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ABSTRACT 

The theory of companion matrices is used to give explicit representations for the 
matrices needed in Roth’s removal rule. These are then used to give simple proofs for 
the cyclic decomposition theorem, as weU as for Roth’s similarity theorem for matrices 
over a field. 

1. INTRODUCTION 

In his fundamental paper [12] Roth introduced his removal rule, which 

states that one may remove the matrix C in the block matrix 
[ 1 A ’ bya 

similarity transformation, provided that the matrix equation /?X -?YD = C z x has a solution X. In this case it is easily seen that the matrix o 
[ 1 I will do. 

He went on to prove his similarity theorem, which states that for matrices 
over a field the converse is also true. 

Perhaps the most important interpretation of this removal rule is in terms 
of invariant subspaces. Indeed, the rule says that given a linear map T on a 
vector space, V, and an invariant subspace W, with complementary subspace 
W,, then one may find an invariant complementary subspace W,, provided 
the matrix of T restricted to W, and the matrix of the induced map on V/W, 
satisfy the consistency condition AX - XD = C. What has not been brought 
out before is the fact that the removal rule actually tells you where and how to 
find the subspace W,. Consequently it is of considerable importance in the 
study of canonical forms and matrix theory in general [S]. In this paper we 
shall develop the removal rule for companion matrices, and apply this to give 
an easy algorithmic proof for the cyclic decomposition theorem (CDT; also 
called the rational canonical form theorem). It in essence lays bare what 
makes the CDT tick. We shall then examine the semisimple case, and 
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conclude by using the removal rule to give a constructive proof of Roth’s 
similarity theorem. Roth’s similarity theorem has been studied by a number of 
authors [l-4, 121, and has been proven under quite general conditions, such 
as for matrices over a commutative ring and beyond. For example see 
Theorem 4.2 in [4]. Most proofs however are existence proofs, using dimen- 
sional analysis, module theory, or X-matrix theory, and do not furnish a 
tractable solution to the equation AX - XD = C. The removal rule for com- 
panion matrices generalizes a result due to Feinberg [l], and its application 
simplifies considerably the proof of Roth’s theorem given in this paper. In 
particular, we shall not need to use determinantal divisors, but merely use 
some simple properties of rank, of annihilating polynomials, and of compa- 
nion matrices. In addition, the removal rule gives a much more tractable 
solution to the desired matrix equation. Throughout this paper, all our 
matrices will be over a field ‘%. We shall use Tm,,, to denote the set of m x n 

matrices over 9, and use 9” for %n x i. For a matrix A E ‘$ x “, we shall denote 
the range, the n&pace, the rank, the characteristic polynomial, and the 
minimal polynomial by R(A), N(A), p(A), A,(A), and 4*(h) respectively. 
For a vector x E ‘T’, we denote its minimal polynomial with respect to A by 
#JX). We say that x belongs to #A if &(X) = $*(A). As always, we shall 
denote similarity by = and use @ to denote the right direct product. 

For a matrix X= [x1,x2,..., x”] we shall write col(X)= [xT,...,xK]r and 
shall freely use the column lemma, 

col(AXB)= (Br@A)col(X). 

For a manic polynomial f(X) = fo + fix + . . - + hk, let 

L[fW 

0 -fo 
1 - h = 

0 .l -L 

and define 

S[f(Ql = 

fl fi . . . fk 
f, 

0 

i * 

&(A) = fi+l + fi+J + . . . + fkhk-‘-1, i=O,l,..., k- 1. (1.1) 
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It is well known and easily verified that 

LS = SLT 

and that for any vector x = [x,, x,,...,x~_~]~, 

t x, Lx,..., Lk-lx] =x(L), 

where x(h) = x0 + x,h + *. . + x~_~A~-‘. 
This identity gives rise to the following surprising result: 

We shall also need the fact that 

(1.2) 

0.3) 

0.4) 

0.5) 

Now if f( II) = 0, then by the division algorithm, 

(AZ-D) 

where 

k-i-l 

Di=fi(D>= C fi‘+j+lDj* i=O,l,..*, k-l. (1.6) 
j=O 

In addition we have the chain conditions [5, p. 1051 

D[Z, D,..., Dk_l] = [I$,..., ~"-'luJf(~)I@z) 

= I, D,..., [ Dk-q(z@D), 0.7) 

as well as 
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Lastly, we shall also make use of the fact that both the consistency of 
AX - XD = C and the similarity of 

A C 
[ 1 0 D 

remain invariant under a similarity 
with an appropriate modification of 

and 

transformation applied to A and/or D, 
c. 

2. THE MINIMAL POLYNOMIAL 

In this section we shall derive several elementary results dealing with the 
minimal polynomial of a block triangular matrix. These will then be used in 
Section 7. 

LEMMA 1. Let 

A, 
42 

M= 

0 

and 

Ai 

Ai+l 
sij= 

0 

? 

Ak 

? 

A, 

N= 

qj= 

A, 
A2 
0 

Ai 

Ai+l 

0 

0 

Ak 

0 

Ai 

be sections of M and N respectively. Then 

k 

Zf M = N then $s,j(A) = #,,j(X) = lcm(&: i G r < j). 

(2.la) 

(2.lb) 

(2.lc) 
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Proof (a), (b): These are left as an exercise, and are proven in [a]. 
(c) First note that p(M)> P(N)=C:=,~(A~). Now let p(A)= $T,,(h). 

Then by (a), p I &/ On the other hand, 

P(M) = 

P(4) 

? 

P('ij) 

0 

P(4) _ 

P(4) 

0 

= p(N) = P(qj) 

0 

P(Ad 

with p(N, j) = 0. Thus 

dPw))= c P 
t<i 
t>j 

t<i 
t>j 

and so p( Si j) = 0 and $s, i I p as desired. 

1 

[PC&j) 1 

n 

An immediate consequence is the following, which we shall use in 
constructing the solution to Roth’s similarity problem. 

LEMMA 2. Let 

M= 

A, 0 

0 4n 

0 I c 

4 0 

0 Drl 
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N= 
A, 

D, 
0 

with C = [C, j] partitioned confmlly. Also let 

*i 0 ci, .-. 'ij 

sij= 
0 ’ A, Cm, .*. Cmj 

D, 0 

0 

’ 0 Dj 

and Wij= 
Ai Cij 

0 Di 

If&I=:, then 

Proof. By (2.la), the first part is clear. Also by (2.lc), &, = Icm( #*, : t > i, 

4%” : u < j). Next, for any polynomial 9(A), 

where ci j is exactly the (1,2) block in 9( W, j). Hence 9( 4 j) = 0 2 9( Wi j) = 0 
and #w,, I I)~,,, completing the proof. n 

LEMMA 3. Zf 
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then #o I #E. 

Proof * 

97 

If in addition, C = 0, then by symmetry J/D = $E. W 

3. SOME PRELIMINARY RESULTS 

Let 

M=[: g] and [i i], 

and suppose that f(X) = f, + f,X + . . . + Ak is a manic polynomial over ‘9. 
Then it is easily seen that 

where 

C=X(C)=fiC+f,(AC+CD)+ ... 

+(Ak-1C+Ak-2CD+ ..a +CDk-‘) 

(3.1) 

Now let G(X) = AX - XD. Clearly both 9 and X are linear maps on Fn Xm. 
Our first observation is that when f annihilates A and D, then the range of G 
must be contained in the n&pace of 3c. 
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LEMMAS. Zff(A)=O,f(D)=O, thenR(B)cN(X). 

Proof Clearly f(M)==0 = f(A)=O, f(D)=0 and C=O. Now if 
C = AX - XD and f(A) = 0, f(D) = 0, then by telescoping induction, C= 
X(C)=(f,A+f,A2+.e.+Ak)-(fiD+...+@)=-&X+&X=0, 
as desired. Alternatively, one could use (3.1) combined with (1.2) and (1.7). w 

In general, one cannot expect equality to hold, since every matrix M has 
annihilating polynomials. Thus the fundamental question is, when does equal- 
ity hold? Before we examine this question, let us observe that the linear map 
X is very closely related to the block blinear map [6] 

T(Y)= [I, A ,.,., Ak-‘](Y@C) . (3.2) 

Using the shift condition (1.6) and applying (1.2), we see that 

AT(Y)-T(Y)D=@[(LY-YLT)@C]9, (3.3) 

where &? = [I, A ,..., Ak-‘I, 9 = [I, DT ,..., (DT)k-l]T, and L = L[f(A)]. 
Hence it would be natural to look for a solution to 

LY - YLT = E,,, (3.4) 

since this would give AT(Y) - r(Y >D = C. Unfortunately (3.4) will be incon- 
sistent is general. If we now use the fact that f(M) = 0, and that C = @(S@ 
C)9 = 0, then by (1.7) we have 

p(A)t=h?[p(L)S@C]q=O 

for any polynomial p(h). It would thus be sufficient to find a polynomial p(X) 
for which 

LY - YLT = E,, + p( L)S (3.5) 

is consistent. Using (1.2) we may rewrite this as 

Lz - ZL = E,,, + P(L)> (3.6) 
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where Z = YS ‘. Again this will not be consistent in general, but stands a 
much better chance than (3.4). We shall take up this question in Section 6. 
Let us now show that if A is nonderogatory (i.e., $A = A,) and $M = $*, then 
C may be removed by similarity. 

4. THE REMOVAL RULE FOR COMPANION MATRICES 

If A = L[ f(X)] is a companion matrix, then unlike the invariant subspace 
notation, the direct sum notation is simplest when applied to lower block 
triangular matrices. We will obtain the desired upper triangular results by 
transposition. This is easier than using a permutation matrix to interchange 
matrices in the direct product notation. 

THEOREM 1. Let 

and N= A 0 [ 1 0 D’ 

where A = L[f(X)], f(h)= fo +fih + .** + P. Zff(M)=O, then DY- YA 
= B= [b,,..., b,,] has a solution 

Y= -[0,b,,Db,+b,,...,D”-2b,+D”-3b2+ ... +b,_,]. 

Proof First of all, it is clear that #M = f(A), since g(M) = 0 implies 
g(A) = 0 and hence f I g. Next, from (3.1) we have that f(M) = 0 if and only 
iff(A)=O,f(D)=Oand 

B= [Z,D ,..., D~-~](s~B) =o, 

where S = S[f(h)]. 
Now the consistency condition B = 0 can be rewritten in column form 

b=Hb=O,whereb=col(B)and 

n-1 n-1 

H= c (AT)Jlfi‘+j+l~~i= c A@Di, (4.1) 
i;j= 0 i=O 
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in which 

n-j-l 

Ai = fi(A)= C A+k+lM’ i=O,l,..., n-l. (4.2) 
j-0 

To identify the matrix H, we use the following trick [5, p. 1121. In the identity 

(hZ - Ar)adj(XZ - AT) = f(A)Z, 

we replace h by D. This gives 

(4.3) 

(ZeD-A’.Z)(n~A~oD’)=GH=O. (4.4) 

Likewise HG = 0, from which it is clear that R(G) c N(H). We shall now 
show that in fact R(G) = N(H). This will crucially depend on the specific 
structure of the companion matrix. It is easily verified that if 

and 

1 
A 1 0 

K(h)= : *. , 1. *I An”-’ . . . x 1 

then [7, p. 1641 

R(A)(XZ- AT)K(A)= (4.5) 
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and 

1 

fW 0 

adj( hZ - AT) = K(X) f(X) R(X)* 
0 

f(h)_ 

Replacing X by D, and recalling that f( 0) = 0, now gives 

R(D)GK(D) = 

and 

0 
z 0 

0 *. 

Z 1 =I-E, 

101 

(4.6) 

Z 
0 

H=K(D) . I 4 R(D). 

0 

It is now easily seen that Hb = 0 = ER(D)b = 0 = b = Rpl(D)(Z - 
E)R(D)b = b = GK(D)R(D)b w b = Gy for some y. Consequently R(G) 
= N(H), and DY - YA = B has a solution Y = toll ‘([ K( D)R( D)]b). n 

REMARKS. 

(1) It follows also that R(H) = N(G). 
(2) The matrix T = K(D)R(D) is an inner inverse of G (i.e. GTG = G), 

of a somewhat simpler form than the one used in [7, p. 1651. It is further clear 
that Z - GT = H-H, where H- = K’(D)EZC’(D). 

(3) An analogous result holds in the case where D = L[g(X)] isAa c?- 

panion matrix and g(M) = 0. In this case it is easier to use the matrix [ 1 o D . 
(4) The results of this section, as well as the previous, remain valid over 

any commutative ring with 1. 
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If B= [b,,b,,..., b,,], then the matrix solution has the form 

/ - 
I 
D z 

Y=colP’ . 

\ 

0 -“b, 

= v,Dv,..., [ D”-‘VI- [O,b,,Db,+b, ,..., DnP2b,+ **. +b,_,], 

(4.7) 

where 

v = h(Db, + h(Db, + . . . + f,-,(Dbn 

=D,,b,+D,b,+ ... +D,plb, 

andDj=fi(D),i=O,l ,..., n-l. Nowby(1.8)v=[ 
in which (S@ Z)b collapses, with the aid of (1.4), to 

I 
A 

(S@B)col(Z) = (S@B) : 

A”-’ 

1, D ,...,DnP1](S@Z)b, 

e1. 

Hence v = Be, = 0. Consequently the solution takes the simple form 

Y= - [O,b,, Db,+b2,...,DnP2bl+ D”-3b2+ ... +b,p,] 

= - I, D,...,D”-‘](I@@ [ 

IT 
I T2 

_I T" 

n-l 
= - ,Fo DiB(JT)‘+‘, (4.8) 
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where 

103 

The form of this solution may of course be verified directly. 
It should be noted that on the basis of (1.3), Jr will never be a polynomial 

in A, so that we cannot expect to be able to write this in the block-blinear 
form of (3.2). Let us now examine some closely related results. 

C~R~LLMY 1. Let 

MzA ’ 
[ 1 

and N= A 01 
B D 0 Dl’ 

with A= L[f(h)]. Let h(M)=O, where h =f(A)r(X) is manic and 
(q,(X), r(h)) = 1. Then DY - YA = B is consistent. 

Proof The proof is similar to that of Theorem 1, except that now 
h(AT)=O implies that (AZ - Ar)H(h)= h(h)Z, where H(A)=CiP’H’A” and 
Hi = h,(A) as in (1.5). Then (4.5) still holds, but 

r(h) 0 

H(h) = K(h) 
h(X) 

0 h(A) 

This gives the same expression for G, but now 

R(X). 

H=K(D) I 
0 

*.* I 

R(D). 

0 

Since ($o, r(A)) = 1, it follows that r(D) is invertible. It is now again clear 
that Hb = 0 w b = GK( D)R( D)b and that the solution Y has the same form 
as above. R 
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C0HOLLARY2. Lem=[; ;] andfv=[;: ;I, withA=L[f(x), 

and f(M) = 0. Then AX - XD = C has a solution 

n-l n-l 

x=C?(zc3c)9= C C PczY 

where 

9 = [P, P2 )...) P”], 

and P = SJS- ‘, with 

0 0 
1 

J= I 1 
1 

0 1 0 

and S= 

(4.9) 

. f, 

0 

Proof. If we set & = [J, J2 ,..., ./“I, then by (1.2) and (1.7) 

AX-XD= [A%$?(A%Z)](Z@C)‘% 

=S{AT& - &(AT@Z))(Z@Sp’)(Z@C)‘% 

Now AT& - &(AT@Z) = [Z,O,. . . ,O] - e,[eTS,eiS,. . . ,eES], in which the sec- 
ond term reduces with the aid of (1.5) to - e, col( I)‘( S B Z ) = 
-e,ei[Z,AT,..., (AT)“-‘](S@Z)= - E,,S-‘Q(S@Z)(Z@S), and where & = 
[I, A,. . . , An-‘]. Hence AX - XD = S[Z, 0,. . . , O](Z @ S-‘)(I @ C)33 - 
SE&‘W(S@Z)(ZSC)i = [I,0 ,...,O](Z@C)9 - SE&-‘@(SW)9 = C, 
since the second term vanishes by (3.1). 

REMARKS. 

(1) The solution in (4.9) can be obtained by applying Theorem 1 to the 
matrices 
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These are obtained from MT and NT by a similarity transformation on AT. In 
fact X = - SYr, where Y is the solution to DrY - YA = C’S’, given by 
(4.8). 

(2) The matrix P = SJS-’ can be simplified if we use the fact that 

Then 

P=S 

OT 

eT n 

e:A 

eTAn-2 
” 

Alternatively,ifwesetJ=L+f~,withfT=[fo,fi,...,ffl_1]T, thenP=Z+ 
SfezS-’ = Z + Sf<A”-‘. Likewise SE,,S-r reduces to E,,. 

with A = L( pk), D = L( 9’), and p, 9 prime polynomials, then the following 
are equivalent: 

(i) DY - YA = B is consistent, 
(ii) M = N, 
(iii) qM = GN. 

Proof. (iii)=, (i): If p * 9 then I& = pk9’, and it is well-known that the 
equation in (i) has a unique solution. Alternatively, we could use Corollary 1, 
which actually gives a simpler solution. If p = 9, then $h7 = pf, t = max(k, I), 

andso&,=~~or~,=~, and either Theorem 1 or Corollary 2 applies. n 

We should remark here that the results of Theorem 1 and Corollary 3 
essentially solve the problem of giving a tractable consistency condition and a 
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simple particular solution to the matrix equation 

HkX - XH, = c, k<l, (4.10) 

where H, = H( pk) is the hypercompanion matrix of pk. Indeed, if L, = L( p’) 
and Q[= [z,L~z,...,L~~‘z;p(L,)z,...,p(L,)L~~1z;~~~p’-1(L,)L;-1z], with 
& = p’, then QclLIQl = H,. Hence we obtain 

L,Y - YL, = B, (4.11) 

where Y = QkXQ;’ and B = Q&Q; ‘. It then follo_ws from (3.1) that (4.10) is 
consistent precisely when the block-bilinear form B vanishes, that is, when 

n-l n-l 

C C H;&+j+lCH/=O> (4.12) 
i-0 j-0 

where f(A) = p’(X) and n = rl = 85 Moreover, a particular solution is given 
by the block-bilinear form 

n-1 

X= - c H;C(Q;‘JTQl)i+l. (4.13) 
i=O 

The expression in parentheses is independent of the choice of z, as long as 
qz = p’. This may be seen as follows. If zT= [z,, z,,...,z,_,] and z(h)= 
Cr:J:zix’, then QI can be written as x(L,)M, where z(L,) is invertible and 

Now x(L,)-‘JTz(L,) is independent of the choice of z, which follows from 
the following fact: 

LEMMA. IfL=L(f) andg(X)=g,+ .*. +g,_,AnP’, theng(L)P= 
Pg(L) ifund only if-g(A) = g,. 
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5. THE CYCLIC DECOMPOSITION THEOREM 

Let us now use the removal rule for companion matrices to give a quick 
constructive proof of the cyclic decomposition theorem. It should be pointed 
out that there is a weak version of this theorem, which states that 

Wl) 0 

W2) 
A=A,= 

0 WJ _ 

for some polynomials &, &, . . . , I,!+. On the other side there is the strong 
version, which in addition states that we may select the qi so that & + 1 I I/+, 
and #1 = GA. In this case the qi are unique and are called the invariant factors 
of A. The weak version is usually proven using the cyclic decomposition 
theorem for abelian groups [9, p. 1621, but uses induction and gives no real 
information as to the actual transformation that has been used. The strong 
version of the CDT is traditionally proven either by induction or by using 
quotient spaces, and is also not transparent as to what goes on. 

THEOREM 2. Let A E %n Xn. Then 

Proof Let A = A, and #A = $I. From the primary decomposition theo- 
rem we know that there exists a vector x that belongs to J/1, i.e., \c;; = #1. 
Selecting the vectors [x, Ax,. . . , Akelx] as first part of our basic matrix Q, we 
have 

AQ=Q 
L(41) Cl Lt-I 0 A,’ 

Since q1 = $J*, it is clear that ql( AZ) = 0 and +A2 I I)~. It is now clear that 
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Corollary 2 is applicable, and 

Repeating with A, yields the desired canonical form. The uniqueness follows 
from Lemma 3. For if 

Wl) 0 L(cpl) 0 

L&2) m2,) 
z 

0 WA_ _ 0 ms,) _ 

have the same minimal polynomial. That is, $J~ = Go. NOW repeat. 

6. THE SEMISIMPLE CASE 

Recall that a matrix M E F,, Xn is semisimple [lo, p. 2631 if $M(X) = 
p,(h)p,(A) . . . p&A), where the pi(A) are distinct primes. If the pi are linear, 
we usually call M simple. In either case the removal rule takes on a 
particularly simple form. 

THEOREM 3. Let #M(X)=f(A)=&+fiX+ ... +Ak, and let L= 
L[ f(A)]. Then the following are equivalent: 

(i) M is semisimple, 

(ii) (f, f) = 1, 
(iii) e, E R[f(L)], 
(iv) LZ - ZL = E,, + p(L) is consistent for some polynomial p(X), 
(v) every invariant subspace has an invariant complement. 
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Proof. (i)* (ii): Since f(h) has no repeated factors and the p,(A) are 

distinct primes, this is clear. 
(ii) d (iii): Since (f, f) = 1 and f = $M, it follows that f’(L) is invertible. 

(iii) =j (iv): Consider LZ - ZL = E,, + p(L), with p(X) a polynomial. 

This is exactly Equation (3.6). To check consistency, recall that 

(AZ- LT)K(X)= 

On replacing A by D we have 

(ZsD - L%Z)K(D) = 

0 
-I 

(6.1) 

f”ll, @*2) 
where G = I@ D - LT@Z is given by (4.6) with n = k. Now consider the 
special case where D = L, and f i( D) = Li. Then on taking columns through 
(3.6) and using (1.3) with p(L) = [p, Lp,. . . ,Lk-‘p], we obtain 

Gz= 

P 

LP 

= w. (6.3) 

Lk-‘p 

e, + Lk-‘p 

This will be consistent precisely when the system 

0’ -z _+__----- u=w 

0 1 L&,“‘Lk_, 1 
(6.4) 

is consistent, where u = K( L)-‘z. Using elementary row operations, this 
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reduces to 

P 
LP 

0 -I 

I 1 0 ou= : 9 

Lk-2p 
_ q _ 

@5> 

where q = (L, + LL, + LkelLk_i)p+en. Clearly (6.5) is consistent exactly 
when q = 0, that is, when e, E R(T), where T = L,, + LL, + . . . + LkplLk_,. 
Using (1.6) and adding terms, we see that 

k-l 

T=f’(L), where f(x) = c $Ai-r. 
i=O 

Consequently, (3.6) is consistent if and only if e, E R[f(L)]. 
(iv) * (v): Let 

Mz * ’ =M,. 
[ 1 0 D 

It suffices to show that C can be removed by. a similarity transformation. 
Using the results of Section 3, we recall that the consistency of (3.6) suffices 
for AX - XD = C to have a solution, and so we are done. 

(v) 2 (i): This was shown in [lo, p. 2641. H 

REMARKS. 

(1) If e, E R [ f( L)], then one can directly show that (f, f) = 1. Indeed, 
since f’(L) commutes with L, R[f’(L)] is an Ginvariant subspace. Thus, 
span(e,, Le,, . . . , Lk-‘el) G R[f( L)], which ensures that f(L) is invertible 
and (f, f) = 1. 

(2) The construction of part (iv) in Theorem 3 actually also shows that 
any matrix X can be written in the form LZ - ZL - p(L), for suitable Z and 
p(X). In fact, on taking columns, we obtain (6.5) modified to 

r _ -S- 
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where r = f(L)p and s = Lax,, + L,x, + . . . + Lk_l~k_l. This gives p = 
-[f’(L,)lP’s and ui+r= -(xi+Lip), i=O,l,...,k-2, with u0 arbitrary. 
From this we may recover z = K(D)u and hence 2. 

(3) The equivalence of parts (i) and (v) in Theorem 3 may also be seen 
from the fact that M is semisimple precisely when the ring R = ‘%[ M] is 
semisimple. Since both chain conditions obviously hold in R, every left 
R-module is completely reducible. In particular every R-submodule of s9” is 
a direct summand, which translates back to (v). The converse follows simi- 
larly. 

(4) The equivalence of (i) and (v) may also be proven using the method of 
Section 4. Indeed, if 

McA ’ 
[ 1 0 D 

andiff(M)=O,thenf(A)=O,f(D)=O,and~=O.Again~=Oifandonly 
if Hc = 0, where 

k-l 

H= C D,T@A' and Di= fi(D). 
i=O 

On the other hand f( DT) = 0 implies that 

(AZ-DT)H(h)=f(h)Z, 

where 

k-l 

H(X)= c Di'xi. 
0 

Formally differentiating this with respect to h shows that 

Replacing X by A now gives 

GH'(A)+H=Z@f'(A) 

(6.6) 

(6.7) 

where 

G = (Z@A- D%Z) 
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k-l 

H’(A) = c iDT@A’-’ 
i=O 

Now (f, f) = 1 implies that f’(A)-’ exists and is a polynomial in A. 
Consequently, Z@y( A) and G commute. Hence if Hc = 0, then we obtain 

G[Zsf’(A)-‘]H’(A)c=c (6.6) 

ensuring that c E R(G), and AX - XD = C is consistent. The solution we 
found is given by 

k-l 

x=co1-’ c iDT@A’-‘( f( A)) ~ ‘c (6.9) 
i=O 

which may be written in block-bilinear form 

X = [I, A ,..., Ak-‘](Y@C) 

for some matrix Y depending on the coefficients in f’(A) 
(5) The case where 

MsA ’ 
[ 1 0 D 

l = C~;o'y,A'. 

is semisimple is not the only case where a block-bilinear solution of the form 
(3.2) solves AX - XD = C. The other well-known case is where (AA, A,) = 1 

[6]. In fact, using (6.2) with D replaced by L, and setting L = L,, f= A,, 
we see that I8 L, - L@ I is invertible, as f( LA) is invertible. Hence L,Y - 

YL, = E,,S is consistent, as well as L,Y - YL; = E,,. The latter ensures that 

X = [I, A ,...,Am-‘](Y@C) 

will solve AX - XD = C uniquely. 



ROTH’S REMOVAL RULE 113 

7. ROTH’S SIMILARITY THEOREM 

We conclude this paper by applying the removal rule for companion 
matrices, in the form of Corollary 2, to give a constructive algorithm for 
finding the solution to AX - XD = C. Again let 

MzA ’ 
[ 1 [ I. 

Without loss of generality, using the CDT, let 

A=[; .; :‘:c 1. ,1, 

where Ai = L( p:l) and Dj = L(9)). Furthermore, let us assume that the 
elementary divisors $1 have been ordered in decreasing order, so that 
ki > ki+i whenever pi + r = pi, and that the elementary divisors of D have 
been ordered in increasing order. That is, lj < lj+ 1 whenever 9j+ 1 = 9? Also 

let C = [Cij] be partitioned conformally. It is well known that if 

AiXij- XijDj= Cij (7.1) 

has a solution for every value of i and j, then the block matrix X = [Xi j] solves 
AX - XD = C. There are two cases to be considered. 

Case (i): pi * 9i. In this case (pi, 9j) = 1 and (7.1) has a unique solution 
[7, p. 1711, which can be expressed as a block-bilinear solution. Alternatively, 
Corollary 1 can be used. 

Case (ii): pi = 9f Let 

qj= 
Ai Cij 

i 1 0 Di 
and Sij= 

Ai 
0 

Ai+l 

0 AnI 

0 

c,, ... 'ij 

C ml ... Glj 

z-3 0 
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Then by Lemma l(a), $wbt = pf, where t = max( k i , Zi). On the other hand, by 
Lemma 2, $w,, I t+Ls,,, where #s,, = Icm(#AU: u > i, &,,: 2) < j). From the way 

the elementary divisors have been ordered, it follows that I&, = 
Icm($Ai, $nj).r(X), where r(X) is coprime to the first factor. Hence ‘I/w,i = 

lcm(#Az, Gpj). This means that Theorem 1, or Corollary 2, may be applied to 
each yi mdependentIy, without changing the matrices Cij in the process. 
Thus we may remove the C, j one by one without any further calculations, and 
(7.1) has a solution for each i and j, as desired. 

8. CONCLUSIONS 

Several of the results, such as those in Sections 3 and 4, remain valid over 
any commutative ring with 1. It is not known whether the method of 
annihilating polynomials can be used to prove Roth’s theorem for commuta- 
tive rings. On the other hand, Theorem 1, will no longer hold if Fis replaced 

by Z, and the conditions A = L[ f(X)] and f(M) = 0 are replaced by the 

assumptions that A is indecomposable under similarity and AA(M) = 0. For 
example, let 

and C= 0 1 

I I 0 0’ 

Then AX - XD = C has no solution over Z. We close with a question related 
to the above content: when exactly does AX - XD = C have a block-bilinear 

solution Ci jA’ yi ,CB j? Partial answers were given in [6] and [ 111. 

The author wishes to thank the referee fm making several valuable 
suggestions, including remarks (2) and (3) and the proof of remark (1) 
following Theorem 3. 
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