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Abstract

The double angle theorems of Davis and Kahan bound the change in an invariant subspace
when a Hermitian matriX is subject to an additive perturbatioh— A = A + AA. This
paper supplies analogous results wheis subject to a congruential, or multiplicative, per-
turbationA — A = D*AD. The relative gaps that appear in the bounds involve the spectrum
of only one matrix, eitheA or A, in contrast to the gaps that appear in the single angle
bounds. The double angle theorems do not directly bound the difference between the old
invariant subspace” and the new one” but instead bound the difference betwe#nand
its reflection.% where the mirror is# and J reversesst, the orthogonal complement

of &. The double angle bounds are proportional to the departure from the identity and from

orthogonality of the matrixD def D~17DJ. Note thatD is invariant under the transformation

D — D/a for a # 0, whereas the single angle theorems give bounds proportioriakto
departure from the identity and from orthogonality. The corresponding results for the singular
value problem when a (nonsquare) maiis perturbed ta3 = D] BD; are also presented.

© 2000 Elsevier Science Inc. All rights reserved.

1. Introduction

Eigenvalue and singular value computations to high relative accuracy have been
attracting lots of attention over the last 10 years or so. Tremendous progress has
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been made both in theoretical understanding and numerical algorithms, see [1,4,7—
14,18,25-28] and references therein. On the algorithmic side there are Demmel—
Kahan QR methods for bidiagonal singular value computations [8], (two-sided)
Jacobi methods for the eigenvalue problems of positive definite matrices and for
the singular value computations [9,25,28], bisection method for scaled diagonally
dominant matrices [1] and for matrices with acyclic graphs [7,17], new implemen-
tations of the qd method [14,27], and Demmel’s algorithms for structured matrices
[6], and more recently [10] showed how to compute singular value decompositions
(SVDs) to high relative accuracy for matrices that can be factored accurately as
B = XTI'Y* whereI is diagonal andX andY are any well-conditioned matrices;

on the theoretical side, analogous results to many celebrated theorems for absolute
perturbationsA — A = A + AA are obtained for perturbations that are multiplica-
tive A > A = D*AE (E = D whenA is Hermitian) [12,13,16,18,20-22], though
exceptions remain.

This paper presents analogues to the double angle theorems of Davis and
Kahan [3] in the case of multiplicative perturbations. For one-dimensional eigen-
space, Demmel [5, Theorem 5.7, p. 208] obtained an analogue, but his approach
does not seem to be easily adaptable to eigenspaces of higher dimensions. Our new
double angle theorems that work for eigenspaces of any arbitrary dimension have
two advantages over the existing single angle theorems. Consider the Hermitian
eigenvalue problem fokandA = D*AD, whereD is nonsingular. The first advan-
tage, also presented in Davis and Kahan girnthizorems, is that (relative) gaps are
defined using exclusively eigenvalues of eithasr A but not both. We observe that
if D = «l, a multiple of the identityA andA = |«|?A share the same eigenspaces,
but the existing bounds, e.g., [21, Theorem 3.1], do not reflect this. In fact, as long
asD is closeto some multiple of the identity, the eigenspacesAaind A, when
properly matched, are close. The new sihtl2eorems provide upper bounds that are
invariant under rescalingp — D/« for o # 0. This is the second advantage.

The rest of this paper is organized as follows. Section 2 derives relativedsin 2
theorems for the Hermitian eigenvalue problem. Section 3 develops relativé sin 2
theorems for singular value problem.

Notation. We shall follow the notation set forth in the first two parts of this series
[20,21]. For convenience, we spell out some of them hererdfative distancesve
use, besides thdassicalone|a — a|/|«]|,

|l — | lo — |

a,o) = —F(/—— s
o) = e T e N
with convention g0 = 0 for convenience. It was proved in [20] tha} is indeed
a metric on the set of real numbers and recently Barrlund [2] went further to show
that it is a metric on the set of complex numbers, ajsdails to satisfy the trian-
gle inequality and thus is not a metric. Nevertheless all those relative distances are
topologically equivalent [20], and thus for the purpose of bounding relative errors,

forl< p <oo and y(a,@) =




R.-C. Li/ Linear Algebra and its Applications 311 (2000) 45-60 47

any relative metric is just as good as othds]|> and| X || denote the spectral and
Frobenius norms of matriX, respectivelyi(X) is the set of the eigenvalues Xf
ando (X) is the set of the singular values ¥f X* is the conjugate transposa.
denotes the x n identity matrix (we may simply writé instead if no confusion).

2. Relative sin @ theorems for eigenspace variations

Let AandA be two Hermitian matrices whose eigendecompositions are

U*
A = (U1 Uy) <A1 /12) (U%*)’
2

- ~ 2.1)
~ - - Aq Uy (
A= (ULU ~ B
(U1 2)( /12) (U;)
Kk n—k k  n—k
where(Uy U2) and (Uy Up) are unitary, and

A =diagr1, ..., ), Az =diagriis1, ..., An), (2.2)
Ay =diagi, ..., Ax), Ao =diagiist, ..., An). (2.3)

We shall treatA as a perturbed matrix ok and derive bounds on the changes in
subspace”’ d=6fspar(U1), A’s invariant subspace spanned @y's columns. We do

this by bounding the sines of the double canonical angles betweamd o gef

spar(Uy). Define
USN » def -
7%, Uz)(”‘ , k)( 1), At A (2.4)
1

The matrixJ was implicitly used but not explicitly formed by Davis and Kahan [3]
in deriving double angle theorems. It can be verified that

J5=1J, J?=1, Jl=1J JAJ=A.

So,Jis unitary, andd andA are unitarily similar and thus have the same eigenvalues.
In fact, a complete eigendecompositionffs

. ] U
A= Oy Oy (/11 ;12> <Ul> (2.5)
2

whereU; = JU; fori =1, 2. Geometrically, /.7 is a reflection of#, where the
mirror forJis.¥” andJ reversey{}herrthogonal complementof. This explains
the following lemma that relate®@(Uy U) to © (U1 Uy).

1 am grateful to Professor B.N. Parlett who pointed out this geometric interpretation to me.
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Lemma 2.1 (Davis—Kahan [3])We haves (sin@ (U1, U1)) = o (sin 20U, U1)).
This is equivalent to say that for all unitarily invariant norms. |||

I sin@ (U1, Ul = [l sin20(U1, U1)|]I.

Proof. Itis essential in [3], and more explicitly embedded in the proofs in [19,29]
with the help of Van Loan [30, Theorem 2].0]

Write A = A+ H, thenA = A+ JHJ, one of which will be considered as a
perturbed one of the other. What we have so far is due to Davis and Kahan [3]
who then continued to combine sihtheorems already proved and that A =
JHJ — H easily bounded in term of norms bff. But such a combination does not
work for us. We need to interpret the change frdno A as caused by some multi-
plicative perturbation that is close to the identity. Althoutje= J AJ by definition,
thisJ, as a multiplicative perturbation, is too far away from a multiple of the identity
al since

I/ —eallz=max|l—af,|1+al} >1
always for anyx unlessk = n. So we have to do something different.

2.1. Multiplicatively perturbed A tel = D*AD

Notice JAJ = A and thus

A=JAJ=JD*ADJ = J*D*JAJDJ = J*D*JD *AD 1JIDJ.
Therefore

A=p*ip, DL DDy (2.6)
This D is close to the identity iD is close to some multiple of the identity, aftlis
close to some unitary matrix B is close to some multiple of a unitary matrix. We
shall return to this later in this section. (2.6) is the key to our success. With it and
Lemma 2.1, double angle theorems follow from the existing single angle theorems.
To keep this paper fairly short, we provide a detailed account of only one double
angle theorem with full discussion while briefly stating others.

The following single angle theorem is in [21, Theorem 3.1], where the subscript
in n¢ is an indication of it being defined with tluassical relative measurement.

Theorem 2.1(Li [21]). Let AandA = D*AD be twon x n Hermitian matrices with
eigendecomposition@.1)—(2.3), where D is nonsingular. 1k(A1) N A(A2) = @,
then

| I = DU + 1 - DU
|| sin @(U1, U< - . (2.7)
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I(D* — D~ HU:|E

|Isin @(U1, UD|Ie< (I = D¥)Us|le + ; (2.8)
(o3
where
. - def . — [
, & min - o2(u, 1) and e e min e ~ “l-
per(Ar), ien(A2) per(Ar),aer(iy) il

Our first double angle theorem is a consequence of Theorem 2.1.

Theorem 2.2. Let A andA = D*AD be twon x n Hermitian matrices with eig-
endecomposition@.1)—(2.3), where D is nonsingular. I£(A41) N A(A2) = @, then

I = DH0112 + 11 — D02

|I'sin 20(U1, U1)|[r< > . (2.9)
: . . I(D* — DY
||'sin 20Uy, Un)||[r< (I — D*)U1|lF + ; , (2.10)
C
whereD is defined in(2.6),
12 gef min o2, v), fc gef min I/L—vl_
per(iy),ver(ip) per(ip,ver(lp) vl

Proof. Bear (2.1) and (2.5) in mind, and then apply Theorem 24 #ndA to get
Isin ©(U1, Un) |l < [RHS of (2.9),
| sin © (U1, U1l < [RHS of (2.10).
Combining them with Lemma 2.1 completes the prodf]
Remark 2.1. As s noted in [21, footnote 3, p. 478], a bound slightly different from
(2.10)is
I(D* — D™HUllF

e

|I'sin 20(U1, Uk < [|(I — D™ YHU1)Ir +

(2.11)
whereij; o MIN, 5.y vea (i 1# — vI/Irl. This and those relative gaps in Theorem

2.2 are defined in terms of eigenvaluesdbnly, in contrast to Theorem 2.1 and
other theorems in [12,21] which use gaps defined in terms of eigenvalues ohboth
andA. This feature coincides with Davis—Kahan sifi theorems.

The upper bounds in Theorem 2.2 have an interesting invariant property that the
existing single angle theorems, e.g., Theorem 2.1, lack. Notice that as lahgsas
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closeto some multiple of the identity, the eigenspacesAaind A, when proper-
ly matched, are close, but existing bounds do not yield small error bounds in this
case. The latter can be cured by consideAramd(D/a)* A(D/«) for a judiciously
chosenx to makeD/« close to the identity, e.g., take= €Y | D||» for someys or
determine it by optimizing final bounds withas a free parameter as Li and Stewart
[24] did to the singular value problem. Even though this blemish is curable, it is still
nice to have bounds like those in Theorem 2.2 that are automatically immune to the
drawback sincd = D=1/ DJ = J(D/a)"1J(D/a)J for anya + 0.

Next we show how to bound — D1, I — D*, andD* — D1 in terms of the
deviations ofD from the identity or orthogonality (if necessaiy, should be re-
scaled). The following identities are easy to verify:

I-Dt=yu0-DYHs+JiD iU - D) (2.12)
=(I—-D)+JUI—-DYHJD (2.13)
=JDY(DJ — ID) (2.14)
=D ty-JDpYHip (2.15)

I-D=I-DY+DYyu-D)yJ (2.16)
=JUI-D)J+U—-DYHIDJ (2.17)

=D 1J(UD-DJ) (2.18)

=UJD =D tHDJ (2.19)

D*— D '=JD*J(D™* —= D)+ J(D*— D YHJD (2.20)
=J(D*—= D YHID*+JDYJ(D* — D). (2.21)

Animmediate consequence of (2.14) and (2.18) iStsiat 20 (U, U1) = 0if JD =

DJ. These identities make it possible to bound the right-hand sides of (2.9) and
(2.10) in Theorem 2.2 and those of (2.26) and (2.27) in Theorem 2.3 below by norms
of I — D, I — D71, or D* — D=1, We present here the following corollary as an
example. The reader may derive some other variations depending on his/her needs.

Corollary 2.1. Under the conditions and notation of Theor@r, we have

1 i =Dz +1DI3II - DY
5” sin 20(U1, U1)|r< — , (2.22)
n2

IDl2|D* — D¢

1 - _
5l sin 20(Us, Un)lle<|ID Yalr - Dle+ (2.23)

Nc
2For example, instead of (2.12) we would use D=1 = J(I —aD Y J + JaD~1J (I — D/a).
SInfactif JD = DJ, thenD = U diag(D1, D2)U* whereD1 isk x k, and then
D*AD = U diag(Dj A1D1, D5 A2D2)U*,

soU7 andU; span the same subspace.
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Proof. Use the above identities to get

I(I — D~ HU11E< 1T — D7H)2
-1 2
<(I1 = Dl + 171 = DI D) (by (2.13))

<21 — D2+ 2| DI3I1 — D742,

I(1 — DOLIES T — D)2
_1 2
<(IWU=D)Ie+ 10 =D™HIDIIE)"  (by 217)
<2l — D2+ 2|D|3I11 — D72

Inequality (2.22) now follows from (2.9). To derive (2.23) from (2.10), we observe
from (2.16) that — D = D~Y(D — I) + D~1J(I — D)J and thus

I(I — D*)Urlle<2ID Y2011 — D,
I(D* = D™HU1|le<|IJD*J(D™* — D) + J(D* — D™1)J D[ (by (2.20))

<2D|2ID* =D Mg. O

Remark 2.2. Inderiving Corollary 2.1, we have traded some sharpness for the com-
parative simplicity in (2.22) and (2.23), as can be seen from our proof. For example
whenk = 1, all the|| - ||[g’s in Theorem 2.2, including thg| - |||'s in Theorem 2.3,

are effectively| - ||2, and consequently all thig- ||£’s in this corollary can be re-
placed by - ||l2’s. This presents an improvement sirice|l2 < || - | always. There

is a way to deal with this sudden discontinuous jump by introducing a tjorjfa_¢
defined as

def

14
IXlze = | o (X1,
j=1

whereo1(X) > 02(X) > - - - are the singular values of || X||2,, calledKy Fan 2-|
norms[15, Problem 3, p. 199] are unitarily invariant. Foranx n matrix X, || X||2.1

= |X|l2 and | X|l2.m = [ Xll2n = [ X|Ir. It can be seen thatll inequalities in this
paper and in Partl [21] of this series are still valid with all th¢ - ||'s replaced by

Il - ll2.x- Analogous claim holds for inequalities involving a general unitarily invariant
norm, but we shall not dwell on this too much.

Fork = 1, Demmel [5, Theorem 5.7, p. 208] proved

€ 1
L 1e, (2.24)
— €1 IN¢

1 -
—sin 20(U1, Uy) <
5 (U1, U1) 1
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whereey = |[I — D™*D 7|5, €2 = |I — D2 and7, is defined as in Remark 2.1.
For D close to the identity (2.24) and ours are comparable Bearing in mind the
argumentin Remark 2.2, analogously to Corollary 2.1, we gek terl

IDl2|D* — D712
e

—|| sin 20Uy, Un)[l2 < ID7H2I1 — D2+ (2.25)
It can be proved that the ratio of the right-hand sides of (2.24) and (2.25}is 1
O(||I — DJl2). Demmel’s (2.24) does not enjoy the invariant property with respect to
scalingD — D/a.

The next theorem provides bounds for all unitarily invariant norms at the price of
a more severe restriction (as in Fig. 1) on hdwand A, are separated, as in the
sinfd theorems for all unitarily invariant norms in [21].

Theorem 2.3. Let A andA = D*AD be twon x n Hermitian matrices with eig-
endecomposition&.1)—(2.3), where D is nonsingular. Assume that the spectra of
A1 and 4> distribute as in Figl. Then for any unitarily invariant norri| - |||

11sin 200 0)|H<{’/|||(1—13—1>z71|||q+|||(1—13*>01|||q
1, U1l B

(2.26)

1

. ~ o D — %
Il sin 20, TplII< I = B0+ 18 Ol

(2.27)

|

C
whereD is defined in(2.6), q is defined byl/p + 1/¢ = 1, and

. def . def [§/(a+6) If Fig. 1(a),
ﬁp—WWﬂ+&’ﬂr‘Lm if Fig. 1(b).

Proof. Itis a consequence of Li [21, Theorem 3.2] applieditandA and Lemma
21. O

Theorem 2.3 has a corollary similar to Corollary 2.1.

@) —o 0 o

|| ||

—a 0 «
(b) MMMNML_HWWWWHHMW

W Spectrum of Ay mm Spectrum of A,

Fig. 1. The spectrum ofi; and that of1, are separated by two intervals, and one of the spectra scatters
around the origin.
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2.2. Nonnegative-definite matrices scalably well-conditioned

In what follows we show how the previous ideas can be applied to a more realistic
situation whenA can be scaled to improve its condition number. Considern
nonnegative-definitelermitian matrixA = S*H S which is perturbed in a special
way toA = S*H S, whereSis a scaling matrix and usually diagonal. But this is not
necessary to the theorems below. The elemen&azhn vary wildly.H is nonsin-
gular and usually better-conditioned tharitself. SetAH ©'q _H. Asin [21,
pp. 481-482], we have

A=BB*, A= BB
where
~ 1/2
B=S*HY2, B=BD. D= (1 + H_l/z(AH)H_1/2> . (2.28)

Given the eigendecompositionsAfindA as in (2.1)—(2.3), we definkandA as in
(2.4). Set

Q0 = B~1JB aunitary matrix,

sinceQQ* = B~YJBB*JB~* = B"1BB*B~* = I, where we have useflAJ =
A.UseJB = BQ to get

A=JAJ = JBDD*B*J
= BQDD*Q*B* = BDD *QDD*Q*D *D*B* = (BD)(BD)",

where
D=D10D. (2.29)
D is nearly unitary ifD is andD depends o, notA. The proof outlined in [21,

pp. 481-482] for [21, Theorems 3.3 and 3.4] and Lemma 2.1 yield the following
theorems.

Theorem 2.4. Let A = S*HS and A = S*HS be twon x n Hermitian matrices
with eigendecomposition&.1) (2.3). H is positive definite ani H 12| AH ||2 <
~ def .
Lifp, = min x(u,v) > 0, then
HEA(A1),vEL(AD)

ID* — D7Y|g

~ ’

|I'sin 20(U1, U)|lF < (2.30)

Nx
where D andD are as in(2.28) and (2.29).

Theorem 2.5. Let A = S*HS and A = S*HS be twon x n Hermitian matrices
with eigendecompositioni&.1)—(2.3). H is positive definite antlH ~1||2| AH |2 <
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1. Assume that the spectriy and A distribute as in Fig1. Then for any unitarily
invariant norm||| - |||

I[1D* — D71

~ ’

I1]'sin 20U, U] < (2.31)

—X

Whereﬁx dzefx(a, a + 8), and D andD are as in(2.28) and (2.29).

Using the technique of Li [23], we can even obtain a bound in any unitarily in-
variant norm on sin@ (U1, U1) under the conditions of Theorem 2.4, in contrast to
the stronger conditions of Theorem 2.5.

We now show how to bound the right-hand sides of (2.30) and (2.31) in terms of
D — D~ landAH, instead ofD. Notice thatD* = D. We observe

D* — D *=pY(D?0* - 0*D*)D7? (2.32)
=D -DYHo*p '+ D oD - D) (2.33)
=DQ*(D™'—D)+ (D —-DH0*D. (2.34)

An immediate consequence of (2.32) is thsin 20 (U1, U1) = 0 if D2Q = QD2

Corollary 2.2. Under the conditions and notation of Theor@m, we have

IDl2lD — D¢

1 . -
slsin20(U, U)|r< (2.35)
2 Ty
_V1+1H pAH2 [H M2l AH (2.36)
VI—HAH]; My

Proof. (2.30) yields (2.35), and (2.36) follows from (2.35) and the boundon
D7lin[21,p.482]. O
We note in passing that (2.36) is still valid winIH—1||2||AH||,, replaced by
IH Y2 (A H 2, <IH Y AH)p,  p=2F,
see [21, p. 482] for details. Theorem 2.5 has a similar corollary.

Remark 2.3. Our approach may be extended to diagonalizable matrices. Suppose
that bothA and A are diagonalizable and let

4In fact if D2Q = QD?, then BD?B~1J = JBD?B~1, thus BD?2B~1 = U diag(D1, Do)U*
whereD1 isk x k, and then

A = BD?B* = BD?2B~1BB* = U diag(D1 A1, DaAp)U*,

soU7 andU; span the same subspace.
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A(X1 X2) = (X1 X2) (Al /12> . A(X1 X2) = (X1 X2) (Al ;12> ,

ko n—k k n—k -
where (X1 X») and (X1 X») are nonsingular, and; and 4; are defined as in
(2.2) and (2.3) with;’s andA ;s possibly complex. Partition
1k Y; N Yy
(X1 X2) _n—k(Yz* , Xy = )
Define

* A ~
Ty % (x1 X0) (’k » k) (’;a) A% AUy (2.37)
n— 2

It can be verified thai2 = 1, | Jx |2 < k(X) = || X|]2|X~*||2. SoA andA are sim-
ilar and thus have the same eigenvalues. In fact, a complete eigendecomposition of
Alis

P o oA Y*
A=(X1X2)( ' A2><Y)
2

whereX; = JyX; and¥; = J3¥; for i = 1, 2. As before, we shall now work with
A andA instead.

Lemma 2.2(Sun [29]).We have

K(X)|lISinO(X1, X1)| =11 sin 20(X1, X1)|||
—2w||X1/l2l1Y1]l2]l sin@(X1, X111,

wherew = ||(Y; Y1) "Y2YYa(Y5Y2) "1 5.
Proof. Itis essential in [29], see also [19, pp. 256—258]]

The argument so far is borrowed from [29] who extended the treatment of Davis
and Kahan for double angle theorems to the generalized eigenvalue problem of a
definite matrix pair. Now ifA = D} AD>, we write

A =JxAJx = JxDiAD2Jx = JxD}JxAJxDaJx
= JxDjJxD{*ADy JxDalx.

Therefore

A=D;ADy. D1 ¥ D7riip1s;. D2 X Dytix Doy
D; is close to the identity ifD; is close to some mul:[iple of the identity. Now fol-
lowing the outline given in [21, Remark 3.3] ohandA yields sin 2 theorems for
diagonalizable matrices.
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3. Relative sin @ theorems for singular subspace variation

LetBandB be twom x n (m > n) (complex) matrices with SVDs

0N s
B:(U1U2)<O Zz)(vl*)
0 0 2

and ~
~ /21 O 7
B = (U1U>) ( 0 22> ( ~1*>, (3.1)
o o/ \"2
ko om—k I A ko n—k
whereU = (U1 Up) andU = (U1 U») arem x m unitary,andV = (V1 V>) and
k n—k

V = (V1 Vo) aren x n unitary, 1< k < n, and

21 =diago, ...,0r), 22 =diagok+1,---,0n), (3.2
1 =diag6y, ..., 61), 22 =diagGist, ..., 6n). (3.3)
Define

def I Uy
JU—(U1U2>( _,mk><U§ ,
* A ~
Jvd:ef(vlvz)<1" ., k)(‘/l), BE JyBay.
.

It can be verified that
J*=1J, J?=1 Jl=J forJ=Jy,JyandJyBJy = B.
So bothJy andJy are unitary. In fact, the SVD ab is

. A 21 p "}*
B=(U1Uy)| O 22 <‘;1*>
0 O 2

whereU; = JyU; andV; = Ji:V; fori = 1, 2.

(3.4)

Remark 3.1. W~rite B =B+ H, thenB = B + JuHJy. Wedin sird theorems
[31] applied toB and B lead to absolute sin®2theorems for the singular value
problem, e.g.,

V2|H|r
—

JIIsin20(U1, 002 + 1 sin20(v1, )12 < (35)

def . . . .
wheres=min, _, s ) \cruu(s,) |4 — VI, @Ndoeyt is defined in Theorem 3.1. But to

the best of my knowledge, this has not been done.
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We would like to transform the perturbations that folgeo B into multiplicative
ones. Since/ly BJy = B, we have

B=JyBJy = JyDiBD2Jy = Jy DiJyBJy D2Jy
=JyD}JyD;*BDy Iy Daly.
Therefore
B=D;BDy, D1 E'DIYIyD1sy. D2 L DyYIyDaJy. (3.6)

D; is close to the identity (some unitary matrix)Lif; is close to some multiple of
the identity (some unitary matrix).

Theorem 3.1. Let B andB = D3 BD3 be twom x n (m > n) (complex matrices

with SVDs(3.1)—(3.3), whereD1 and D, are nonsingular. Let

. - . —V

2% min o) and 7% min LV
peo (1), veoen(Z2) pneo(Xy) veoea(Ez) VI

. @37

whereoey(22) = o(22) U {0} if m > n, andoex(22) = o (22) otherwise. Ifj., 7> >
0, then

JIisin 20Uy, 0012 + [1sin 20(v1, V)12

_ JIU = DPOLR + 1 — D00 + 1 — D)Vl + 1 — Dy HVali2

9

n2
(3.8)
Jiisin20(us, )12 + || sin20(v1, )12
< It = DHUOLIE + (1 — D) T2
1 7= ——
4=\ 10; = BEYTLIE + 153 - Dy )T,
(3.9)

whereD;’s are defined ir3.6).
Proof. It follows from Lemma 2.1 and [21, Theorem 4.1] appliedB@ndB. [

Theorem 3.1 has a corollary similar to Corollary 2.1 that yield bounds in terms
of the deviations ofD; from the identity or orthogonality. Bounds in any unitarily
invariant norm under stronger assumption on the separatiéh ahd>» than that
in Theorem 3.1 can also be obtained with the help of Lemma 2.1 and [21, Theorem
4.2].
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Remark 3.2. The above theorem applies to a more realistic situation vihean be
scaled to improve its condition number. Conside= GS andB = GS arem x n
(m > n); Sis a scaling matrix and bot® andG arem x n; G has full column rank.
LetGT = (G*G)~1G* the pseudo-inverse @. Notice thatG'G = I. Then

B=GS=(G+AG)S =+ (AGGHGS = (I +(AG)GNB.

If IAG)GT|2 < IGT|2AGl2 < 1, G has full column rank, too. We seB =
GS=1[I+ (AG)GNGS = D} BD,, whereDj =1 + (AG)GT andD, = I. The-
orem 3.1 can now be applied Brand B. We omit explicitly stating them.

Bounds in Theorem 3.1 are invariant under rescaling— D;/«;, unlike the
existing bounds, e.g., in [12,21]. This provided one of the motivations that led to a
recent paper by Stewart and the current author [24]. The other motivation for [24] is
to derive bounds that reflect the intrinsic differences in how left and right multipli-
cative perturbations affect left and right singular subspaces, e.g, @hénunitary
it does not affect the left singular subspaces at all. Such bounds can easily obtained
when the technique of this paper is combined with the main result of Li and Stewart
[24]. For example, we have

Theorem 3.2. Let the conditions of Theore1 hold, and let Q; be the unitary
polar factor of D;. Then

. ~ € ~ ~
|| sin 20 (U1, U1)|IF < = + (I = ODU1lF, (3.10)

. ~ € ~ ~
sin20(V1, VDIIF < 2 + I = ) Vhllr, (3.11)

whereD;’s are defined as i3.6), and
e?=[/(D1 — Q0)* Uallg + 1D — 031011IE
+(D2 = 02)* Vil + Dy — Q3) Vi lE.
It can be seen that the deviations of some multiple®a$ from orthogonality
transform into the deviations ab;’s from orthogonality, and hence in this theo-
rem D;’s contribute toe by the deviations of their multiples from orthogonality.

ThereforeD; affects spafVy) only by the deviation of its some multiple from or-
thogonality rather than the identity and similar argument hold®fpand spanl/1).
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