Û1)‖F 6 [RHS of (2.10)].

Combining them with Lemma 2.1 completes the proof.�

Remark 2.1. As is noted in [21, footnote 3, p. 478], a bound slightly different from
(2.10) is

|| sin 2H(U1, Ũ1)||F 6 ||(I − D̃−1)Ũ1||F + ‖(D̃∗ − D̃−1)Ũ1‖F

η̃′
c

, (2.11)

whereη̃′
c

def= minµ∈λ(K̃1),ν∈λ(K̃2)
|µ− ν|/|µ|. This and those relative gaps in Theorem

2.2 are defined in terms of eigenvalues ofÃ only, in contrast to Theorem 2.1 and
other theorems in [12,21] which use gaps defined in terms of eigenvalues of bothA
andÃ. This feature coincides with Davis–Kahan sin 2θ theorems.

The upper bounds in Theorem 2.2 have an interesting invariant property that the
existing single angle theorems, e.g., Theorem 2.1, lack. Notice that as long asD is
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closeto some multiple of the identity, the eigenspaces ofA and Ã, when proper-
ly matched, are close, but existing bounds do not yield small error bounds in this
case. The latter can be cured by consideringA and(D/α)∗A(D/α) for a judiciously
chosenα to makeD/α close to the identity, e.g., takeα = eiψ‖D‖2 for someψ or
determine it by optimizing final bounds withα as a free parameter as Li and Stewart
[24] did to the singular value problem. Even though this blemish is curable, it is still
nice to have bounds like those in Theorem 2.2 that are automatically immune to the
drawback sincẽD = D−1JDJ ≡ J (D/α)−1J (D/α)J for anyα /= 0.

Next we show how to boundI − D̃−1, I − D̃∗, andD̃∗ − D̃−1 in terms of the
deviations ofD from the identity or orthogonality (if necessary,D should be re-
scaled2). The following identities are easy to verify:

I − D̃−1=J (I −D−1)J + JD−1J (I −D) (2.12)

=(I −D) + J (I −D−1)JD (2.13)

=JD−1(DJ − JD) (2.14)

=(D−1J − JD−1)JD (2.15)

I − D̃=(I −D−1)+D−1J (I −D)J (2.16)

=J (I −D)J + (I −D−1)JDJ (2.17)

=D−1J (JD −DJ) (2.18)

=(JD−1 −D−1J )DJ (2.19)

D̃∗ − D̃−1=JD∗J (D−∗ −D)+ J (D∗ −D−1)JD (2.20)

=J (D∗ −D−1)JD−∗ + JD−1J (D−∗ −D). (2.21)

An immediate consequence of (2.14) and (2.18) is that3 sin 2H(U1, Ũ1) ≡ 0 if JD =
DJ . These identities make it possible to bound the right-hand sides of (2.9) and
(2.10) in Theorem 2.2 and those of (2.26) and (2.27) in Theorem 2.3 below by norms
of I −D, I −D−1, or D∗ −D−1. We present here the following corollary as an
example. The reader may derive some other variations depending on his/her needs.

Corollary 2.1. Under the conditions and notation of Theorem2.2, we have

1

2
‖ sin 2H(U1, Ũ1)‖F6

√
‖I −D‖2

F + ‖D‖2
2‖I −D−1‖2

F

η̃2
, (2.22)

1

2
‖ sin 2H(U1, Ũ1)‖F6‖D−1‖2‖I −D‖F + ‖D‖2‖D∗ −D−1‖F

η̃c
. (2.23)

2 For example, instead of (2.12) we would useI − D̃−1 = J(I − αD−1)J + JαD−1J(I −D/α).
3 In fact if JD = DJ , thenD = U diag(D1,D2)U

∗ whereD1 is k × k, and then

D∗AD = U diag(D∗
1K1D1,D

∗
2K2D2)U

∗,

soU1 andŨ1 span the same subspace.
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Proof. Use the above identities to get

‖(I − D̃−1)Ũ1‖2
F6‖I − D̃−1‖2

F

6
(
‖I −D‖F + ‖J (I −D−1)JD‖F

)2
(by (2.13))

62‖I −D‖2
F + 2‖D‖2

2‖I −D−1‖2
F,

‖(I − D̃∗)Ũ1‖2
F6‖I − D̃‖2

F

6
(
‖J (I −D)J‖F + ‖(I −D−1)JDJ‖F

)2
(by (2.17))

62‖I −D‖2
F + 2‖D‖2

2‖I −D−1‖2
F.

Inequality (2.22) now follows from (2.9). To derive (2.23) from (2.10), we observe
from (2.16) thatI − D̃ = D−1(D − I)+D−1J (I −D)J and thus

‖(I − D̃∗)Ũ1‖F62‖D−1‖2‖I −D‖F,

‖(D̃∗ − D̃−1)Ũ1‖F6‖JD∗J (D−∗ −D)+ J (D∗ −D−1)JD‖F (by (2.20))

62‖D‖2‖D∗ −D−1‖F. �

Remark 2.2. In deriving Corollary 2.1, we have traded some sharpness for the com-
parative simplicity in (2.22) and (2.23), as can be seen from our proof. For example
whenk = 1, all the‖ · ‖F’s in Theorem 2.2, including the||| · |||’s in Theorem 2.3,
are effectively‖ · ‖2, and consequently all the‖ · ‖F’s in this corollary can be re-
placed by‖ · ‖2’s. This presents an improvement since‖ · ‖2 6 ‖ · ‖F always. There
is a way to deal with this sudden discontinuous jump by introducing a norm‖ · ‖2,`
defined as

‖X‖2,`
def=

√√√√√∑̀
j=1

[σj (X)]2,

whereσ1(X) > σ2(X) > · · · are the singular values ofX. ‖X‖2,` calledKy Fan 2-l
norms[15, Problem 3, p. 199] are unitarily invariant. For anm× nmatrixX, ‖X‖2,1
= ‖X‖2 and‖X‖2,m = ‖X‖2,n = ‖X‖F. It can be seen thatall inequalities in this
paper and in PartII [21] of this series are still valid with all the‖ · ‖F’s replaced by
‖ · ‖2,k. Analogous claim holds for inequalities involving a general unitarily invariant
norm, but we shall not dwell on this too much.

Fork = 1, Demmel [5, Theorem 5.7, p. 208] proved

1

2
sin 2H(U1, Ũ1) 6 ε1

1 − ε1
· 1

η̃′
c

+ ε2, (2.24)
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whereε1 = ‖I −D−∗D−1‖2, ε2 = ‖I −D‖2 and η̃′
c is defined as in Remark 2.1.

For D close to the identity (2.24) and ours are comparable. Bearing in mind the
argument in Remark 2.2, analogously to Corollary 2.1, we get fork = 1

1

2
‖ sin 2H(U1, Ũ1)‖2 6 ‖D−1‖2‖I −D‖2 + ‖D‖2‖D∗ −D−1‖2

η̃′
c

. (2.25)

It can be proved that the ratio of the right-hand sides of (2.24) and (2.25) is 1+
O(‖I −D‖2). Demmel’s (2.24) does not enjoy the invariant property with respect to
scalingD → D/α.

The next theorem provides bounds for all unitarily invariant norms at the price of
a more severe restriction (as in Fig. 1) on howK̃1 andK̃2 are separated, as in the
sinθ theorems for all unitarily invariant norms in [21].

Theorem 2.3. Let A andÃ = D∗AD be twon× n Hermitian matrices with eig-
endecompositions(2.1)–(2.3), where D is nonsingular. Assume that the spectra of
K̃1 and K̃2 distribute as in Fig.1. Then for any unitarily invariant norm||| · |||

||| sin 2H(U1, Ũ1)|||6
q

√
|||(I − D̃−1)Ũ1|||q + |||(I − D̃∗)Ũ1|||q

η̃
p

, (2.26)

||| sin 2H(U1, Ũ1)|||6 |||(I − D̃∗)Ũ1||| + |||(D̃∗ − D̃−1)Ũ1|||
η̃

c

, (2.27)

whereD̃ is defined in(2.6), q is defined by1/p + 1/q = 1, and

η̃
p

def= %p(α, α + δ), η̃
c

def=
{
δ/(α + δ) if Fig. 1(a),
δ/α if Fig. 1(b).

Proof. It is a consequence of Li [21, Theorem 3.2] applied toÃ andÂ and Lemma
2.1. �

Theorem 2.3 has a corollary similar to Corollary 2.1.

Fig. 1. The spectrum of̃K1 and that ofK̃2 are separated by two intervals, and one of the spectra scatters
around the origin.
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2.2. Nonnegative-definite matrices scalably well-conditioned

In what follows we show how the previous ideas can be applied to a more realistic
situation whenA can be scaled to improve its condition number. Considern× n

nonnegative-definiteHermitian matrixA = S∗HS which is perturbed in a special
way toÃ = S∗H̃S, whereS is a scaling matrix and usually diagonal. But this is not
necessary to the theorems below. The elements ofS can vary wildly.H is nonsin-

gular and usually better-conditioned thanA itself. Set1H
def= H̃ −H . As in [21,

pp. 481–482], we have

A = BB∗, Ã = B̃B̃∗,
where

B = S∗H 1/2, B̃ = BD, D =
(
I +H−1/2(1H)H−1/2

)1/2
. (2.28)

Given the eigendecompositions ofA andÃ as in (2.1)–(2.3), we defineJ andÂ as in
(2.4). Set

Q = B−1JB a unitary matrix,

sinceQQ∗ = B−1JBB∗JB−∗ = B−1BB∗B−∗ = I , where we have usedJAJ =
A. UseJB = BQ to get

Â = J ÃJ = JBDD∗B∗J

= BQDD∗Q∗B∗ = BDD−1QDD∗Q∗D−∗D∗B∗ = (B̃D̃)(B̃D̃)∗,

where

D̃ = D−1QD. (2.29)

D̃ is nearly unitary ifD is andD depends onH, not A. The proof outlined in [21,
pp. 481–482] for [21, Theorems 3.3 and 3.4] and Lemma 2.1 yield the following
theorems.

Theorem 2.4. Let A = S∗HS and Ã = S∗H̃S be twon× n Hermitian matrices
with eigendecompositions(2.1)–(2.3). H is positive definite and‖H−1‖2‖1H‖2 <

1. If η̃χ
def= min

µ∈λ(K̃1),ν∈λ(K̃2)

χ(µ, ν) > 0, then

|| sin 2H(U1, Ũ1)||F 6 ‖D̃∗ − D̃−1‖F

η̃χ
, (2.30)

where D andD̃ are as in(2.28) and (2.29).

Theorem 2.5. Let A = S∗HS and Ã = S∗H̃S be twon× n Hermitian matrices
with eigendecompositions(2.1)–(2.3). H is positive definite and‖H−1‖2‖1H‖2 <



54 R.-C. Li / Linear Algebra and its Applications 311 (2000) 45–60

1. Assume that the spectrãK1 and K̃2 distribute as in Fig.1. Then for any unitarily
invariant norm||| · |||

||| sin 2H(U1, Ũ1)||| 6 |||D̃∗ − D̃−1|||
η̃
χ

, (2.31)

whereη̃
χ

def= χ(α, α + δ), and D andD̃ are as in(2.28) and(2.29).

Using the technique of Li [23], we can even obtain a bound in any unitarily in-
variant norm on sin 2H(U1, Ũ1) under the conditions of Theorem 2.4, in contrast to
the stronger conditions of Theorem 2.5.

We now show how to bound the right-hand sides of (2.30) and (2.31) in terms of
D −D−1 and1H , instead ofD̃. Notice thatD∗ = D. We observe

D̃∗ − D̃−1=D−1(D2Q∗ −Q∗D2)D−1 (2.32)

=(D −D−1)Q∗D−1 +D−1Q∗(D−1 −D) (2.33)

=DQ∗(D−1 −D)+ (D −D−1)Q∗D. (2.34)

An immediate consequence of (2.32) is that4 sin 2H(U1, Ũ1) ≡ 0 if D2Q = QD2.

Corollary 2.2. Under the conditions and notation of Theorem2.4, we have

1

2
‖ sin 2H(U, Ũ1)‖F6 ‖D‖2‖D −D−1‖F

η̃χ
, (2.35)

6
√

1 + ‖H−1‖21H‖2√
1 − ‖H−1‖21H‖2

‖H−1‖2‖1H‖F

ηχ
. (2.36)

Proof. (2.30) yields (2.35), and (2.36) follows from (2.35) and the bound onD −
D−1 in [21, p. 482]. �

We note in passing that (2.36) is still valid with‖H−1‖2‖1H‖p replaced by

‖H−1/2(1H)H−1/2‖p 6 ‖H−1(1H)‖p, p = 2,F ,

see [21, p. 482] for details. Theorem 2.5 has a similar corollary.

Remark 2.3. Our approach may be extended to diagonalizable matrices. Suppose
that bothA andÃ are diagonalizable and let

4 In fact if D2Q = QD2, then BD2B−1J = JBD2B−1, thus BD2B−1 = U diag(D1,D2)U
∗

whereD1 is k × k, and then

Ã = BD2B∗ = BD2B−1BB∗ = U diag(D1K1, D2K2)U
∗,

soU1 andŨ1 span the same subspace.



R.-C. Li / Linear Algebra and its Applications 311 (2000) 45–60 55

A(X1 X2) = (X1 X2)

(
K1

K2

)
, Ã(X̃1 X̃2) = (X̃1 X̃2)

(
K̃1

K̃2

)
,

where
k

(X1
n−k
X2) and

k

(X̃1

n−k
X̃2) are nonsingular, andKi and K̃j are defined as in

(2.2) and (2.3) withλi ’s andλ̃j ’s possibly complex. Partition

(X1 X2)
−1 = k

n− k

(
Y ∗

1
Y ∗

2

)
, (X̃1 X̃2)

−1 = k

n− k

(
Ỹ ∗

1
Ỹ ∗

2

)
.

Define

JX
def= (X1 X2)

(
Ik

−In−k
)(

Y ∗
1
Y ∗

2

)
, Â

def= JXÃJX. (2.37)

It can be verified thatJ 2
X = I, ‖JX‖2 6 κ(X) ≡ ‖X‖2‖X−1‖2. SoÃ andÂ are sim-

ilar and thus have the same eigenvalues. In fact, a complete eigendecomposition of
Â is

Â = (X̂1 X̂2)

(
K̃1

K̃2

)(
Ŷ ∗
Ŷ ∗

2

)
,

whereX̂i = JXX̃i andŶi = J ∗
XỸi for i = 1,2. As before, we shall now work with

Ã andÂ instead.

Lemma 2.2(Sun [29]).We have

κ(X)||| sinH(X̃1, X̂1)||| > ||| sin 2H(X1, X̃1)|||
−2ω||X1||2||Y1||2||| sinH(X1, X̃1)|||2,

whereω = ‖(Y ∗
1 Y1)

−1/2Y ∗
1 Y2(Y

∗
2 Y2)

−1/2‖2.

Proof. It is essential in [29], see also [19, pp. 256–258].�

The argument so far is borrowed from [29] who extended the treatment of Davis
and Kahan for double angle theorems to the generalized eigenvalue problem of a
definite matrix pair. Now ifÃ = D∗

1AD2, we write

Â = JXÃJX = JXD
∗
1AD2JX = JXD

∗
1JXAJXD2JX

= JXD
∗
1JXD

−∗
1 ÃD−1

2 JXD2JX.

Therefore

Â = D̃∗
1ÃD̃2, D̃1

def= D−1
1 J ∗

XD1J
∗
X, D̃2

def= D−1
2 JXD2JX.

D̃i is close to the identity ifDi is close to some multiple of the identity. Now fol-
lowing the outline given in [21, Remark 3.3] oñA andÂ yields sin 2θ theorems for
diagonalizable matrices.
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3. Relative sin 2θ theorems for singular subspace variation

Let B andB̃ be twom× n (m > n) (complex) matrices with SVDs

B = (U1 U2)

(R1 0
0 R2
0 0

)(
V ∗

1
V ∗

2

)

and

B̃ = (Ũ1Ũ2)

( R̃1 0
0 R̃2
0 0

)(
Ṽ ∗

1
Ṽ ∗

2

)
, (3.1)

whereU = k

(U1
m−k
U2) andŨ =

k

(Ũ1

m−k
Ũ2) arem×m unitary, andV = k

(V1
n−k
V2) and

Ṽ =
k

(Ṽ1

n−k
Ṽ2) aren× n unitary, 16 k < n, and

R1 = diag(σ1, . . . , σk), R2 = diag(σk+1, . . . , σn), (3.2)

R̃1 = diag(σ̃1, . . . , σ̃k), R̃2 = diag(σ̃k+1, . . . , σ̃n). (3.3)

Define

JU
def= (U1 U2)

(
Ik

−Im−k

)(
U∗

1
U∗

2

)
,

(3.4)

JV
def= (V1 V2)

(
Ik

−In−k
)(

V ∗
1
V ∗

2

)
, B̂

def= JU B̃JV .

It can be verified that

J ∗ = J, J 2 = I, J−1 = J for J = JU , JV andJUBJV = B.

So bothJU andJV are unitary. In fact, the SVD of̂B is

B̂ = (Û1 Û2)

( R̃1 0
0 R̃2
0 0

)(
V̂ ∗

1
V̂ ∗

2

)
,

whereÛi = JU Ũi andV̂i = J ∗
V Ṽi for i = 1,2.

Remark 3.1. Write B̃ = B +H , then B̂ = B + JUHJV . Wedin sinθ theorems
[31] applied toB̃ and B̂ lead to absolute sin 2θ theorems for the singular value
problem, e.g.,√

‖ sin 2H(U1, Ũ1)‖2
F + ‖ sin 2H(V1, Ṽ1)‖2

F 6
√

2‖H‖F

δ
, (3.5)

whereδ
def= minµ∈σ(R̃1),ν∈σext(R̃2)

|µ− ν|, andσext is defined in Theorem 3.1. But to
the best of my knowledge, this has not been done.
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We would like to transform the perturbations that forceB̃ to B̂ into multiplicative
ones. SinceJUBJV = B, we have

B̂=JUB̃JV = JUD
∗
1BD2JV = JUD

∗
1JUBJV D2JV

=JUD∗
1JUD

−∗
1 B̃D−1

2 JVD2JV .

Therefore

B̂ = D̃∗
1B̃D̃2, D̃1

def= D−1
1 JUD1JU , D̃2

def= D−1
2 JVD2JV . (3.6)

D̃i is close to the identity (some unitary matrix) ifDi is close to some multiple of
the identity (some unitary matrix).

Theorem 3.1. Let B andB̃ = D∗
1BD2 be twom× n (m > n) (complex) matrices

with SVDs(3.1)–(3.3),whereD1 andD2 are nonsingular. Let

η̃2
def= min

µ∈σ(R̃1),ν∈σext(R̃2)

%2(µ, ν) and η̃c
def= min

µ∈σ(R1),ν∈σext(R̃2)

|µ− ν|
|ν| , (3.7)

whereσext(R̃2) ≡ σ(R̃2) ∪ {0} if m > n, andσext(R̃2) ≡ σ(R̃2) otherwise. Ifη̃c, η̃2 >

0, then√
‖ sin 2H(U1, Ũ1)‖2

F + ‖ sin 2H(V1, Ṽ1)‖2
F

6

√
‖(I − D̃∗

1)Ũ1‖2
F + ‖(I − D̃−1

1 Ũ1‖2
F + ‖(I − D̃∗

2)Ṽ1‖2
F + ‖(I − D̃−1

2 )Ṽ1‖2
F

η̃2
,

(3.8)√
‖ sin 2H(U1, Ũ1)‖2

F + ‖ sin 2H(V1, Ṽ1)‖2
F

6
√

‖(I − D̃∗
1)Ũ1‖2

F + ‖(I − D̃∗
2)Ṽ1‖2

F

+ 1

η̃c

√
‖(D̃∗

1 − D̃−1
1 )Ũ1‖2

F + ‖(D̃∗
2 − D̃−1

2 )Ṽ1‖2
F,

(3.9)

whereD̃i ’s are defined in(3.6).

Proof. It follows from Lemma 2.1 and [21, Theorem 4.1] applied toB̃ andB̂. �

Theorem 3.1 has a corollary similar to Corollary 2.1 that yield bounds in terms
of the deviations ofDi from the identity or orthogonality. Bounds in any unitarily
invariant norm under stronger assumption on the separation ofR̃1 andR̃2 than that
in Theorem 3.1 can also be obtained with the help of Lemma 2.1 and [21, Theorem
4.2].
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Remark 3.2. The above theorem applies to a more realistic situation whenB can be
scaled to improve its condition number. ConsiderB = GS andB̃ = G̃S arem× n

(m > n); S is a scaling matrix and bothG andG̃ arem× n; G has full column rank.
LetG† = (G∗G)−1G∗ the pseudo-inverse ofG. Notice thatG†G = I . Then

B̃ = G̃S = (G+1G)S = (I + (1G)G†)GS = (I + (1G)G†)B.

If ‖(1G)G†‖2 6 ‖G†‖2‖1G‖2 < 1, G̃ has full column rank, too. We seẽB =
G̃S = [I + (1G)G†]GS = D∗

1BD2, whereD∗
1 = I + (1G)G† andD2 = I . The-

orem 3.1 can now be applied toB andB̃. We omit explicitly stating them.

Bounds in Theorem 3.1 are invariant under rescalingDi → Di/αi , unlike the
existing bounds, e.g., in [12,21]. This provided one of the motivations that led to a
recent paper by Stewart and the current author [24]. The other motivation for [24] is
to derive bounds that reflect the intrinsic differences in how left and right multipli-
cative perturbations affect left and right singular subspaces, e.g, whenD2 is unitary
it does not affect the left singular subspaces at all. Such bounds can easily obtained
when the technique of this paper is combined with the main result of Li and Stewart
[24]. For example, we have

Theorem 3.2. Let the conditions of Theorem3.1 hold, and letQ̃i be the unitary
polar factor ofD̃i . Then

|| sin 2H(U1, Ũ1)||F 6 ε

η̃2
+ ‖(I − Q̃∗

1)Ũ1‖F, (3.10)

|| sin 2H(V1, Ṽ1)||F 6 ε

η̃2
+ ‖(I − Q̃∗

2)Ṽ1‖F, (3.11)

whereD̃i ’s are defined as in(3.6), and

ε2=‖(D̃1 − Q̃1)
∗Ũ1‖2

F + ‖[D̃−1
1 − Q̃∗

1]Ũ1‖2
F

+‖(D̃2 − Q̃2)
∗Ṽ1‖2

F + ‖(D̃−1
2 − Q̃∗

2)Ṽ1‖2
F.

It can be seen that the deviations of some multiples ofDi ’s from orthogonality
transform into the deviations of̃Di ’s from orthogonality, and hence in this theo-
remDi ’s contribute toε by the deviations of their multiples from orthogonality.
ThereforeD1 affects span(V1) only by the deviation of its some multiple from or-
thogonality rather than the identity and similar argument holds forD2 and span(U1).
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