
Artificial Intelligence 172 (2008) 1158–1193

www.elsevier.com/locate/artint

Temporal reasoning about fuzzy intervals

Steven Schockaert ∗,1, Martine De Cock

Ghent University, Department of Applied Mathematics and Computer Science, Krijgslaan 281-S9, 9000 Gent, Belgium

Received 7 July 2007; received in revised form 14 December 2007; accepted 4 January 2008

Available online 11 January 2008

Abstract

Traditional approaches to temporal reasoning assume that time periods and time spans of events can be accurately represented as
intervals. Real-world time periods and events, on the other hand, are often characterized by vague temporal boundaries, requiring
appropriate generalizations of existing formalisms. This paper presents a framework for reasoning about qualitative and metric
temporal relations between vague time periods. In particular, we show how several interesting problems, like consistency and
entailment checking, can be reduced to reasoning tasks in existing temporal reasoning frameworks. We furthermore demonstrate
that all reasoning tasks of interest are NP-complete, which reveals that adding vagueness to temporal reasoning does not increase
its computational complexity. To support efficient reasoning, a large tractable subfragment is identified, among others, generalizing
the well-known ORD Horn subfragment of the Interval Algebra (extended with metric constraints).
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Time plays a key role in many application domains, ranging from scheduling and planning [2,17,19] to natural
language understanding [29,34], multi-document summarization [6], question answering [22,32,39] and dynamic mul-
timedia presentation [3,10,18]. Starting from Allen’s seminal work on qualitative interval relations (e.g., A happened
during B , A overlaps with B; [1]), increasingly more expressive formalisms have been proposed to reason about
time, among others allowing to specify metric constraints between two time points (e.g., p happened 4 time units
before q; [12]), to combine qualitative and metric information [25,31], to specify constraints on the (relative) duration
of events [35], and to specify arbitrary disjunctions of temporal constraints [23,27]. Most reasoning tasks of interest in
these formalisms are NP-complete. To cope with this, a lot of research efforts have been directed towards identifying
subfragments of the various calculi in which reasoning becomes tractable [13,14,28,37], as well as towards deriving
efficient solution strategies for NP-complete reasoning problems [8,36,45,46].

Research, however, has largely focused on reasoning about time periods, and time spans of events, which can
be accurately represented as an interval. In contrast, many real-world events and time periods are characterized by
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Fig. 1. Fuzzy sets defining the vague time span of Picasso’s Blue, Rose, and Cubist periods.

an inherently gradual or ill-defined beginning and ending. Typical examples are large-scale historical events like the
Russian Revolution, the Great Depression, the Second World War, the Cold War, and the Dotcom Bubble, or historical
time periods like the Middle Ages, the Renaissance, the Age of Enlightenment, and the Industrial Revolution, but also
small-scale events like sleeping and being born. Moreover, in natural language, vague temporal markers are frequently
found to convey underspecified temporal information: early summer, during his childhood, in the evening, etc. Note
that the vagueness of these events and time periods is fundamentally different from the uncertainty that exists among
historicians about, for example, the time period during which the Mona Lisa was painted.

A formal definition of the notion of an event is difficult to provide. Clearly, an event is something that happens at
a particular time and a particular place (e.g., World War II); it can have parts (e.g., the Battle of the Bulge), it can
belong to a certain category (e.g., Military Conflict) and it can have consequences (e.g., the Cold War) [47]. We will,
however, abstract away from any particular formalization of events, and focus on their temporal dimension only. As
such, we will conceptually make no difference between time periods and events. Vague time periods are naturally
represented as fuzzy sets [48]. A vague time period is then represented as a mapping A from the real line R to the unit
interval [0,1]. For a time instant t (t ∈ R), A(t) expresses to what extent t belongs to the time period A. When A is
a crisp time period, for all t in R, A(t) is either 0 (perfect non-membership) or 1 (perfect membership). When A is a
vague time period, on the other hand, A will typically be gradually increasing over an interval [t1, t2] and gradually
decreasing over an interval [t3, t4], where A(t) = 1 for t in [t2, t3] and A(t) = 0 for t < t1 and t > t4. As an example,
consider Picasso’s Blue, Rose and Cubist periods. Regarding the definition of the Rose period, for example, we find2

So 1904 is a transitional year and belongs neither truly to the blue period, nor to the rose period.

Similarly, the ending of the Rose period, as well as the beginning and ending of the Cubist period are inherently
gradual. Fig. 1 depicts a possible definition of Picasso’s Rose period, as well as the ending of his Blue period and the
beginning of his Cubist period. These definitions reflect the gradual transition to the Rose period during 1904, as well
as Picasso’s experiments with new styles from 1906 and especially from 1907, eventually leading to his Cubist period.
Clearly, the definition of a fuzzy set representing a vague time period is to some extent subjective. In fact, there is no
real reason why January 1, 1907 should belong to the Rose period to degree 0.8 and not to degree 0.75 or 0.85. What
is most important is the qualitative ordering the membership degrees impose, e.g., June 1, 1907 is more compatible
with the Rose period than the Cubist period; March 15, 1904 is less compatible with the Rose period than June 1,
1907, etc.

Applications based on classical temporal reasoning algorithms, like temporal question answering or multi-
document summarization, fail to work correctly when the events or time periods involved are vague. For example,
when extracting information about the life and work of Picasso from web documents, inconsistencies quickly arise:

(1) Bread and Fruit Dish on a Table (1909) marks the beginning of Picasso’s “Analytical” Cubism . . . 3

2 http://pablo-picasso.paintings.name/rose-period/, accessed May 21, 2007.
3 http://www.abcgallery.com/P/picasso/picassobio.html, accessed May 21, 2007.

http://pablo-picasso.paintings.name/rose-period/
http://pablo-picasso.paintings.name/rose-period/
http://www.abcgallery.com/P/picasso/picassobio.html
http://www.abcgallery.com/P/picasso/picassobio.html
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(2) The first stage of Picasso’s cubism is known as analytical cubism. It began in 1908 and ended in 1912, . . . 4

(3) The ‘Demoiselles d’Avignon’ of 1907 mark the beginning of his [Picasso’s] Cubist period in which he exceeded
the classical form.5

The solution to this problem is not to discard the least reliable sources until the resulting knowledge base is consistent,
but to acknowledge that some of the temporal relations expressed in the sentences above are only true to some extent:
the beginning of Picasso’s Analytical Cubism coincides with the beginning of cubism to some degree λ1, Picasso’s
Cubist period began with “Demoiselles d’Avignon” in 1907 to some degree λ2, Picasso’s Analytical Cubism began in
1908 to some degree λ3, Picasso’s Analytical Cubism began with “Bread and Fruit Dish on a Table” in 1909 to some
degree λ4. The aim of this paper is to derive algorithms for reasoning about such fuzzy temporal information, e.g.,
which values of λ1, λ2, λ3, λ4 result in a consistent interpretation of the sentences above? What conclusions can we
establish given a consistent set of (fuzzy) assertions about (vague) time periods? Our primary objective is to obtain a
temporal reasoning framework that is, among others, suitable for natural language applications like multi-document
summarization or question answering when some of the time periods and events involved are vague.

The structure of this paper is as follows. In the next section, we review related work on fuzzy temporal information
processing, while Section 3 familiarizes the reader with some important preliminaries from fuzzy set theory and
temporal reasoning. In Section 4, we introduce our framework for representing fuzzy temporal information. Next, in
Section 5, we introduce an algorithm to check the consistency of a set of assertions about fuzzy time periods. The
computational complexity of this problem is investigated in Section 6. Section 7 discusses how new information can
be derived from given information. Finally, Section 8 presents some concluding remarks and directions for future
work.

2. Related work

Although processing fuzzy temporal information is well studied in literature, research has tended to focus on mod-
elling vague temporal information about crisp events (e.g., Picasso died in the early 1970s), rather than on modelling
temporal information about vague events. For example, in [16] possibility theory is employed to represent vague dates
(e.g., early summer), and vague temporal constraints (e.g., A happened about three months before B). The underlying
assumption is that all events have crisp, albeit unknown, temporal boundaries; only our knowledge about these crisp
boundaries is vague. Based on this possibilistic approach, [5] introduced the notion of a fuzzy temporal constraint
network. In this framework, temporal information is represented as fuzzy temporal constraints, i.e., fuzzy restric-
tions on the possible distances between time points. Sound and complete reasoning procedures were provided in [30].
A generalization in which disjunctions of fuzzy temporal constraints can be expressed has been introduced in [8].

A different line of research has focused on fuzzy extensions of classical calculi for temporal reasoning to encode
preferences. For example, [26] discusses a generalization of Temporal Constraint Satisfaction Problems (TCSP) in
which a preference value is attached to each temporal constraint. When a given TCSP is inconsistent, the preference
values are used to determine which constraints should be ignored. Similarly, [4] introduces the framework IAfuz in
which preference values are attached to atomic Allen relations. A relation in IAfuz can thus be regarded as a fuzzy set
of atomic Allen relations. Interestingly, all main reasoning tasks are shown to be NP-complete and a maximal tractable
subfragment is identified. Fuzzy sets of atomic Allen relations have also been considered in [21], where the adequate
modelling of temporal expressions in natural language was the main motivation, rather than encoding preferences.

The need for formalisms dealing with vague events and time periods has been pointed out in various contexts,
including semantic web reasoning [9], historical databases and ontologies [33], document retrieval [24], and temporal
question answering [40]. Nevertheless, none of the approaches mentioned above is suitable to represent temporal
information about events whose boundaries are inherently gradual or ill-defined. Inspired by measures for comparing
and ranking fuzzy numbers [7,15], some definitions of fuzzy temporal relations between vague events have already
been proposed [33,38,42]. A key problem in generalizing temporal relations to cope with fuzzy time spans is that
traditionally, temporal relations have been defined as constraints on boundary points of intervals. Because such well-

4 http://www.pokemonultimate.wanadoo.co.uk/picasso.html, accessed May 21, 2007.
5 http://www.kettererkunst.com/details-e.php?obnr=410702527&anummer=315, accessed May 21, 2007.

http://www.pokemonultimate.wanadoo.co.uk/picasso.html
http://www.pokemonultimate.wanadoo.co.uk/picasso.html
http://www.kettererkunst.com/details-e.php?obnr=410702527&anummer=315
http://www.kettererkunst.com/details-e.php?obnr=410702527&anummer=315
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defined boundary points are absent in fuzzy time intervals, alternative ways of looking at temporal relations are
required.

Nagypál and Motik [33] start from the observation that several sets of time points can be associated with each
interval A = [a−, a+], viz. the semi-intervals A<− =] − ∞, a−[, A�− =] − ∞, a−], A<+ =] − ∞, a+[, A�+ =
] − ∞, a+], A>− =]a−,+∞[, A�− = [a−,+∞[, A>+ =]a+,+∞[ and A�+ = [a+,+∞[. Qualitative constraints
on the boundary points of two intervals A = [a−, a+] and B = [b−, b+] can be translated into set operations on the
corresponding semi-intervals. For example, m(A,B) holds iff a+ = b−, which can be expressed as A>+ ∩ B<− =
∅ ∧ A<+ ∩ B>− = ∅. To define qualitative temporal relations between fuzzy time spans, Nagypál and Motik define
A<−,A�−,A<+,A�+,A>−,A�−,A>+,A�+ for a fuzzy set A as:

A>−(p) = sup
q<p

A(q) A�−(p) = 1 − A>−(p)

A�−(p) = sup
q�p

A(q) A<−(p) = 1 − A�−(p)

A<+(p) = sup
q>p

A(q) A�+(p) = 1 − A<+(p)

A�+(p) = sup
q�p

A(q) A>+(p) = 1 − A�+(p)

The degree to which m(A,B) is satisfied, for instance, is then defined as

m(A,B) = min
(
1 − sup

p∈R

min
(
A>+(p),B<−(p)

)
,1 − sup

p∈R

min
(
A<+(p),B>−(p)

))

= min
(

inf
p∈R

max
(
1 − A>+(p),1 − B<−(p)

)
, inf
p∈R

max
(
1 − A<+(p),1 − B>−(p)

))

= min
(

inf
p∈R

max
(
A�+(p),B�−(p)

)
, inf
p∈R

max
(
A�+(p),B�−(p)

))

Although this approach has a certain appeal, the resulting fuzzy temporal relations do not always behave intuitively.
For example, for crisp intervals the equals relation is reflexive, while starts, finishes and during are irreflexive. Taking
into account this intended meaning, we would expect that for fuzzy time spans e(A,A) = 1 and s(A,A) = f (A,A) =
d(A,A) = 0, or at least, that e(A,A) > max(s(A,A),f (A,A), d(A,A)). However, using the definitions proposed
by Nagypál and Motik, if A is a continuous fuzzy set, it holds that e(A,A) = s(A,A) = f (A,A) = d(A,A) = 0.5.
The reason for this anomaly lies in the definition of the fuzzy sets A<−,A�−, . . . ,A�+. While these definitions do
correspond to their intended meaning when A is a crisp interval, for a continuous fuzzy set A, we have the undesirable
property that A>− = A�−, A<− = A�−, A>+ = A�+ and A<+ = A�+.

In [38], a fundamentally different approach to modelling temporal relations between fuzzy time spans is taken. The
starting point is that even for crisp intervals A and B , relations like before can hold to some degree. For example,
if A = [0,50] and B = [45,100], we may intuitively think of A as being before B , instead of overlapping with B ,
because most of A is before the beginning of B . In [38], the degree to which b(A,B) holds is therefore defined
based on which fraction of A is before the beginning of B , where A and B may be crisp or fuzzy time spans. When
temporal relations are defined in this way, we (deliberately) lose the original meaning of Allen’s relations. Although
such definitions may definitely be useful in many domains (e.g., querying temporal databases), they are not suitable
as a basis for fuzzy temporal reasoning.

To the best of our knowledge, however, the issue of temporal reasoning about fuzzy time intervals has only been
addressed in [40], where a sound but incomplete algorithm is introduced to find consequences of a given, restricted
set of assertions. Finally, note that this paper is an extended and generalized version of [43]. In addition to providing a
more detailed discussion, as well as proofs of all results, we generalize the results from [43], where a purely qualitative
approach was adopted, by also considering metric constraints.



1162 S. Schockaert, M. De Cock / Artificial Intelligence 172 (2008) 1158–1193
3. Preliminaries

3.1. Fuzzy temporal relations

A fuzzy set [48] in a universe U is defined as a mapping A from U to [0,1], representing a vague concept. For u in
U , A(u) expresses the degree to which u is compatible with the concept A and is called the membership degree of u

in A. In particular, we will use fuzzy sets in R to represent time spans of vague events. For clarity, traditional sets are
sometimes called crisp sets in the context of fuzzy set theory. If A and B are fuzzy sets in the same universe U , A is
called a fuzzy subset of B , written A ⊆ B , iff A(u) � B(u) for all u in U .

For every α in ]0,1], we let Aα denote the crisp subset of U defined by

Aα = {
u | u ∈ U ∧ A(u) � α

}
Aα is called the α-level set of the fuzzy set A. In particular, A1 is the set of elements from U that are fully compatible
with the vague concept modelled by A. If A1 	= ∅, the fuzzy set A is called normalized and elements from A1 are
called modal values of A. The support supp(A) of A is the (crisp) set of elements from U which belong to A to a
strictly positive degree:

supp(A) = {
u | u ∈ U ∧ A(u) > 0

}
A fuzzy set A in R is called convex if for every α in ]0,1], the set Aα is convex (i.e., a singleton or an interval).

To adequately generalize the notion of a time interval, a closed and bounded interval of real numbers, some natural
restrictions on the α-level sets are typically imposed.

Definition 1 (Fuzzy time interval). (See [42].) A fuzzy (time) interval is a normalized fuzzy set in R with a bounded
support, such that for every α in ]0,1], Aα is a closed interval.

For example, the fuzzy sets corresponding to Picasso’s Blue, Rose and Cubist period from Fig. 1 are fuzzy time
intervals. The condition that all α-level sets of a fuzzy time span be intervals implies that any fuzzy time interval is
a convex fuzzy set in R. Hence, fuzzy time intervals always consist of a monotonically increasing part, followed by
a monotonically decreasing part. As a consequence, the fuzzy set depicted in Fig. 2(a) is a fuzzy time span, whereas
the fuzzy set from 2(b) is not, because of the decreasing part between a and b. By furthermore requiring that α-level
sets be closed sets, we restrict the kind of discontinuities allowed. For example, the fuzzy set from Fig. 2(d) is not a
fuzzy time interval, since its 0.4- and 0.7-level sets are half open intervals. On the other hand, the fuzzy set shown in
Fig. 2(c) is a fuzzy time interval. It can be shown that a bounded fuzzy set of real numbers is a fuzzy time interval iff
it is convex and upper semi-continuous. For a fuzzy interval A and α ∈]0,1], we let A−

α and A+
α denote the beginning

and ending of the interval Aα .
When the time spans of events are vague, also the temporal relations between them are a matter of degree. Tradi-

tionally, temporal relations between time intervals have been defined by means of constraints on the boundary points
of these intervals. Due to the gradual nature of fuzzy time spans, a different, more general approach has to be adopted
here. The definitions of our fuzzy temporal relations are inspired by the fact that temporal relations between time inter-
vals can alternatively be specified using first-order expressions that do not involve any boundary points. For example,
for crisp intervals A = [a−, a+] and B = [b−, b+], it is easy to see that (d ∈ R)

a− < b− − d ⇔ (∃p)
(
p ∈ A ∧ (∀q)(q ∈ B ⇒ p < q − d)

)
(1)

To define the degree to which the beginning of a fuzzy time interval A is more than d time units before the beginning
of B , written bb

�
d (A,B), we generalize the right-hand side of (1) using fuzzy logic connectives. In fuzzy logic,

elements from the unit interval [0,1] represent truth degrees. To generalize logical conjunction to fuzzy logic, a wide
class of [0,1]2 − [0,1] mappings, called t-norms, can be used. The only requirements are that the mapping T being
used is symmetric, associative, increasing, and satisfies the boundary condition T (x,1) = x for all x in [0,1]. Logical
implication can be generalized using the residual implicator IT of a t-norm T , i.e. the [0,1]2 −[0,1] mapping defined
for x and y in [0,1] as

IT (x, y) = sup
{
λ | λ ∈ [0,1] ∧ T (x,λ) � y

}
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Fig. 2. The fuzzy sets of real numbers displayed in (a) and (c) are fuzzy time spans, whereas those in (b) and (d) are not.

Table 1
Commonly used t-norms and their residual implicators

t-norm Residual implicator

TM(x, y) = min(x, y) ITM
(x, y) =

{
1 if x � y

y otherwise

TP (x, y) = x · y ITP
(x, y) =

{
1 if x � y
y
x otherwise

TW (x, y) = max(0, x + y − 1) ITW
(x, y) = min(1,1 − x + y)

Some commonly used t-norms are the minimum TM , the product TP and the Łukasiewicz t-norm TW . Their definitions
and the corresponding residual implicators are displayed in Table 1. Universal and existential quantification can be
generalized using the infimum and supremum respectively.

This leads to the following definition [42]:

bb
�
d (A,B) = sup

p∈R

T
(
A(p), inf

q∈R

IT

(
B(q),L

�
d (p, q)

))
(2)

where L
�
d (p, q) = 1 iff p < q −d and L

�
d (x, y) = 0 otherwise. In the same way, we can define the degree ee

�
d (A,B)

to which the end of A is more than d time units before the end of B , the degree be
�
d (A,B) to which the beginning of

A is more than d time units before the end of B and the degree eb�(A,B) to which the end of A is more than d time
units before the beginning of B as [42]:

ee
�
d (A,B) = sup

q∈R

T
(
B(q), inf

p∈R

IT

(
A(p),L

�
d (p, q)

))
(3)

be
�
d (A,B) = sup

p∈R

T
(
A(p), sup

q∈R

T
(
B(q),L

�
d (p, q)

))
(4)

eb
�
d (A,B) = inf IT

(
A(p), inf IT

(
B(q),L

�
d (p, q)

))
(5)
p∈R q∈R
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Table 2
Characterization of the fuzzy temporal relations when A and B correspond to crisp intervals [a−, a+] and [b−, b+]
Fuzzy Crisp Fuzzy Crisp

bb
�
d

(A,B) a− < b− − d bb
�
d

(A,B) a− � b− + d

ee
�
d

(A,B) a+ < b+ − d ee
�
d

(A,B) a+ � b+ + d

be
�
d

(A,B) a− < b+ − d be
�
d

(A,B) a− � b+ + d

eb
�
d

(A,B) a+ < b− − d eb
�
d

(A,B) a+ � b− + d

Fig. 3. Since the definition of the fuzzy time intervals B and C are similar, it is desirable that |bb�(A,B) − bb�(A,C)| is small.

Finally, the degree bb
�
d (A,B) to which the beginning of A is at most d time units after the beginning of B is defined

by

bb
�
d (A,B) = 1 − bb

�
d (B,A) (6)

In the same way, we define ee
�
d (A,B), be

�
d (A,B) and eb

�
d (A,B) as

ee
�
d (A,B) = 1 − ee

�
d (B,A) (7)

be
�
d (A,B) = 1 − eb

�
d (B,A) (8)

eb
�
d (A,B) = 1 − be

�
d (B,A) (9)

For convenience, we will sometimes omit the subscript when d = 0 (e.g., bb
�
0 = bb�). In this case, (2)–(9) express

qualitative relations between fuzzy time intervals; e.g., ee�(A,B) is the degree to which the end of A is strictly
before the end of B , eb�(A,B) is the degree to which the end of A is before or equal to the beginning of B . Note
that it is the vagueness of the events that gives rise to the vagueness of the temporal relations. If A and B correspond
to crisp intervals [a−, a+] and [b−, b+], the fuzzy temporal relations reduce to classical temporal constraints. This is
illustrated in Table 2.

There are several reasons why using the Łukasiewicz t-norm TW in the definitions (2)–(5) is advantageous over
using, for example, TM or TP . First, it is desirable that small changes in the definitions of the fuzzy time intervals A

and B result in small changes of the values of bb
�
d (A,B), ee�

d (A,B), be
�
d (A,B) and eb

�
d (A,B). This is particularly

true in applications where fuzzy time intervals are constructed automatically from, for example, web documents, as
in such applications, small variations in membership degrees may be due to noise (e.g., incorrect information on web
pages, errors introduced by the information extraction technique that is used, etc.). Consider the fuzzy time intervals A,
B and C depicted in Fig. 3. Because B and C are very similar, we would like to have that the value of bb�(A,B)

is close to the value of bb�(A,C). Irrespective of the t-norm T being used, it holds that bb�(A,B) = 1, i.e., the
beginning of A is strictly before the beginning of B to degree 1. When using TM , however, we have that

bb�(A,C) = sup
p∈R

TM

(
A(p), inf

q∈R

ITM

(
C(q),L�(p, q)

))

� sup TM

(
A(p), ITM

(
C(c1),L

�(p, c1)
))
p∈R



S. Schockaert, M. De Cock / Artificial Intelligence 172 (2008) 1158–1193 1165
Fig. 4. The generalized transitivity rule (11) may be violated when TM or TP is used.

where c1 is defined as in Fig. 3. As for each p in R either A(p) = 0 or L�(p, c1) = 0, we establish that
bb�(A,C) = 0. In the same way, we can show that bb�(A,C) = 0 when using TP . On the other hand, when T = TW ,
we can show that

bb�(A,C) = sup
p∈R

TW

(
A(p), inf

q∈R

ITW

(
C(q),L�(p, q)

))

= TW

(
A(a2), ITW

(
C(c1),L

�(a2, c1)
))

= ITW
(0.1,0)

= 0.9

Another advantage of the Łukasiewicz t-norm is related to transitivity. To ensure that the fuzzy temporal relations
(2)–(9) display an intuitive behaviour, it is desirable that they satisfy generalized transitivity rules like

T
(
bb�(A,B), bb�(B,C)

)
� bb�(A,C) (10)

T
(
bb�(A,B), bb�(B,C)

)
� bb�(A,C) (11)

expressing that the degree to which the beginning of A is (strictly) before the beginning of C is at least as high as the
degree to which both the beginning of A is (strictly) before the beginning of B and the beginning of B is (strictly)
before the beginning of C. While it is possible to show that (10) holds for any left-continuous t-norm (i.e., a t-norm
whose partial mappings are left-continuous, such as TM , TP and TW ), (11) may be violated when TM or TP is used.
For example, let A, B and C be defined as in Fig. 4. Regardless of whether T is TM , TP or TW , it holds that

bb�(A,B) = bb�(B,C) = 0.5

bb�(A,C) = 1

This implies

TM

(
bb�(C,B), bb�(B,A)

)
= min

(
1 − bb�(B,C),1 − bb�(A,B)

)
= 0.5

> bb�(C,A) = 0

violating (11). In the same way, we find

TP

(
bb�(C,B), bb�(B,A)

) = 0.25 > bb�(C,A) = 0

As shown in [41], all generalized transitivity rules of interest are satisfied when the Łukasiewicz t-norm is used.
Although we can use alternative definitions for bb

�
d , ee�

d , be
�
d and eb

�
d for which the generalized transitivity rules are

satisfied for any left-continuous t-norm, we would then lose the important property that bb
�
d (A,B) = 1−bb

�
d (B,A),

ee
�
d (A,B) = 1 − ee

�
d (B,A), etc. We refer to [41] for more details. Henceforth, we will always assume that T = TW .

For convenience, we will write IW instead of ITW
.

Finally, we show two characterizations which will be useful for solving the satisfiability problem in Section 5.
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Lemma 1. It holds that

bb
�
d (A,B) � l ⇔ (∀ε ∈]0, l])(∃λ ∈]l − ε,1])(bb

�
d (Aλ,Bλ+ε−l )

)
(12)

bb
�
d (A,B) � k ⇔ (∀λ ∈]k,1])(bb

�
d (Bλ−k,Aλ)

)
(13)

ee
�
d (A,B) � l ⇔ (∀ε ∈]0, l])(∃λ ∈]l − ε,1])(ee�

d (Aλ+ε−l ,Bλ)
)

(14)

ee
�
d (A,B) � k ⇔ (∀λ ∈]k,1])(ee�

d (Bλ,Aλ−k)
)

(15)

be
�
d (A,B) � l ⇔ (∀ε ∈]0, l[)(∃λ ∈ [l − ε,1])(be

�
d (Aλ,B1−λ−ε+l )

)
(16)

be
�
d (A,B) � k ⇔ (∀ε ∈]0,1 − k[)(∀λ ∈ [k + ε,1])(eb�

d (B1−λ+ε+k,Aλ)
)

(17)

eb
�
d (A,B) � l ⇔ (∀ε ∈]0, l])(∀λ ∈ [1 − l + ε,1])(eb�

d (A1−λ+ε+1−l ,Bλ)
)

(18)

eb
�
d (A,B) � k ⇔ (∃λ ∈ [1 − k,1])(be

�
d (Bλ,A2−λ−k)

)
(19)

Proof. See Appendix A.1. �
Lemma 2. Let A and B be normalized and convex fuzzy sets in R. Furthermore, let ma and mb be arbitrary modal
values of A and B respectively. It holds that

bb
�
d (A,B) = sup

p+d<mb,p�ma

TW

(
A(p),1 − B(p + d)

)
(20)

ee
�
d (A,B) = sup

p−d>ma,p�mb

TW

(
B(p),1 − A(p − d)

)
(21)

Proof. See Appendix A.2. �
3.2. Linear constraints

An atomic linear constraint over a set of variables X is an expression of the form a1x1 +a2x2 +· · ·+anxn � b where
a1, a2, . . . , an, b ∈ R, x1, x2, . . . , xn ∈ X, and � is <,�,>,�,= or 	=. If φ1, φ2, . . . , φm are atomic linear constraints
over X, φ1 ∨ φ2 ∨ · · · ∨ φm is called a linear constraint over X. If m > 1, the linear constraint is called disjunctive.
Furthermore, φ1 ∨φ2 ∨ · · ·∨φm is called a Horn linear constraint if at least m− 1 of the disjuncts φi correspond to 	=.
In particular, all atomic linear constraints are Horn, as well as, for example, 3x+4y � 6∨x 	= 8∨y 	= 7∨x+3y 	= 12.
On the other hand, a linear constraint like 3x + 4y � 6 ∨ x � 8 is not Horn.

The framework of linear constraints subsumes most other frameworks for temporal reasoning, including the Interval
Algebra [1] and Temporal Constraint Networks [12], but also, for example, approaches combining qualitative and
quantitative information [31] or expressing constraints on the duration of events [35].

A P-interpretation I over X is a mapping that maps every variable x from X to a real number. For convenience,
I(x) will also we written as xI . An atomic linear constraint a1x1 + a2x2 + · · · + anxn � b is satisfied by I iff
a1x

I
1 + a2x

I
2 + · · · + anx

I
n � b. A disjunctive linear constraint φ1 ∨ φ2 ∨ · · · ∨ φm is satisfied by I iff I satisfies at

least one of the disjuncts φ1, φ2, . . . , φm. Let Ψ be a set of linear constraints; I is called a P-model of Ψ iff I satisfies
every linear constraint in Ψ . If a P-model of Ψ exists, Ψ is called P-satisfiable. It has been shown independently
in [23] and [27] that checking the P-satisfiability of a set of Horn linear constraints can be done in polynomial time.

4. Temporal relations between vague events

For A and B fuzzy time intervals, bb
�
d (A,B), bb

�
d (A,B), ee

�
d (A,B), ee

�
d (A,B), be

�
d (A,B), be

�
d (A,B),

eb
�
d (A,B) and eb

�
d (A,B) take values from [0,1] (d ∈ R). The reasoning tasks discussed in this paper are based

on upper and lower bounds for these values when the definitions of the fuzzy time intervals A and B are unknown.
For example, knowing that x, y, and z are fuzzy time intervals, is it possible that simultaneously bb

�
3 (x, y) � 0.6,

bb
�
4 (y, z) � 0.5, be

�
2 (y, z) � 0.8, and ee

�
8 (x, z) � 0.3? From the available knowledge, what can be said about the

possible values of be
�

(x, z)? Throughout the paper, we will assume that all upper and lower bounds are taken from a
9
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fixed, finite set M = {0,Δ,2Δ, . . . ,1}, where Δ = 1
ρ

for some ρ ∈ N \ {0}. For convenience, we write M0 for M \ {0}
and M1 for M \ {1}.

Definition 2 (Atomic FI-formula). An atomic FI-formula over a set of variables X is an expression of the form
r(x, y) � l or r(x, y) � k, where l ∈ M0, k ∈ M1, (x, y) ∈ X2 and r is bb

�
d , ee

�
d , be

�
d or eb

�
d (d ∈ R).

Note that we will not consider atomic FI-formulas like bb
�
d (x, y) � l in this paper. Such expressions can be

omitted from discussions without loss of generality because of their correspondence to atomic FI-formulas involving
bb

�
d , ee�

d , be
�
d or eb

�
d . In applications, however, it may be convenient to use bb

�
d (x, y) � l as a notational alternative

to bb
�
d (y, x) � 1 − l.

Definition 3 (FI-formula). An FI-formula over a set of variables X is an expression of the form

φ1 ∨ φ2 ∨ · · · ∨ φn

where φ1, φ2, . . . , φn are atomic FI-formulas over X. If n > 1, the FI-formula is called disjunctive.

Definition 4 (FI-interpretation). An FI-interpretation over a set of variables X is a mapping that assigns a fuzzy
interval to each variable in X. An FIM -interpretation over X is an FI-interpretation that maps every variable from X

to a fuzzy interval which takes only membership degrees from M .

The interpretation I(x) of a variable x, corresponding to an FI-interpretation I , will also be written as xI . An FI-
interpretation I over X satisfies the temporal formula bb

�
d (x, y) � l (x, y ∈ X, l ∈ M0, d ∈ R) iff bb

�
d (xI , yI) � l,

and analogously for other types of atomic FI-formulas. Furthermore, I satisfies φ1 ∨ φ2 ∨ · · · ∨ φn iff I satisfies φ1
or I satisfies φ2 or . . . or I satisfies φn.

Definition 5 (FI-satisfiable). A set Θ of FI-formulas over a set of variables X is said to be FI-satisfiable (resp.
FIM -satisfiable) iff there exists an FI-interpretation (resp. FIM -interpretation) over X which satisfies every FI-formula
in Θ . An FI-interpretation (resp. FIM -interpretation) meeting this requirement is called an FI-model (resp. FIM -model)
of Θ .

5. FI-satisfiability

One of the most important temporal reasoning tasks consists of checking whether a given knowledge base is
consistent. Here, this corresponds to checking the FI-satisfiability of a set of FI-formulas Θ . To solve this problem, we
will show how a set Ψ of linear constraints can be constructed which is P-satisfiable iff Θ is FI-satisfiable. In this way,
existing, highly optimized reasoners for temporal problems can be reused to reason about vague temporal information.
This reduction from FI-satisfiability to P-satisfiability is made possible by virtue of the following proposition, stating
that because the upper and lower bounds in a set of FI-formulas are taken from the set M , as defined above, we can
restrict ourselves to fuzzy intervals that only take membership degrees from M .

Proposition 1. Let Θ be a finite set of FI-formulas over X. It holds that Θ is FI-satisfiable iff Θ is FIM -satisfiable.

Proof. Clearly, if Θ is FIM -satisfiable then Θ is also FI-satisfiable. Conversely, we show that given an FI-model I
of Θ , it is always possible to construct an FIM -model I∗ of Θ .

Let I be an FI-model of Θ , and let the [0,1] − [0,1] mappings l and u be defined for y0 in [0,1] as

l(y0) = max{y | y ∈ M ∧ y � y0}
u(y0) = min{y | y ∈ M ∧ y � y0}

From the definition of fuzzy time interval (Definition 1), we establish that for each x in X, there exists an mx in R

such that xI(mx) = 1. We now define I ′ as a mapping from X to the class of fuzzy sets in R:

xI
′
(p) =

{
l(xI(p)) if p � mx

I
u(x (p)) if p > mx
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Fig. 5. Relationship between the FI-interpretation I , the mapping I ′ and the FIM -interpretation I∗ .

for all x in X and p in R. Fig. 5 depicts the relationship between I and I ′. Although for x in X, the fuzzy set xI
′

only takes membership degrees from M , I ′ is not an FIM -interpretation as the α-level sets of xI
′

do not necessarily
correspond to closed intervals (α ∈]0,1], x ∈ X). However, from I ′, we can construct an FIM -interpretation I∗ as
follows. Let P be the (finite) set of points in which xI

′
is discontinuous for at least one x in X (P ⊆ R), and let P x

s

be the set of points in which xI
′

is not upper semi-continuous (P x
s ⊆ P ), i.e., P x

s contains the endpoints of α-level
sets of xI

′
which do not correspond to closed intervals. Furthermore, let D be the set of distances d occurring in the

FI-formulas from Θ (D ⊆ R).
The FIM -interpretation I∗ is defined as

xI
∗
(p) =

{
minq∈[p,p+ε[ xI

′
(q) if (∃q ∈ P x

s )(q ∈]p,p + ε[)
xI

′
(p) otherwise

for all x in X and p in R, where ε denotes an arbitrary, fixed element from ]0,min{|p + d − q|: p,q ∈ P ∧ d ∈
D ∪ {0} ∧ p + d 	= q}[. The definition of xI

∗
is illustrated in Fig. 5c. To prove that I∗(x) satisfies all FI-formulas

from Θ , we first show that for d in R, x and y in X, and m in M , it holds that

bb
�
d

(
xI , yI

)
� m ⇒ bb

�
d

(
xI

′
, yI

′) � m (22)

bb
�
d

(
xI , yI

)
� m ⇒ bb

�
d

(
xI

′
, yI

′) � m (23)

ee
�
d

(
xI , yI

)
� m ⇒ ee

�
d

(
xI

′
, yI

′) � m (24)

ee
�
d

(
xI , yI

)
� m ⇒ ee

�
d

(
xI

′
, yI

′) � m (25)

be
�
d

(
xI , yI

)
� m ⇒ be

�
d

(
xI

′
, yI

′) � m (26)

be
�
d

(
xI , yI

)
� m ⇒ be

�
d

(
xI

′
, yI

′) � m (27)

eb
�
d

(
xI , yI

)
� m ⇒ eb

�
d

(
xI

′
, yI

′) � m (28)

eb
�
d

(
xI , yI

)
� m ⇒ eb

�
d

(
xI

′
, yI

′) � m (29)

To show (22) and (23), we obtain by (20)
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bb
�
d

(
xI

′
, yI

′) = sup
p+d<my,p�mx

TW

(
xI

′
(p),1 − yI

′
(p + d)

)

= sup
p+d<my,p�mx

TW

(
xI(p) − (

xI(p) − xI
′
(p)

)
,1 − yI(p + d) + (

yI(p + d) − yI
′
(p + d)

))

From the definition of I ′, it follows that (xI(p) − xI
′
(p)) ∈ [0,Δ[ and (yI(p + d) − yI

′
(p + d)) ∈ [0,Δ[, for

p + d < my and p � mx . Hence, we have

� sup
p+d<my,p�mx

TW

(
xI(p),1 − yI(p + d) + (

yI(p + d) − yI
′
(p + d)

))

� sup
p+d<my,p�mx

TW

(
xI(p),1 − yI(p + d)

) + (
yI(p + d) − yI

′
(p + d)

)

< sup
p+d<my,p�mx

TW

(
xI(p),1 − yI(p + d)

) + Δ

= bb
�
d

(
xI , yI

) + Δ

Similarly, we can show that

bb
�
d

(
xI

′
, yI

′)
> bb

�
d

(
xI , yI

) − Δ

Hence

bb
�
d

(
xI

′
, yI

′) − bb
�
d

(
xI , yI

) ∈]−Δ,Δ[ (30)

Assume that bb
�
d (xI

′
, yI

′
) > m would hold. Since both bb

�
d (xI

′
, yI

′
) and m are contained in M , this implies that

bb
�
d (xI

′
, yI

′
) � m + Δ. Using (30) we establish that bb

�
d (xI , yI) > m also holds, proving (22) by contraposition.

In the same way, we establish from bb
�
d (xI

′
, yI

′
) < m that bb

�
d (xI

′
, yI

′
) � m − Δ and thus bb

�
d (xI , yI) < m,

proving (23). The implications (24)–(29) can be shown entirely analogously.
Next, we show that

bb
�
d

(
xI

′
, yI

′) = bb
�
d

(
xI

∗
, yI

∗)
(31)

ee
�
d

(
xI

′
, yI

′) = ee
�
d

(
xI

∗
, yI

∗)
(32)

be
�
d

(
xI

′
, yI

′) = be
�
d

(
xI

∗
, yI

∗)
(33)

eb
�
d

(
xI

′
, yI

′) = eb
�
d

(
xI

∗
, yI

∗)
(34)

First note that (31) immediately follows from the definition of I∗ by (20), as for each p satisfying p � mx and
p + d < my , xI

∗
(p) = xI

′
(p) and yI

∗
(p + d) = yI

′
(p + d). Turning now to (32), we find using (21) that

ee
�
d

(
xI

′
, yI

′) = sup
p−d>mx,p�my

TW

(
yI

′
(p),1 − xI

′
(p − d)

)
(35)

ee
�
d

(
xI

∗
, yI

∗) = sup
p−d>mx,p�my

TW

(
yI

∗
(p),1 − xI

∗
(p − d)

)
(36)

where mx and my are the smallest modal values of xI
′

and yI
′
, or, equivalently, of xI

∗
and yI

∗
. First, we show that

for every p1 satisfying p1 − d > mx and p1 � my there exists a p2 satisfying p2 − d > mx and p2 � my such that

TW

(
yI

′
(p1),1 − xI

′
(p1 − d)

) = TW

(
yI

∗
(p2),1 − xI

∗
(p2 − d)

)
(37)

which already proves ee
�
d (xI

′
, yI

′
) � ee

�
d (xI

∗
, yI

∗
). If yI

′
(p1) = yI

∗
(p1) and xI

′
(p1 − d) = xI

∗
(p1 − d) we can

choose p2 = p1. Next, assume that yI
′
(p1) > yI

∗
(p1) and xI

′
(p1 −d) > xI

∗
(p1 −d). This means that there is a q1 in

P
y
s and q2 in P x

s such that q1 ∈]p1,p1 + ε[ and q2 ∈]p1 −d,p1 −d + ε[. The latter implies that q2 +d ∈]p1,p1 + ε[
which, combined with the former, yields |q2 + d − q1| < ε. By definition of ε, this is only possible if q2 = q1 − d ,
since for q2 +d 	= q1, the definition of ε would imply ε < |q2 +d −q1|. We show that (37) is satisfied for p2 = q1 − ε.
Note that mx,my ∈ P but mx /∈ P x

s and my /∈ P
y
s , hence mx 	= q2 and my 	= q1, and even mx < q2 and my < q1. The
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definition of ε implies that ε < q1 +0−my and ε < q2 +0−mx . Since q2 = q1 −d and p2 = q1 − ε, this entails p2 �
my and p2 −d > mx . Since yI

′
is constant over [q1 −ε, q1[, by definition of ε, it holds that yI

∗
(q1 −ε) = yI

′
(q1 −ε),

or yI
∗
(p2) = yI

′
(p2). As p1 ∈]q1 − ε, q1[, it holds that yI

′
is constant over [p2,p1], hence yI

′
(p2) = yI

′
(p1). In

the same way, we establish xI
∗
(p2 − d) = xI

′
(p1 − d).

If yI
′
(p1) > yI

∗
(p1) and xI

′
(p1 − d) = xI

∗
(p1 − d), there is a q1 in P

y
s such that q1 ∈]p1,p1 + ε[. We show

that (37) is satisfied for p2 = q1 − ε. As in the previous case, the definition of ε implies that ε < q1 + 0 − my , hence
p2 � my . Again, we have that yI

∗
(p2) = yI

∗
(q1 − ε) = yI

′
(q1 − ε) = yI

′
(p2), and yI

′
(p2) = yI

′
(p1). Note that

xI
′

is continuous in [q1 − d − ε, q1 − d[. Indeed, if xI
′

were discontinuous in a point q2 in [q1 − d − ε, q1 − d[, it
would hold that 0 < |q2 − q1 + d| � ε, which is impossible by definition of ε. Since p1 − d > mx and there are no
discontinuities in [q1 −d −ε,p1 −d], we know that q1 −d −ε > mx (recall that mx is the smallest modal value of xI

′
).

The continuity of xI
′

in [q1 − d − ε, q1 − d[ furthermore implies that xI
∗
(q1 − d − ε) = xI

′
(q1 − d − ε), and, since

p1 − d < q1 − d , xI
′
(q1 − d − ε) = xI

′
(p1 − d). From p2 = q1 − ε we can conclude that xI

∗
(p2 − d) = xI

′
(p1 − d)

The case where yI
′
(p1) = yI

∗
(p1) and xI

′
(p1 − d) > xI

∗
(p1 − d) is shown entirely analogously.

Conversely, we show that for every p2 satisfying p2 −d > mx and p2 � my there exists a p1 satisfying p1 −d > mx

and p1 � my such that (37) is satisfied. If yI
′
(p2) = yI

∗
(p2) and xI

′
(p2 −d) = xI

∗
(p2 −d) we can choose p1 = p2.

If yI
′
(p2) > yI

∗
(p2) and xI

′
(p2 − d) > xI

∗
(p2 − d) there is a q1 in P

y
s and q2 in P x

s such that q1 ∈]p2,p2 + ε[
and q2 ∈]p2 − d,p2 − d + ε[. We show that (37) is satisfied for p1 = q1. Again, this is only possible if q2 = q1 − d

by definition of ε. First note that p1 = q1, q1 ∈]p2,p2 + ε[ and p2 � my entail p1 � my , while p1 = q1, q1 − d ∈
]p2 − d,p2 + ε − d[ and p2 − d > mx entail p1 − d > mx . As q1 ∈ P

y
s , we know that yI

′
is lower semi-continuous

in q1. Since yI
′

is decreasing in q1, this means that yI
′

is right-continuous in q1. Furthermore, by definition of ε

we know that yI
′

is continuous over [q1 − ε, q1[ and over ]q1, q1 + ε]. Together with p2 ∈]q1 − ε, q1[, this yields
yI

∗
(p2) = yI

′
(q1) = yI

′
(p1). Similarly, we can show that xI

∗
(p2 − d) = xI

′
(q1 − d).

If yI
′
(p2) > yI

∗
(p2) and xI

′
(p2 − d) = xI

∗
(p2 − d) there is a q1 in P

y
s such that q1 ∈]p2,p2 + ε[. We show that

(37) is satisfied for p1 = q1. As before, we have that p1 � my , p1 − d > mx , and yI
∗
(p2) = yI

′
(q1). Note that xI

′
is

continuous in [q1 − d − ε, q1 − d[∪]q1 − d, q1 − d + ε]. Indeed, for every q2 in [q1 − d − ε, q1 − d + ε] \ {q1 − d}, it
holds that 0 < |q2 − q1 + d| � ε, which implies q2 /∈ P , using the definition of ε. If xI

′
is also continuous in q1 − d ,

then obviously xI
∗
(p2 − d) = xI

′
(q1 − d). If xI

′
is upper semi-continuous in q1 − d then xI

′
is also left-continuous

(as xI
′

is decreasing in q1 − d), hence xI
′
(q1 − d) = xI

′
(p2 − d) = xI

∗
(p2 − d). Finally, we show that xI

′
cannot

be lower semi-continuous in q1 − d . Indeed, this would imply that q1 − d ∈ P x
s and thus xI

′
(p2 − d) > xI

∗
(p2 − d),

which contradicts the assumption that xI
′
(p2 − d) = xI

∗
(p2 − d).

The case where yI
′
(p1) = yI

∗
(p1) and xI

′
(p1 − d) > xI

∗
(p1 − d) is shown in the same way.

Finally, (33) and (34) can be shown analogously. �
From Lemma 1, we already know that upper and lower bounds of fuzzy temporal relations can be characterized by

crisp temporal relations between the α-level sets of the fuzzy time intervals involved. As the next proposition shows,
when these fuzzy time intervals only take membership degrees from M , only a finite number of α-level sets needs to
be considered. The intuition behind this proposition is that a fuzzy interval A taking only membership degrees from M

is completely characterized by the set of crisp intervals {AΔ,A2Δ, . . . ,A1}, which is in turn completely characterized
by the set of instants (real numbers) {A−

Δ,A−
2Δ, . . . ,A−

1 ,A+
1 , . . . ,A+

2Δ,A+
Δ}.

Proposition 2. Let A and B be fuzzy intervals that only take membership degrees from M , k ∈ M1 and l ∈ M0. It
holds that:

bb
�
d (A,B) � l ⇔ A−

l < B−
Δ − d ∨ A−

l+Δ < B−
2Δ − d ∨ · · · ∨ A−

1 < B−
1−l+Δ − d (38)

bb
�
d (A,B) � k ⇔ B−

Δ � A−
k+Δ + d ∧ B−

2Δ � A−
k+2Δ + d ∧ · · · ∧ B−

1−k � A−
1 + d (39)

ee
�
d (A,B) � l ⇔ A+

Δ < B+
l − d ∨ A+

2Δ < B+
l+Δ − d ∨ · · · ∨ A+

1−l+Δ < B+
1 − d (40)

ee
�
d (A,B) � k ⇔ B+

k+Δ � A+
Δ + d ∧ B+

k+2Δ � A+
2Δ + d ∧ · · · ∧ B+

1 � A+
1−k + d (41)

be
�
d (A,B) � l ⇔ A−

l < B+
1 − d ∨ A−

l+Δ < B+
1−Δ − d ∨ · · · ∨ A−

1 < B+
l − d (42)

be
�

(A,B) � k ⇔ B+ � A− + d ∧ B+ � A− + d ∧ · · · ∧ B+ � A− + d (43)
d 1 k+Δ 1−Δ k+2Δ k+Δ 1
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eb
�
d (A,B) � l ⇔ A+

1 < B−
1−l+Δ − d ∧ A+

1−Δ < B−
1−l+2Δ − d ∧ · · · ∧ A+

1−l+Δ < B−
1 − d (44)

eb
�
d (A,B) � k ⇔ B−

1−k � A+
1 + d ∨ B−

1−k+Δ � A+
1−Δ + d ∨ · · · ∨ B−

1 � A+
1−k + d (45)

Proof. As an example, we show (38). From Lemma 1 we already know that

bb
�
d (A,B) � l ⇔ (∀ε ∈]0, l])(∃λ ∈]l − ε,1])(bb

�
d (Aλ,Bλ+ε−l )

)
First note that if ε1 < ε2, B−

λ+ε1−l � B−
λ+ε2−l and therefore bb

�
d (Aλ,Bλ+ε1−l ) ⇒ bb

�
d (Aλ,Bλ+ε2−l ). We thus obtain

bb
�
d (A,B) � l ⇔ (∀ε ∈]0,Δ[)(∃λ ∈]l − ε,1])(bb

�
d (Aλ,Bλ+ε−l )

)
Let ε ∈]0,Δ[ and let λ in ]l − ε,1] be such that bb

�
d (Aλ,Bλ+ε−l ). We first show that there must exist some λ′ in

{l, l + Δ, . . . ,1} such that bb
�
d (Aλ′ ,Bλ′+ε−l ). If λ ∈]l − ε, l[, then Aλ = Al as A only takes membership degrees

from M . Moreover, B−
λ+ε−l � B−

l+ε−l , hence from bb
�
d (Aλ,Bλ+ε−l ) we establish bb

�
d (Al,Bl+ε−l ), i.e., we can

choose λ′ = l. Similarly, if λ ∈]iΔ, (i + 1)Δ[(i ∈ N, l � iΔ < (i + 1)Δ � 1), we have that bb
�
d (Aλ,Bλ+ε−l ) implies

bb
�
d (A(i+1)Δ,B(i+1)Δ+ε−l ), and we can choose λ′ = (i + 1)Δ. This yields

bb
�
d (A,B) � l ⇔ (∀ε ∈]0,Δ[)(∃λ ∈ {l, l + Δ, . . . ,1})(bb

�
d (Aλ,Bλ+ε−l )

)
Since now λ ∈ M and ε ∈]0,Δ[, we have that Bλ+ε−l = Bλ+Δ−l :

bb
�
d (A,B) � l ⇔ (∀ε ∈]0,Δ[)(∃λ ∈ {l, l + Δ, . . . ,1})(bb

�
d (Aλ,Bλ+Δ−l )

)
⇔ (∃λ ∈ {l, l + Δ, . . . ,1})(bb

�
d (Aλ,Bλ+Δ−l )

)
proving (38). �

Given a set of atomic FI-formulas Θ over a set of variables X, we construct a set of variables X′ and a set of linear
constraints Ψ over X′ such that Θ is FI-satisfiable iff Ψ is P-satisfiable. From Proposition 1, we know that we can
restrict ourselves to fuzzy intervals that only take membership degrees from M . Proposition 2 furthermore reveals that
checking whether an FIM interpretation satisfies an FI-formula can be done by evaluating a constant number of linear
inequalities. This suggests the following procedure for constructing X′ and Ψ .

Let X′ and Ψ initially be the empty set. For each variable x in X, we add the new variables x−
Δ,x−

2Δ, . . . , x−
1 , x+

1 ,

. . . , x+
2Δ and x+

Δ to X′. Intuitively, these new variables correspond to the beginning and ending points of α-level sets
of the fuzzy interval corresponding with x. By adding the following linear constraints to Ψ , for each m in M1 \ {0},
we ensure that in every P-model I of Ψ , these new variables can indeed be interpreted as beginning and ending points
of α-level sets of a fuzzy interval:

x−
1 � x+

1 (46)

x−
m � x−

m+Δ (47)

x+
m+Δ � x+

m (48)

In this way, every P-model I of Ψ corresponds to an FIM -interpretation I ′ of Θ in which xI
′

is the fuzzy interval
taking only membership degrees from M , defined through its α-level sets by (I ′(x))m = [I(x−

m),I(x+
m)] for all

m ∈ M0.
Finally, for each FI-formula in Θ , we add a particular set of linear constraints to Ψ , based on the equivalences of

Proposition 2. For example, if Θ contains the FI-formula bb
�
d (x, y) � k, we add the following set of linear constraints:{

y−
Δ � x−

k+Δ + d, y−
2Δ � x−

k+2Δ + d, . . . , y−
1−k � x−

1 + d
}

(49)

Similarly, if Θ contains the FI-formula bb
�
d (x, y) � l, we add the following linear constraint:

x−
l < y−

Δ − d ∨ x−
l+Δ < y−

2Δ − d ∨ · · · ∨ x−
1 < y−

1−l+Δ − d (50)

Clearly, Θ ∪ {r1 ∨ r2} is FI-satisfiable iff either Θ ∪ {r1} is FI-satisfiable or Θ ∪ {r2} is FI-satisfiable. Therefore, we
only needed to consider sets of atomic FI-formulas in the procedure described above. Nonetheless, this procedure
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Fig. 6. There exists an FIM -interpretation I for a set of FI-formulas Θ iff there exists a P-interpretation I ′ for the corresponding set Ψ of linear
constraints.

is not inherently restricted to sets of atomic FI-formulas, as disjunctive FI-formulas correspond to (sets of) linear
constraints as well. However, the number of linear constraints can be exponential in the number of disjuncts in the
FI-formulas.

As expressed by the following proposition, it holds that the set of linear constraints Ψ is P-satisfiable iff Θ is
FI-satisfiable.

Proposition 3. Let Θ be a finite set of atomic FI-formulas over X, and let Ψ be the corresponding set of linear
constraints over X′, obtained by the procedure outlined above. It holds that Θ is FI-satisfiable iff Ψ is P-satisfiable.

Proof. Assume that Θ is FI-satisfiable. Then there exists an FIM -model I of Θ by Proposition 1. We define the
P-interpretation I ′ for all variables x−

iΔ and x+
iΔ as (i ∈ N, Δ � iΔ � 1):

I ′(x−
iΔ

) = (
xI

)−
iΔ

(51)

I ′(x+
iΔ

) = (
xI

)+
iΔ

(52)

In other words, I ′(x−
iΔ) and I ′(x+

iΔ) correspond to the beginning and ending of the iΔ-level set of the fuzzy time
interval xI . Fig. 6 illustrates the relationship between I and I ′. Clearly, I ′ satisfies (46)–(48). By Proposition 2, we
also have that all (sets of) linear constraints like (49) and (50) are satisfied. Hence, I is a P-model of Ψ .

Conversely, assume that Ψ is P-satisfiable. Then there exists a P-model I ′ of Ψ . We define the FIM -interpretation
I from I ′ as

xI(r) =
{

max{λ | λ ∈ M ∧ r ∈ [I ′(x−
λ ),I ′(x+

λ )]} if r ∈ [I ′(xΔ)−,I ′(xΔ)+]
0 otherwise

(53)

for each x in X and r in R. By construction of Ψ , we have that xI is a fuzzy time interval. Moreover, by Proposition 2,
we establish that I satisfies every FI-formula in Θ . �

Interestingly, by reducing FI-satisfiability to P-satisfiability of a set of linear constraints, we can impose additional
constraints on the variables involved. For example, we can express that a given variable x corresponds to a crisp
interval, rather than a fuzzy interval, by adding the linear constraints {x−

Δ = x−
2Δ,x−

2Δ = x−
3Δ, . . . , x−

1−Δ = x−
1 , x+

1 =
x+

1−Δ, . . . , x+
2Δ = x+

Δ} to Ψ . By additionally adding x−
1 = x+

1 , we can even ensure that x is always interpreted as an
instant (time point). Similarly, we can add x−

1 < x+
1 to express that x should never be interpreted as a time point. If

we know that the beginning of x is inherently gradual, we can even impose {x−
Δ < x−

2Δ,x−
2Δ < x−

3Δ, . . . , x−
1−Δ < x−

1 }.
Such additional constraints can be very useful if it is a priori known which variables correspond to (possibly) vague
events, crisp events, and instants. Moreover, adding such constraints does not change the computational complexity
of the algorithm.

Another important advantage of the reduction to P-satisfiability is that existing, optimized algorithms for reasoning
about linear constraints can be used. Existing algorithms cannot only be used for checking FI-satisfiability, but also
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to find FI-models (or consistent scenarios) of FI-satisfiable sets of FI-formulas. This technique is illustrated in the
following example.

Example 1. Let Θ = {bb
�
10(a, b) � 0.5, eb

�
5 (c, a) � 0.5, eb

�
5 (b, c) � 0.75}. We can choose Δ = 0.25, and thus

M = {0,0.25,0.5,0.75,1}. The linear constraints of the form (46)–(48) are given by

Ψ1 = {
a−

0.25 � a−
0.5, a

−
0.5 � a−

0.75, a
−
0.75 � a−

1 , a−
1 � a+

1 ,

a+
1 � a+

0.75, a
+
0.75 � a+

0.5, a
+
0.5 � a+

0.25,

b−
0.25 � b−

0.5, b
−
0.5 � b−

0.75, b
−
0.75 � b−

1 , b−
1 � b+

1 ,

b+
1 � b+

0.75, b
+
0.75 � b+

0.5, b
+
0.5 � b+

0.25,

c−
0.25 � c−

0.5, c
−
0.5 � c−

0.75, c
−
0.75 � c−

1 , c−
1 � c+

1 ,

c+
1 � c+

0.75, c
+
0.75 � c+

0.5, c
+
0.5 � c+

0.25

}
The additional linear constraints corresponding to the FI-formulas in Θ are given by

Ψ2 = {
a−

0.5 < b−
0.25 − 10 ∨ a−

0.75 < b−
0.5 − 10 ∨ a−

1 < b−
0.75 − 10,

c+
1 < a−

0.75 − 5, c+
0.75 < a−

1 − 5,

b+
1 < c−

0.5 − 5, b+
0.75 < c−

0.75 − 5, b+
0.5 < c−

1 − 5
}

The set Ψ of all linear constraints corresponding with Θ is then given by Ψ1 ∪ Ψ2. It holds that Ψ can be satisfied
by choosing the first disjunct a−

0.5 < b−
0.25 − 10 in the disjunctive linear constraint a−

0.5 < b−
0.25 − 10 ∨ a−

0.75 < b−
0.5 −

10 ∨ a−
1 < b−

0.75 − 10. In [20], an algorithm is presented to find a solution of a set of atomic linear constraints, i.e., a
P-interpretation I satisfying Ψ . One possible solution of Ψ is defined by

I
(
a−

0.25

) = I
(
a−

0.5

) = I
(
c−

0.25

) = 0

I
(
a−

0.75

) = I
(
a−

1

) = I
(
a+

1

) = I
(
a+

0.75

) = I
(
a+

0.5

) = I
(
a+

0.25

) = 22

I
(
b−

0.25

) = I
(
b−

0.5

) = I
(
b−

0.75

) = I
(
b−

1

) = 11

I
(
b+

1

) = I
(
b+

0.75

) = I
(
b+

0.5

) = I
(
b+

0.25

) = 11

I
(
c−

0.5

) = I
(
c−

0.75

) = I
(
c−

1

) = I
(
c+

1

) = I
(
c+

0.75

) = I
(
c+

0.5

) = I
(
c+

0.25

) = 16

As explained above, the P-model I of Ψ defines an FIM -model I ′ of Θ .

In applications, we usually need to find an FI-satisfiable set of FI-formulas, corresponding to some given (natural
language) description, rather than checking the FI-satisfiability of a given set of FI-formulas. Typically, in this context,
the information provided may be inconsistent when interpreted as classical, crisp temporal relations. The goal is then
to weaken information such as A happened before B to A happened before B at least to degree 0.8. The various lower
and upper bounds introduced in this way (e.g., 0.8) should be the strongest possible, w.r.t. a given precision Δ. The
next example illustrates this process.

Example 2. Consider again the example about Picasso’s work from the introduction. To allow for a concise descrip-
tion, we use the following abbreviations to refer to the relevant events and periods:

BFT Picasso creates Bread and Fruit Dish on a Table

DMA Picasso creates the Demoiselles d’Avignon

AC Picasso’s Analytical Cubism period

C Picasso’s Cubism period

The information that Bread and Fruit Dish on a Table marks the beginning of Picasso’s Analytical Cubism can be
represented as
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bb�(BFT,AC) � λ1 (54)

bb�(AC,BFT) � λ2 (55)

ee�(BFT,AC) � λ3 (56)

where initially λ1, λ2 and λ3 are assumed to be 1. Values lower than 1 are only considered when inconsistencies
arise. Similarly, the information that the Demoiselles d’Avignon marks the beginning of Picasso’s Cubist period can
be represented as

bb�(DMA,C) � λ4 (57)

bb�(C,DMA) � λ5 (58)

ee�(DMA,C) � λ6 (59)

Next, the information that Analytical Cubism is the first stage of Picasso’s Cubism can be represented by

bb�(AC,C) � λ7 (60)

bb�(C,AC) � λ8 (61)

ee�(AC,C) � λ9 (62)

In addition to this qualitative description, we also have some quantitative information. In particular, we know that
Bread and Fruit Dish on a Table was created in 1909, the Demoiselles d’Avignon was created in 1907 and Analyt-
ical Cubism lasted from somewhere in 1908 to somewhere in 1912. We can encode this information using metric
constraints by referring to an artificial time point Z, for instance, corresponding to the beginning of the year 1900:

bb
�
8 (Z,AC) � λ10 bb

�
−9(AC,Z) � λ11 (63)

ee
�
12(Z,AC) � λ12 ee

�
−13(AC,Z) � λ13 (64)

bb
�
9 (Z,BFT) � λ14 ee

�
−10(BFT,Z) � λ15 (65)

bb
�
7 (Z,DMA) � λ16 ee

�
−8(DMA,Z) � λ17 (66)

When checking the FI-satisfiability of this representation for various values of the lower bounds λi , we need to ensure
that Z is a time point. As discussed above, this can be done by adding the constraint Z−

Δ = Z−
2Δ = · · · = Z−

1 = Z+
1 =

· · · = Z+
Δ to the corresponding set of linear constraints. From available domain knowledge, we may moreover find out

that creating a painting is a crisp event,6 and therefore impose that DMA and BFT are crisp intervals in a similar way.
For λ1 = λ2 = · · · = λ17 = 1, the description above is not FI-satisfiable. Hence, we need to weaken one or more of

the lower bounds, i.e., we let some of the λi correspond to values from M lower than 1. Different sets of lower bounds
may be weakened to obtain an FI-satisfiable representation. Moreover, the actual strategy adopted to decide how to
arrive at such a representation may differ from application to application, as well as depend on additional background
information (e.g., degrees of confidence in each of the original natural language statements). In the example at hand,
we may impose that λ14 = λ15 = λ16 = λ17 = 1, as Z, BFT and DMA all refer to crisp events. Furthermore, we
may initially require that λ1 = λ2 = · · · = λ13, as we lack any further background knowledge for differentiating
between the FI-formulas. Assuming Δ = 0.25, we first try λ1 = · · · = λ13 = 0.75, which is not FI-satisfiable, and
next λ1 = · · · = λ13 = 0.5, which turns out to be FI-satisfiable. Although we have now arrived at an FI-satisfiable
interpretation of the natural language statements, it is not necessarily maximally FI-satisfiable, i.e., it may be the case
that not all of the λi ’s (i ∈ {1,2, . . . ,13}) need to be weakened to 0.5. Therefore, we subsequently try to strengthen
the λi ’s again, one by one. For example, when λ2 = 0.75 or even λ2 = 1, the resulting representation remains FI-
satisfiable. On the other hand, strengthening λ1 to 0.75 leads to a representation which is not FI-satisfiable anymore
(even when λ2 = 0.5). Thus, after a linear number of FI-satisfiability checks, we obtain the following maximally
FI-satisfiable representation:

6 Although the assumption made in this example is reasonable in most contexts, creating a painting could be seen as a vague event as well,
assuming, for instance, that related studies and sketches made prior to the actual painting belong to the creation to varying degrees.



S. Schockaert, M. De Cock / Artificial Intelligence 172 (2008) 1158–1193 1175
Fig. 7. FI-interpretation of events corresponding to the creation of Bread and Fruit Dish on a Table (BFT) and the Demoiselles d’Avignon (DMA),
as well as Picasso’s Analytical Cubism (AC) and Cubism (C) periods.

λ14 = λ15 = λ16 = λ17 = 1

λ2 = λ3 = λ4 = λ6 = λ7 = λ8 = λ9 = λ10 = λ12 = λ13 = 1

λ1 = λ5 = λ11 = 0.5

A corresponding FI-interpretation is depicted in Fig. 7, illustrating that the inconsistencies in the original natural lan-
guage statements are caused by the vagueness of the Analytical Cubism and Cubism periods. In this FI-interpretation,
both periods are assumed to have started in 1907 to degree 0.5, and to have started completely in 1909.

6. Computational complexity

Let A be a subset of FX , the set of all FI-formulas over a set of variables X. In the following discussion, we
assume that X contains a sufficiently large, or infinite number of different variables. We call FISAT(A) the problem
of deciding whether a finite set of FI-formulas from A is FI-satisfiable. Deciding the P-satisfiability of an arbitrary
set of linear constraints is NP-complete [44]. To decide whether a set Θ of FI-formulas is FI-satisfiable, we can guess
which disjuncts can be satisfied for all disjunctive FI-formulas, resulting in a set of atomic FI-formulas Θ ′. Checking
if Θ ′ is FI-satisfiable can be polynomially reduced to checking the P-satisfiability of a set of linear constraints, as
explained above. We thus find that FISAT(A) is in NP for every A ⊆ FX . As will become clear below, FISAT(FX)
is also NP-hard and thereby NP-complete. However, checking the P-satisfiability of a set of linear constraints without
disjunctions is tractable [23,27]. From Proposition 2, it follows that a significant subset of the FI-formulas do not lead
to disjunctive linear constraints. We will refer to this subset as F t

X :

F t
X =

⋃
(x,y)∈X2

⋃
d∈R

({
bb

�
d (x, y) � k | k ∈ M1

} ∪ {
ee

�
d (x, y) � k | k ∈ M1

}

∪{
be

�
d (x, y) � k | k ∈ M1

} ∪ {
eb

�
d (x, y) � l | l ∈ M0

}
∪{

bb
�
d (x, y) � 1, ee

�
d (x, y) � 1, be

�
d (x, y) � 1, eb

�
d (x, y) � 0

})
Clearly FISAT(F t

X) is tractable. Note, however, that the procedure described above for deciding FISAT(F t
X) is only

weakly polynomial, as it depends on the value of 1
Δ

= ρ.
To support efficient reasoning, it is of interest to identify maximally tractable subsets of FX , i.e., sets of FI-

formulas A ⊆ FX such that FISAT(A) is tractable and for any proper superset A′ of A, it holds that FISAT(A′) is
NP-complete.7 As we show in the following two propositions, when extending F t

X with FI-formulas, it is not possible
to keep tractability without putting restrictions on the variables.

Proposition 4. Let k ∈ M1 \ {0} and d ∈ R. FISAT(A) is NP-complete if A contains any of the following sets of
FI-formulas:

7 Throughout the paper, we assume P 	= NP.
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F t
X ∪

⋃
(x,y)∈X2

{
bb

�
d (x, y) � k

}
(67)

F t
X ∪

⋃
(x,y)∈X2

{
ee

�
d (x, y) � k

}
(68)

F t
X ∪

⋃
(x,y)∈X2

{
be

�
d (x, y) � k

}
(69)

F t
X ∪

⋃
(x,y)∈X2

{
eb

�
d (x, y) � k

}
(70)

Proof. As an example, we show (67) for d = 0. The proof for (68)–(70) and d 	= 0 is entirely analogous.
Since FISAT(FX) is in NP, we already have that FISAT(A) is in NP. To establish the NP-hardness of FISAT(A),

we will show that 3SAT can be polynomially reduced to it. The proof is inspired by [37], where a similar reduction is
made to prove NP-hardness for the satisfiability problem in a subfragment of the Interval Algebra.

Let D = {C1,C2, . . . ,Cn}, where Ci denotes a clause of the form li1 ∨ li2 ∨ li3, containing exactly three disjuncts.
Each literal lij is either an atomic proposition or the negation of an atomic proposition. 3SAT is the problem of
deciding whether D is satisfiable, i.e., deciding if there exists a truth assignment of the atomic propositions that makes
all clauses from D true. To prove (67), we will construct a set Θ of FI-formulas from A which is FI-satisfiable iff D
is satisfiable, thereby reducing 3SAT to FISAT(A).

For each i in {1, . . . , n} and j in {1,2,3}, we add the following FI-formulas to Θ :

bb�(aij , bij ) � k (71)

bb�(cij , bij ) � k − Δ (72)

where aij , bij and cij are different variables from X.
These FI-formulas correspond to the following linear constraints:

(aij )
−
k < (bij )

−
Δ ∨ (aij )

−
k+Δ < (bij )

−
2Δ ∨ · · · ∨ (aij )

−
1 < (bij )

−
1−k+Δ (73){

(bij )
−
Δ � (cij )

−
k , (bij )

−
2Δ � (cij )

−
k+Δ, . . . , (bij )

−
1−k+Δ � (cij )

−
1

}
(74)

Linear constraints can be depicted as a graph in which nodes correspond to variables, and edges labeled with <

or � are added between two nodes if < or � is imposed on the corresponding variables. Fig. 8 shows the graph
corresponding to (73)–(74). Linear constraints with disjunctions are displayed as dotted lines, as only one of several
possible edges needs to be satisfied in this case. Furthermore, we add the following FI-formulas to Θ :

bb�(ci1, di1) � 1 bb�(ai2, di1) � 1 − Δ

bb�(ci2, di2) � 1 bb�(ai3, di2) � 1 − Δ

Fig. 8. Linear constraints (73)–(74).
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bb�(ci3, di3) � 1 bb�(ai1, di3) � 1 − Δ

The corresponding linear constraints are given by

(ci1)
−
1 < (di1)

−
Δ (di1)

−
Δ � (ai2)

−
1 (75)

(ci2)
−
1 < (di2)

−
Δ (di2)

−
Δ � (ai3)

−
1 (76)

(ci3)
−
1 < (di3)

−
Δ (di3)

−
Δ � (ai1)

−
1 (77)

Fig. 9 contains a graph corresponding to Fig. 8 for ai1, bi1 and ci1, as well as the graph for ai2, bi2 and ci2, and the
graph for ai3, bi3 and ci3. For clarity, the nodes for the bij -variables are omitted. Furthermore, these three subgraphs
are linked together by the constraints (75)–(77). If (ai1)

−
1 < (ci1)

−
1 , (ai2)

−
1 < (ci2)

−
1 and (ai3)

−
1 < (ci3)

−
1 would

hold, we obtain (ai1)
−
1 < (ci1)

−
1 < (ai2)

−
1 < (ci2)

−
1 < (ai3)

−
1 < (ci3)

−
1 < (ai1)

−
1 , and thus (ai1)

−
1 < (ai1)

−
1 which

Fig. 9. Linear constraints (75)–(77).
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cannot be satisfied. Hence, every FI-model of Θ corresponds to a P-model in which at least one of (ai1)
−
1 � (ci1)

−
1 ,

(ai2)
−
1 � (ci2)

−
1 and (ai3)

−
1 � (ci3)

−
1 holds. A truth assignment that makes lij true if (aij )

−
1 � (cij )

−
1 will therefore

make all clauses in D true. To ensure that such a truth assignment indeed exists, what remains is to make sure that an
atomic proposition lij and its negation, denoted below by lrs , are not made true simultaneously. If we want to define a
correspondence between Θ and D, we therefore need to encode that one of (aij )

−
1 < (cij )

−
1 or (ars)

−
1 < (crs)

−
1 must

hold. This can be accomplished by adding the following FI-formulas to Θ :

bb�(eijrs, cij ) � Δ (78)

bb�(eijrs, fijrs) � 1 (79)

bb�(ars, fijrs) � k − Δ (80)

bb�(ersij , crs) � Δ (81)

bb�(ersij , frsij ) � 1 (82)

bb�(aij , frsij ) � k − Δ (83)

which correspond to the following (sets of) linear constraints{
(cij )

−
Δ � (eijrs)

−
2Δ, (cij )

−
2Δ � (eijrs)

−
3Δ, . . . , (cij )

−
1−Δ � (eijrs)

−
1

}
(84)

(eijrs)
−
1 < (fijrs)

−
Δ (85){

(fijrs)
−
Δ � (ars)

−
k , (fijrs)

−
2Δ � (ars)

−
k+Δ, . . . , (fijrs)

−
1−k+Δ � (ars)

−
1

}
(86){

(crs)
−
Δ � (ersij )

−
2Δ, (crs)

−
2Δ � (ersij )

−
3Δ, . . . , (crs)

−
1−Δ � (ersij )

−
1

}
(87)

(ersij )
−
1 < (frsij )

−
Δ (88){

(frsij )
−
Δ � (aij )

−
k , (frsij )

−
2Δ � (aij )

−
k+Δ, . . . , (frsij )

−
1−k+Δ � (aij )

−
1

}
(89)

Fig. 10 displays these linear constraints. In particular, (84)–(89) imply that (cij )
−
1−Δ < (ars)

−
k and (crs)

−
1−Δ < (aij )

−
k .

Assume that there exists an FI-model of Θ such that the corresponding P-model I ′ neither satisfies (aij )
−
1 < (cij )

−
1

nor (ars)
−
1 < (crs)

−
1 . Then there exist a k1 and a k2 in M such that k � k1 � 1 − Δ and k � k2 � 1 − Δ, and such that

I ′ satisfies (aij )
−
k1

< (cij )
−
k1

and (ars)
−
k2

< (crs)
−
k2

. We obtain (cij )
−
1−Δ < (ars)

−
k � (ars)

−
k2

< (crs)
−
k2

� (crs)
−
1−Δ <

(aij )
−
k � (aij )

−
k1

< (cij )
−
k1

� (cij )
−
1−Δ, and thus that (cij )

−
1−Δ < (cij )

−
1−Δ would hold. Hence, any FI-model of Θ

corresponds to a P-model satisfying (aij )
−
1 < (cij )

−
1 or (ars)

−
1 < (crs)

−
1 . If both (aij )

−
1 < (cij )

−
1 and (ars)

−
1 < (crs)

−
1

would be satisfied in an FI-model of Θ , we can arbitrarily choose to make either lij or lrs true without making any of
the clauses in D false. Therefore, we have established that whenever Θ is FI-satisfiable, D must be satisfiable.

To complete the proof, we also show the converse, i.e., whenever D is satisfiable, there exists an FI-model of Θ ,
or equivalently, a P-model of the linear constraints corresponding to Θ . If the literal lij is interpreted as true, we
choose the disjunct (aij )

−
1−Δ < (bij )

−
1−k in (73), while if lij is interpreted as false, we choose the disjunct (aij )

−
1 <

(bij )
−
1−k+Δ. Thus we obtain a set Ψ of linear constraints without disjunctions whose P-satisfiability implies the FI-

satisfiability of Θ . It holds that Ψ is P-satisfiable iff the graph representation of Ψ does not contain any cycles
involving at least one edge labeled with <.

We begin by considering the edges corresponding to linear constraints of the form (73), (74) and (75)–(77), as
depicted in Fig. 9. Note that in the construction of Ψ , as mentioned above, we chose one specific disjunct in (75).
Since at least one of the literals li1, li2, li3 is interpreted as true, for at least one j in {1,2,3}, we chose the disjunct
(aij )

−
1−Δ < (bij )

−
1−k , resulting in (aij )

−
1−Δ < (cij )

−
1−Δ instead of (aij )

−
1 < (cij )

−
1 . For a cycle, however, we would

need (ai1)
−
1 < (ci1)

−
1 , (ai2)

−
1 < (ci2)

−
1 and (ai3)

−
1 < (ci3)

−
1 . From this we conclude that the constraints of the form

(73), (74) and (75)–(77) alone do not lead to cycles in the graph representation of Ψ .
Any cycle would therefore have to include at least one edge corresponding to a linear constraint of the form (84)–

(89). Such a cycle can only occur if for some i, j, r, s in {1,2, . . . , n}, we have that (cij )
−
1−Δ < (ars)

−
k , (ars)

−
1−Δ <

(crs)
−
1−Δ, (crs)

−
1−Δ < (aij )

−
k and (aij )

−
1−Δ < (cij )

−
1−Δ. By construction, (cij )

−
1−Δ < (ars)

−
k and (crs)

−
1−Δ < (aij )

−
k

are only implied by Ψ iff lij ≡ ¬lrs . However, if this is the case, either lij or lrs is false, and (ars)
−
1−Δ < (crs)

−
1−Δ

and (aij )
−
1−Δ < (cij )

−
1−Δ cannot both be contained in Ψ . Hence Ψ cannot contain any cycle, which completes the

proof. �
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Fig. 10. Linear constraints (84)–(89).

Proposition 4 shows that, when no restrictions on the variables are imposed, F t
X cannot be extended with atomic

FI-formulas without losing tractability. From the next proposition, it follows that this also holds for disjunctive FI-
formulas.

Proposition 5. Let rd and sd be bb
�
d , ee

�
d , be

�
d or eb

�
d (d ∈ R). FISAT(A) is NP-complete if A contains any of the

following sets of FI-formulas:
F t

X ∪
⋃

4

{
rd1(x, y) � l1 ∨ sd2(u, v) � l2

}
(90)
(x,y,u,v)∈X
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F t
X ∪

⋃
(x,y,u,v)∈X4

{
rd1(x, y) � l1 ∨ sd2(u, v) � k2

}
(91)

F t
X ∪

⋃
(x,y,u,v)∈X4

{
rd1(x, y) � k1 ∨ sd2(u, v) � k2

}
(92)

for any d1, d2 ∈ R, l1, l2 ∈ M0 and k1, k2 ∈ M1.

Proof. As an example, we show (90) for rd1 = sd2 = bb
�
0 . First note that if

⋃
(x,y)∈X2{rd1(x, y) � l1} 	⊆ F t

X or⋃
(u,v)∈X2{sd2(u, v) � l2} 	⊆ F t

X , (90) follows straightforwardly from Proposition 4. Therefore, we only need to
consider the case where l1 = l2 = 1. We will establish that FISAT(F t

X ∪⋃
(x,y)∈X2{bb�(x, y) � 1−Δ}), which is NP-

complete by Proposition 4, can be polynomially reduced to FISAT(F t
X ∪⋃

(x,y,u,v)∈X4{bb�(x, y) � 1 ∨bb�(u, v) �
1}).

Let Θ1 be a set of FI-formulas from F t
X ∪ ⋃

(x,y)∈X2{bb�(x, y) � 1 − Δ}. We construct a set Θ2 of FI-formulas
from FISAT(F t

X ∪ ⋃
(x,y,u,v)∈X4{bb�(x, y) � 1 ∨ bb�(u, v) � 1}) by replacing every FI-formula in Θ1 of the form

bb�(x, y) � 1 − Δ by the following FI-formulas

bb�(x, v) � 1 ∨ bb�(u, y) � 1

bb�(u, x) � Δ

bb�(y, v) � Δ

giving rise to the following linear constraints:

x−
1 < v−

Δ ∨ u−
1 < y−

Δ (93){
x−
Δ � u−

2Δ,x−
2Δ � u−

3Δ, . . . , x−
1−Δ � u−

1

}
(94){

v−
Δ � y−

2Δ,v−
2Δ � y−

3Δ, . . . , v−
1−Δ � y−

1

}
(95)

These linear constraints are depicted in Fig. 11. On the other hand, the corresponding FI-formula bb�(x, y) � 1 − Δ

from Θ1 gives rise to

x−
1−Δ < y−

Δ ∨ x−
1 < y−

2Δ

Let Ψ1 and Ψ2 be the sets of linear constraints corresponding to Θ1 and Θ2 respectively. By Proposition 3, it
suffices to show that Ψ1 is P-satisfiable iff Ψ2 is P-satisfiable. Clearly, if I is a P-model of Ψ2, I is also a P-model of
Ψ1. Conversely, we show that if I is a P-model of Ψ1, there exists a P-model I ′ of Ψ2. For all variables a occurring
in Ψ1, we define I ′(a) = I(a). Moreover, for additional variables occurring in (93)–(95), I ′ is defined as follows. For
each k in {2Δ,3Δ, . . . ,1}, we define

I ′(u−
k

) = I
(
x−
k−Δ

)
while for each k in {Δ, . . . ,1 − 2Δ,1 − Δ}, we define

I ′(v−
k

) = I
(
y−
k+Δ

)
Finally, we define

Fig. 11. Linear constraints (93)–(95).
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I ′(u−
Δ

) = I ′(u−
2Δ

)
I ′(v−

1

) = I ′(v−
1−Δ

)
Note that I ′(x−

1−Δ) < I ′(y−
Δ) ∨ I ′(x−

1 ) < I ′(y−
2Δ) implies that I ′ satisfies (93), as I ′(x−

1−Δ) = I ′(u−
1 ) and I ′(v−

Δ) =
I ′(y−

2Δ). Clearly, I ′ also satisfies (94) and (95), hence I ′ is a P-model of Ψ2. �
To find tractable sets of FI-formulas that are larger than F t

X , we can impose restrictions on the variables in the FI-
formulas. For example, it can be shown that bb

�
d (x, x) = ee

�
d (x, x) = eb

�
d (x, x) = 0 for any d � 0 [41]. Hence, for

example, bb
�
d (x, x) � k is satisfied by any FI-interpretation for every k ∈ M1, while no FI-interpretation can satisfy

bb
�
d (x, x) � l for l ∈ M0. Therefore, if φ is an FI-formula from F t

X , FISAT(F t
X ∪{φ ∨bb

�
d (x, x) � k1 ∨ee

�
d (x, x) �

k2 ∨ bb
�
d (z, z) � l1}) is still tractable. In the same way, if k1 � k2, a formula like bb

�
d (x, y) � k1 ∨ bb

�
d (x, y) � k2

will be satisfied by any FI-interpretation.
These extensions of F t

X are of limited practical value because of their rather trivial character. More useful tractable
extensions can be derived by considering disjunctive FI-formulas that give rise to disjunctive linear constraints which
are Horn. For example, let φ be an FI-formula from F t

X and let the corresponding set of linear constraints be given by
{ρ1, ρ2, . . . , ρs}. An FI-formula like φ ∨ bb

�
d (x, y) � Δ ∨ bb

�
−d(y, x) � Δ gives rise to the set of linear constraints

{α1, α2, . . . , αs}, where

αi = ρi ∨ x−
Δ < y−

Δ − d ∨ x−
2Δ < y−

2Δ − d ∨ · · · ∨ x−
1 < y−

1 − d

∨ y−
Δ − d < x−

Δ ∨ y−
2Δ − d < x−

2Δ ∨ · · · ∨ y−
1 − d < x−

1

= ρi ∨ x−
Δ 	= y−

Δ − d ∨ x−
2Δ 	= y−

2Δ − d ∨ · · · ∨ x−
1 	= y−

1 − d

In other words, each αi is a Horn linear constraint (i ∈ {1,2, . . . , s}), hence FISAT(F t
X ∪ {φ ∨ bb

�
d (x, y) � Δ ∨

bb
�
d (y, x) � Δ}) is tractable.
More generally, let the set GX of FI-formulas be defined as follows:

GX =
⋃

(x,y)∈X2

⋃
d∈R

{bb
�
d (x, y) � Δ ∨ bb

�
−d(y, x) � Δ,

ee
�
d (x, y) � Δ ∨ ee

�
−d(y, x) � Δ,

be
�
d (x, y) � 1 ∨ be

�
−d(y, x) � 1

}

Furthermore, let HX be recursively defined as follows

(1) If φ ∈ F t
X , then φ ∈ HX

(2) If φ1 ∈HX and φ2 ∈ GX , then (φ1 ∨ φ2) ∈HX

(3) HX contains no other elements

As any FI-formula in HX corresponds to a Horn linear constraint, or a set of Horn linear constraints, we have that
FISAT(HX) is tractable.

When Δ = 1 (i.e., M = {0,1}), we know by Proposition 1 that a set of FI-formulas is FI-satisfiable iff there exists
an interpretation that assigns a crisp interval to every variable. The set of FI-formulas HX is then exactly equal to
the set of all Horn linear constraints involving the endpoints of these crisp intervals. Hence, for Δ = 1, our (tractable)
fuzzy temporal reasoning framework degenerates to reasoning about (Horn) linear constraints. By decreasing the value
of Δ to 1

2 , 1
3 , 1

4 , 1
5 , . . ., an increasingly higher expressiveness is achieved.

7. Entailment

Let Θ be a set of FI-formulas over X, and γ an FI-formula over X. We say that Θ entails γ , written Θ |= γ , iff
every FI-model of Θ is also an FI-model of {γ }. The notion of entailment is important for applications, because it
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allows to draw conclusions that are not explicitly contained in an initial set of assertions. Obviously, Θ |= γ if Θ and
the negation of γ can never be satisfied at the same time. For example, Θ |= bb

�
d (x, y) � k iff Θ ∪ {bb

�
d (x, y) > k}

is not FI-satisfiable. Unfortunately, our procedure for checking FI-satisfiability cannot be applied for strict inequal-
ities like bb

�
d (x, y) > k, as Proposition 1 does not hold in this case. However, for every FIM -interpretation I , we

have that bb
�
d (xI , yI) > k iff bb

�
d (xI , yI) � k + Δ. Inspired by this observation, we say that Θ weakly entails γ

(w.r.t. M), written Θ |=M γ iff every FIM -model of Θ is also an FIM -model of {γ }. Checking weak entailment can
straightforwardly be reduced to checking FI-satisfiability.

Proposition 6. Let Θ be a set of FI-formulas and let r(x, y) be one of bb
�
d (x, y), ee�

d (x, y), be
�
d (x, y) and eb

�
d (x, y)

(d ∈ R, (x, y) ∈ X2). For k in M1 and l in M0 it holds that

(1) Θ |=M r(x, y) � l iff Θ ∪ {r(x, y) � l − Δ} is not FI-satisfiable.
(2) Θ |=M r(x, y) � k iff Θ ∪ {r(x, y) � k + Δ} is not FI-satisfiable.

Proof. The proof follows trivially from the fact that for any FIM -interpretation I , r(xI , yI) < l implies r(xI , yI) �
l − Δ and r(xI , yI) > k implies r(xI , yI) � k + Δ. �

As the name already suggests, weak entailment is a weaker notion than entailment, i.e., (Θ |= γ ) ⇒ (Θ |=M γ ).
Nonetheless, weak entailment can still be used in applications to derive sound conclusions, by virtue of the following
proposition.

Proposition 7. Let Θ be a set of FI-formulas and let r(x, y) be one of bb
�
d (x, y), ee�

d (x, y), be
�
d (x, y) and eb

�
d (x, y)

(d ∈ R, (x, y) ∈ X2). For k in M1 \ {1 − Δ} and l in M0 \ {Δ} it holds that

(1) If Θ |=M r(x, y) � l then Θ |= r(x, y) � l − Δ.
(2) If Θ |=M r(x, y) � k then Θ |= r(x, y) � k + Δ.

Proof. If Θ |=M r(x, y) � l, then by Proposition 6, Θ ∪ {r(x, y) � l − Δ} is not FI-satisfiable. Hence in every FI-
interpretation of Θ , it holds that r(x, y) > l − Δ, and in particular, r(x, y) � l − Δ. The second implication is shown
in the same way. �

In the remainder of this section, we will investigate when weak entailment coincides with entailment, i.e., in which
situations Proposition 6 also holds for (regular) entailment. Clearly Θ ∪ {φ1 ∨ φ2 ∨ · · · ∨ φn} |= γ iff Θ ∪ {φ1} |= γ

and Θ ∪ {φ2} |= γ and . . . and Θ ∪ {φn} |= γ . Therefore, we can restrict ourselves to the case where Θ only contains
atomic FI-formulas.

As we discussed in Section 5, for each set of FI-formulas Θ , we can find a set of linear constraints Ψ which is
P-satisfiable iff Θ is FI-satisfiable. If Ψ does not contain any disjunctive linear constraints, we can represent Ψ as a
graph G whose nodes correspond to variables like x−

l or x+
l (l ∈ M0). If Ψ contains a linear constraint x + d � y,

we add an edge from the node corresponding with x to the node corresponding with y which is labeled with (�, d).
Similarly, if Ψ contains a linear constraint x + d < y, we add an edge labeled with (<,d). The sum of two labels
(�, d1) and (�, d2) is defined as (�, d1 + d2), while the sum of (<,d1) and (�, d2), (�, d1) and (<,d2), or (<,d1)

and (<,d2), is defined as (<,d1 + d2). A cycle for which the edge labels sum up to (�, d), with d > 0, or to (<,d ′),
with d ′ � 0, is called a forbidden cycle. It holds that Ψ is P-satisfiable iff there are no forbidden cycles in G [25]. If
Ψ does contain disjunctive linear constraints, every choice of the disjuncts leads to a different graph representation,
and Ψ is P-satisfiable as soon as one of these graphs is free of forbidden cycles.

In the following, nodes corresponding to variables like x−
l will be called beginning nodes, while nodes correspond-

ing to variables like x+
l will be called ending nodes. Furthermore, we will sometimes assume that Δ = 1

2p
for some

p ∈ N \ {0}. Nodes like x−
l or x+

l will then be called white nodes if l ∈ {2Δ,4Δ, . . . ,1} and black nodes otherwise.
Finally, for l ∈ M \ {0,Δ} and k ∈ M1, x−

l−Δ (resp. x+
k+Δ) will be called the left neighbour of x−

l (resp. x+
k ), while

x− (resp. x+ ) will be called the right neighbour of x− (resp. x+).
k+Δ l−Δ k l
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Graphs representing linear constraints derived from a set of FI-formulas exhibit some interesting properties. In
particular, the following two lemmas will be useful in reducing entailment checking to FI-satisfiability checking, or,
equivalently, weak entailment checking.

Lemma 3. Let Δ = 1
2p

for some p ∈ N \ {0}, and let Θ be a (finite) set of FI-formulas. Let Ψ be the corresponding
set of linear constraints and let G be the graph representation corresponding to a particular choice of disjuncts for
the disjunctive constraints in Ψ . Furthermore, assume that there is a path in G from v to u in which each edge
either corresponds to a linear constraint of the form (46)–(48), or is the result of an FI-formula in Θ of the form
bb

�
d (x, y) � k, ee

�
d (x, y) � k, be

�
d (x, y) � k, or eb

�
d (x, y) � l for some k in {0,2Δ,4Δ, . . . ,1 − 2Δ} and l in

{2Δ,4Δ, . . . ,1}). Assume, moreover, that:

(1) v is a black beginning node and u is a white beginning node, or
(2) v is a white ending node and u is a black ending node, or
(3) v is a white ending node and u is a white beginning node, or
(4) v is a black beginning node and u is a black ending node.

It holds that there is a path in G from v to the left neighbour of u, as well as a path from the right neighbour of v to u.
Moreover, for both paths, the edge labels sum up to the same value as for the original path.

Proof. The proof is presented in Appendix A.3. �
We define the right (resp. left) neighbour of an edge from v to u as the edge from the right (resp. left) neighbour of

v to the right (resp. left) neighbour of u.

Lemma 4. Let Δ = 1
2p

for some p in N \ {0}, and let Θ and Ψ be defined as before. Moreover, assume that all upper
and lower bounds in Θ are taken from {0,2Δ,4Δ, . . . ,1}. Let I be a P-model of Ψ , and let G1 be the corresponding
graph representation of Ψ without forbidden cycles. Let the graph G2 be constructed from G1 by replacing

(1) edges resulting from an FI-formula of the form bb
�
d (x, y) � l by their right neighbour if they start from a black

beginning node;
(2) edges resulting from an FI-formula of the form ee

�
d (x, y) � l by their right neighbour if they start from a white

ending node;
(3) edges resulting from an FI-formula of the form be

�
d (x, y) � l or eb

�
d (x, y) � k by their right neighbour if they

start from a black beginning node.

It holds that G2 does not contain any forbidden cycles.

Proof. The proof is presented in Appendix A.4. �
Using Lemmas 3 and 4, we can show the following lemma about FI-satisfiability when all upper and lower bounds

are of the form 2iΔ.

Lemma 5. Let Δ = 1
2p

for some p in N \ {0}, let Θ be a set of atomic FI-formulas in which all upper and lower
bounds are taken from {0,2Δ,4Δ, . . . ,1}. For l in {0,2Δ,4Δ, . . . ,1 − 2Δ} and k in {2Δ,4Δ, . . . ,1}, it holds that:

(1) Θ ∪ {bb
�
d (x, y) � l + Δ} is FI-satisfiable iff Θ ∪ {bb

�
d (x, y) � l + 2Δ} is FI-satisfiable;

(2) Θ ∪ {ee�
d (x, y) � l + Δ} is FI-satisfiable iff Θ ∪ {ee�

d (x, y) � l + 2Δ} is FI-satisfiable;
(3) Θ ∪ {be

�
d (x, y) � l + Δ} is FI-satisfiable iff Θ ∪ {be

�
d (x, y) � l + 2Δ} is FI-satisfiable;

(4) Θ ∪ {eb�
d (x, y) � k − Δ} is FI-satisfiable iff Θ ∪ {eb�

d (x, y) � k − 2Δ} is FI-satisfiable.

Proof. The proof is presented in Appendix A.5. �
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Finally, we can show the following characterization of entailment in terms of FI-satisfiability for FI-formulas of
the form bb

�
d (x, y) � k, ee

�
d (x, y) � k, be

�
d (x, y) � k, and eb

�
d (x, y) � l.

Proposition 8. Let Θ be a set of atomic FI-formulas. It holds for k in M1 and l in M0 that

(1) Θ |= bb
�
d (x, y) � k iff Θ ∪ {bb

�
d (x, y) � k + Δ} is not FI-satisfiable;

(2) Θ |= ee
�
d (x, y) � k iff Θ ∪ {ee�

d (x, y) � k + Δ} is not FI-satisfiable;
(3) Θ |= be

�
d (x, y) � k iff Θ ∪ {be

�
d (x, y) � k + Δ} is not FI-satisfiable;

(4) Θ |= eb
�
d (x, y) � l iff Θ ∪ {eb�

d (x, y) � l − Δ} is not FI-satisfiable.

Proof. As an example, we show that Θ |= bb
�
d (x, y) � k iff Θ ∪ {bb

�
d (x, y) � k + Δ} is not FI-satisfiable. Clearly,

if Θ ∪ {bb
�
d (x, y) � k + Δ} is FI-satisfiable, then Θ 	|= bb

�
d (x, y) � k. Therefore, we only need to show that if there

is an FI-model of Θ which does not satisfy bb
�
d (x, y) � k, it holds that Θ ∪ {bb

�
d (x, y) � k + Δ} is FI-satisfiable.

Let I be an FI-model of Θ , and assume that bb
�
d (xI , yI) > k. There exists an n in N such that bb

�
d (xI , yI) �

k + Δ
2n . Obviously, we have that Θ ∪ {bb

�
d (x, y) � k + Δ

2n } is FI-satisfiable. By letting Δ
2n play the role of Δ, we

obtain using Lemma 5 that Θ ∪ {bb
�
d (x, y) � k + Δ

2n−1 } is FI-satisfiable. Again applying Lemma 5 reveals that also

Θ ∪ {bb
�
d (x, y) � k + Δ

2n−2 } is FI-satisfiable. By repeating this argument n times, we find that Θ ∪ {bb
�
d (x, y) �

k + Δ} is FI-satisfiable. �
To find a characterization of entailment for FI-formulas of the form bb

�
d (x, y) � l, ee

�
d (x, y) � l, be

�
d (x, y) � l,

and eb
�
d (x, y) � k, we restrict ourselves to the case where Θ only contains FI-formulas from F t

X .

Lemma 6. Let Δ = 1
2p

for some p ∈ N \ {0}, let Θ be a set of FI-formulas from F t
X in which all upper and lower

bounds are taken from {0,2Δ,4Δ, . . . ,1}. For l in {0,2Δ,4Δ, . . . ,1 − 2Δ} and k in {2Δ,4Δ, . . . ,1}, it holds that:

(1) Θ ∪ {be
�
d (x, y) � k − Δ} is FI-satisfiable iff Θ ∪ {be

�
d (x, y) � k − 2Δ} is FI-satisfiable;

(2) Θ ∪ {eb�
d (x, y) � l + Δ} is FI-satisfiable iff Θ ∪ {eb�

d (x, y) � l + 2Δ} is FI-satisfiable.

Moreover, for k in {4Δ,6Δ, . . . ,1}, it holds that

(1) Θ ∪ {bb
�
d (x, y) � k − Δ} is FI-satisfiable iff Θ ∪ {bb

�
d (x, y) � k − 2Δ} is FI-satisfiable;

(2) Θ ∪ {ee�
d (x, y) � k − Δ} is FI-satisfiable iff Θ ∪ {ee�

d (x, y) � k − 2Δ} is FI-satisfiable.

Proof. The proof is presented in Appendix A.6. �
Note that the FI-satisfiability of Θ ∪ {bb

�
d (x, y) � Δ} does not necessarily imply that Θ ∪ {bb

�
d (x, y) � 0} is

FI-satisfiable. For example, for d ′ + d > 0, it holds that {bb
�
d ′ (y, x) � 0, bb

�
d (x, y) � Δ} is FI-satisfiable, while

{bb
�
d ′ (y, x) � 0, bb

�
d (x, y) � 0} is not. Similarly, we have that {ee�

d ′ (y, x) � 0, ee
�
d (x, y) � Δ} is FI-satisfiable and

{ee�
d ′ (y, x) � 0, e

�
d (x, y) � 0} is not.

Proposition 9. Let Θ be a set of atomic FI-formulas from F t
X . For k in M1 and l in M0, it holds that

(1) Θ |= be
�
d (x, y) � l iff Θ ∪ {be

�
d (x, y) � l − Δ} is not FI-satisfiable;

(2) Θ |= eb
�
d (x, y) � k iff Θ ∪ {eb�

d (x, y) � k + Δ} is not FI-satisfiable.

Moreover, for l in M0 \ {Δ}, it holds that

(1) Θ |= bb
�
d (x, y) � l iff Θ ∪ {bb

�
d (x, y) � l − Δ} is not FI-satisfiable;

(2) Θ |= ee
�
d (x, y) � l iff Θ ∪ {ee�

d (x, y) � l − Δ} is not FI-satisfiable.



S. Schockaert, M. De Cock / Artificial Intelligence 172 (2008) 1158–1193 1185
Proof. The proof is entirely analogous to the proof of Proposition 8, using Lemma 6 instead of Lemma 5. �
Proposition 9 does not hold in general when Θ contains atomic FI-formulas from FX \ F t

X . As a counterex-
ample, let Δ = 0.25 and Θ = {bb�(a, e) � 0.75, bb�(d, g) � 0.75, bb�(e, f ) � 1, bb�(b, c) � 1, bb�(b, a) �
0.5, bb�(d, c) � 0.5, bb�(g, f ) � 0.5, bb�(d, e) � 0.75}. It holds that Θ ∪ {bb�(a, g) � 0.375} is FI-satisfiable,
implying that Θ 	|= bb�(a, g) � 0.5, whereas Θ ∪ {bb�(a, g) � 0.25} is not FI-satisfiable.

Note that Proposition 9 provides no characterization of entailment for the case where bb
�
d (x, y) � Δ or

ee
�
d (x, y) � Δ. However, to check entailment for bb

�
d (x, y) � Δ or ee

�
d (x, y) � Δ, we can always redefine the

set M as {0, Δ
2 ,Δ, . . . ,1 − Δ

2 ,1}, i.e., we let Δ
2 play the role of Δ. Also note that from Propositions 8 and 9, it fol-

lows that the tractability of F t
X w.r.t. FI-satisfiability carries over to entailment checking. Indeed, if Θ only contains

FI-formulas from F t
X , Θ |= γ can be checked by checking the FI-satisfiability of a set of FI-formulas which contains

at most one FI-formula which is not in F t
X . Although this one FI-formula may correspond to a disjunctive linear

constraint, the number of disjuncts is bounded by |M|. Therefore, FI-satisfiability can be checked in polynomial time,
using O(|M|) P-satisfiability checks of sets of linear constraints without disjuncts.

In addition to entailment checking, it may also be of interest to know what the strongest upper bound or lower
bound is for the value of bb

�
d (x, y), ee

�
d (x, y), be

�
d (x, y) or eb

�
d (x, y), given that a set of FI-formulas Θ is satisfied.

As a corollary of Proposition 8, we find that the strongest upper bound of bb
�
d (x, y), ee

�
d (x, y) and be

�
d (x, y), as

well as the strongest lower bound of eb
�
d (x, y), is always a value from M :

Corollary 1. Let Θ be a set of atomic FI-formulas. It holds that (d ∈ R, (x, y) ∈ X2)

inf
{
k | k ∈ [0,1] ∧ Θ |= bb

�
d (x, y) � k

} = min
{
k | k ∈ M ∧ Θ |= bb

�
d (x, y) � k

}
inf

{
k | k ∈ [0,1] ∧ Θ |= ee

�
d (x, y) � k

} = min
{
k | k ∈ M ∧ Θ |= ee

�
d (x, y) � k

}
inf

{
k | k ∈ [0,1] ∧ Θ |= be

�
d (x, y) � k

} = min
{
k | k ∈ M ∧ Θ |= be

�
d (x, y) � k

}
sup

{
k | k ∈ [0,1] ∧ Θ |= eb

�
d (x, y) � k

} = max
{
k | k ∈ M ∧ Θ |= eb

�
d (x, y) � k

}

In the same way, as a corollary of Proposition 9, we can establish the strongest lower bound of bb
�
d (x, y),

ee
�
d (x, y) and be

�
d (x, y), as well as the strongest upper bound of eb

�
d (x, y), given that a set of atomic FI-formulas

from F t
X is satisfied.

Corollary 2. Let Θ be a set of atomic FI-formulas from F t
X . It holds that (d ∈ R, (x, y) ∈ X2)

sup
{
k | k ∈ [0,1] ∧ Θ |= be

�
d (x, y) � k

} = max
{
k | k ∈ M ∧ Θ |= be

�
d (x, y) � k

}
inf

{
k | k ∈ [0,1] ∧ Θ |= eb

�
d (x, y) � k

} = min
{
k | k ∈ M ∧ Θ |= eb

�
d (x, y) � k

}
If Θ |= bb

�
d (x, y) � Δ or Θ ∪ {bb

�
d (x, y) � 0} is FI-satisfiable, resp. Θ |= ee

�
d (x, y) � Δ or Θ ∪ {ee�

d (x, y) � 0}
is FI-satisfiable, it holds that

sup
{
k | k ∈ [0,1] ∧ Θ |= bb

�
d (x, y) � k

} = max
{
k | k ∈ M ∧ Θ |= bb

�
d (x, y) � k

}
sup

{
k | k ∈ [0,1] ∧ Θ |= ee

�
d (x, y) � k

} = max
{
k | k ∈ M ∧ Θ |= ee

�
d (x, y) � k

}
Finally, if Θ |= bb

�
d (x, y) � Δ while Θ ∪ {bb

�
d (x, y) � 0} is not FI-satisfiable, resp. Θ |= ee

�
d (x, y) � Δ while

Θ ∪ {ee�
d (x, y) � 0} is not FI-satisfiable, it holds that in any FI-model I of Θ

bb
�
d

(
xI , yI

)
> 0

ee
�
d

(
xI , yI

)
> 0

while for any k > 0, there exists an FI-model I of Θ in which

bb
�
d

(
xI , yI

)
< k

ee
�
d

(
xI , yI

)
< k

In other words, in this last case, the strongest lower bound implied by Θ is a strict lower bound.
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As becomes clear from Corollary 1 and 2, finding the strongest upper and lower bounds on bb
�
d (x, y), ee

�
d (x, y),

be
�
d (x, y), or eb

�
d (x, y) implied by Θ can be done by O(log(|M|)) FI-satisfiability checks, using binary search.

8. Concluding remarks

In this paper, we have shown how temporal reasoning about fuzzy time intervals can be reduced to reasoning about
linear constraints. An important advantage of this approach is that we can draw upon well-established results for
solving disjunctive temporal reasoning problems, as well as reuse existing, optimized tools for crisp temporal reason-
ing. The problem of satisfiability checking was shown to be NP-complete. Hence, introducing vagueness in temporal
reasoning does not increase the computational complexity. Moreover, an important tractable subfragment HX was
identified in this paper, which for Δ = 1 degenerates to the well-known framework of Horn linear constraints. In gen-
eral, for Δ = 1 our framework degenerates to reasoning about crisp intervals, i.e., if only 0 and 1 are used as upper and
lower bounds, a set of FI-formulas can be satisfied by fuzzy time intervals iff it can be satisfied by crisp intervals. For
Δ = 0.5, the framework degenerates to reasoning about three valued intervals. Such intervals can be represented as a
pair of crisp intervals (a, a), where a contains the dates which fully belong to the vague time period and a contains
the dates which at least belong to the vague time period to some extent (a ⊆ a). This essentially corresponds to a
temporal counterpart of the Egg-Yolk calculus [11] for spatial reasoning about vague regions. Further decreasing the
value of Δ leads to an increasingly higher expressiveness, requiring, however, an increasing amount of computation
time.

In contrast to crisp temporal reasoning frameworks, entailment checking in our framework cannot straightforwardly
be reduced to satisfiability checking. To cope with this, we have introduced the notion of weak entailment, which can
be used to derive sound conclusions. Next, we have investigated in Propositions 8 and 9 how entailment relates to
weak entailment. Finally, we have discussed how the strongest upper and lower bound on the possible values of a
fuzzy temporal relation, applied to a particular pair of variables, can be obtained.

Our work is complementary to existing approaches for fuzzy temporal reasoning, which have focused on modelling
possibilistic uncertainty and preferences (e.g., [4]). An interesting direction for future work might be to combine our
framework with, for example, the IAfuz framework from [4] to allow temporal reasoning with uncertain information
about vague time periods, or with fuzzy temporal constraint networks to allow imprecise metric constraints like “A
happened about three weeks before B”. Further investigation is also needed to optimize the reasoning procedures.
Properties about the specific structure of the linear constraints that arise from a set of FI-formulas may be very useful
to prune the search space.

Appendix A. Proofs

A.1. Proof of Lemma 1

First, we consider (12):

bb
�
d (A,B) � l ⇔ sup

p∈R

TW

(
A(p), inf

q∈R

IW

(
B(q),L

�
d (p, q)

))
� l

⇔ (∀ε > 0)
(
sup
p∈R

TW

(
A(p), inf

q∈R

IW

(
B(q),L

�
d (p, q)

))
> l − ε

)

⇔ (∀ε > 0)(∃p ∈ R)
(
TW

(
A(p), inf

q∈R

IW

(
B(q),L

�
d (p, q)

))
> l − ε

)

If A(p) = 0, it holds that T (A(p), infq∈R IT (B(q),L
�
d (p, q))) = 0. Therefore, we can assume that A(p) > 0. Hence,

there must exist a λ in ]0,1] such that λ = A(p) and thus p ∈ Aλ:

⇔ (∀ε > 0)
(∃λ ∈]0,1])(∃p ∈ Aλ)

(
TW

(
λ, inf

q∈R

IW

(
B(q),L

�
d (p, q)

))
> l − ε

)

⇔ (∀ε > 0)
(∃λ ∈]0,1])(∃p ∈ Aλ)

(
λ + inf

q∈R

IW

(
B(q),L

�
d (p, q)

) − 1 > l − ε
)

⇔ (∀ε > 0)
(∃λ ∈]0,1])(∃p ∈ Aλ)

(
inf IW

(
B(q),L

�
d (p, q)

)
> l + 1 − λ − ε

)

q∈R
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As any fuzzy time interval is upper semi-continuous, the mapping defined by 1 − B(q) for each q in R is lower semi-
continuous. Moreover, as L

�
d (p, q) is lower semi-continuous, the mapping defined by IW (B(q),L

�
d (p, q)) for each

q in R is lower semi-continuous as well. Hence, the infimum infq∈R IW (B(q),L
�
d (p, q)) is attained for some q in R.

We therefore find:

⇔ (∀ε > 0)
(∃λ ∈]0,1])(∃p ∈ Aλ)(∀q ∈ R)

(
IW

(
B(q),L

�
d (p, q)

)
> l + 1 − λ − ε

)
For λ � l − ε, IW (B(q),L

�
d (p, q)) > l + 1 − λ − ε can never be satisfied, hence:

⇔ (∀ε > 0)
(∃λ ∈]l − ε,1])(∃p ∈ Aλ)(∀q ∈ R)

(
IW

(
B(q),L

�
d (p, q)

)
> l + 1 − λ − ε

)
If L

�
d (p, q) = 1, then IW (B(q),L

�
d (p, q)) = 1, while IW (B(q),L

�
d (p, q)) = 1−B(q) if L

�
d (p, q) = 0. We thereby

obtain:

⇔ (∀ε > 0)
(∃λ ∈]l − ε,1])(∃p ∈ Aλ)(∀q ∈ R)

(
L

�
d (p, q) = 1 ∨ 1 − B(q) > l + 1 − λ − ε

)
⇔ (∀ε > 0)

(∃λ ∈]l − ε,1])(∃p ∈ Aλ)(∀q ∈ R)
(
L

�
d (p, q) = 1 ∨ ¬(

B(q) � λ + ε − l
))

If ε > l, then ¬(B(q) � λ + ε − l)) can always be satisfied by choosing λ = 1. This yields:

⇔ (∀ε ∈]0, l])(∃λ ∈]l − ε,1])(∃p ∈ Aλ)(∀q ∈ R)
(
L

�
d (p, q) = 1 ∨ ¬(

B(q) � λ + ε − l
))

⇔ (∀ε ∈]0, l])(∃λ ∈]l − ε,1])(∃p ∈ Aλ)(∀q ∈ R)
(
L

�
d (p, q) = 1 ∨ ¬(q ∈ Bλ+ε−l )

)
⇔ (∀ε ∈]0, l])(∃λ ∈]l − ε,1])(∃p ∈ Aλ)(∀q ∈ R)

(
q ∈ Bλ+ε−l ⇒ L

�
d (p, q) = 1

)
⇔ (∀ε ∈]0, l])(∃λ ∈]l − ε,1])(bb

�
d (Aλ,Bλ+ε−l )

)
proving (12).

Turning now to (13), we find:

bb
�
d (A,B) � k ⇔ sup

p∈R

TW

(
A(p), inf

q∈R

IW

(
B(q),L

�
d (p, q)

))
� k

⇔ (∀p ∈ R)
(
TW

(
A(p), inf

q∈R

IW

(
B(q),L

�
d (p, q)

))
� k

)
(A.1)

If A(p) = 0, then TW (A(p), infq∈R IW (B(q),L
�
d (p, q))) � k is trivially satisfied. Consequently, it is sufficient to

show that for every p satisfying A(p) > 0, it holds that TW(A(p), infq∈R IW (B(q),L
�
d (p, q))) � k, or equivalently,

to show that for every λ ∈]0,1] and every p in Aλ:

⇔ (∀λ ∈]0,1])(∀p ∈ Aλ)
(
TW

(
A(p), inf

q∈R

IW

(
B(q),L

�
d (p, q)

))
� k

)
(A.2)

which implies(∀λ ∈]0,1])(∀p ∈ Aλ)
(
TW

(
λ, inf

q∈R

IW

(
B(q),L

�
d (p, q)

))
� k

)
(A.3)

since p ∈ Aλ means that A(p) � λ. Conversely, we also have that (A.3) implies (A.2). Indeed, if (A.2) is violated,
i.e., TW (A(p0), infq∈R IW (B(q),L

�
d (p0, q))) > k for some λ0 ∈]0,1] and some p0 ∈ Aλ0 , then (A.3) is violated for

λ = A(p0) and p = p0. We conclude that (A.1) is equivalent to (A.3). We furthermore find

(∀p ∈ R)
(
TW

(
A(p), inf

q∈R

IW

(
B(q),L

�
d (p, q)

))
� k

)

⇔ (∀λ ∈]0,1])(∀p ∈ Aλ)
(
TW

(
λ, inf

q∈R

IW

(
B(q),L

�
d (p, q)

))
� k

)

⇔ (∀λ ∈]0,1])(∀p ∈ Aλ)
(
λ + inf

q∈R

IW

(
B(q),L

�
d (p, q)

) − 1 � k
)

⇔ (∀λ ∈]0,1])(∀p ∈ Aλ)
(

inf
q∈R

IW

(
B(q),L

�
d (p, q)

)
� 1 − λ + k

)

If λ � k, then IW (B(q),L
�

(p, q)) � 1 − λ + k is trivially satisfied. Therefore, we have
d
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⇔ (∀λ ∈]k,1])(∀p ∈ Aλ)
(

inf
q∈R

IW

(
B(q),L

�
d (p, q)

)
� 1 − λ + k

)

⇔ (∀λ ∈]k,1])(∀p ∈ Aλ)(∃q ∈ R)
(
IW

(
B(q),L

�
d (p, q)

)
� 1 − λ + k

)
⇔ (∀λ ∈]k,1])(∀p ∈ Aλ)(∃q ∈ R)

(
L

�
d (p, q) = 0 ∧ B(q) � λ − k

)
⇔ (∀λ ∈]k,1])(∀p ∈ Aλ)(∃q ∈ R)

(
L

�
d (p, q) = 0 ∧ q ∈ Bλ−k

)
⇔ (∀λ ∈]k,1])(∀p ∈ Aλ)(∃q ∈ Bλ−k)

(
L

�
d (p, q) = 0

)
⇔ (∀λ ∈]k,1])(∀p ∈ Aλ)(∃q ∈ Bλ−k)

(¬(
L

�
d (p, q) = 1

))
⇔ (∀λ ∈]k,1

]
)
(¬(∃p ∈ Aλ)(∀q ∈ Bλ−k)

(
L

�
d (p, q) = 1

))
⇔ (∀λ ∈]k,1])(¬bb

�
d (Aλ,Bλ−k)

)
⇔ (∀λ ∈]k,1])(bb

�
d (Bλ−k,Aλ)

)
which proves (13). The characterizations (14)–(19) can be shown in the same way as (12) or (13).

A.2. Proof of Lemma 2

By definition of bb
�
d , we obtain

bb
�
d (A,B) = sup

p∈R

TW

(
A(p), inf

q∈R

IW

(
B(q),L

�
d (p, q)

))

= max
(

sup
p�mb−d

TW

(
A(p), inf

q∈R

IW

(
B(q),L

�
d (p, q)

))
,

sup
p<mb−d

TW

(
A(p), inf

q∈R

IW

(
B(q),L

�
d (p, q)

)))

From the convexity of B , we establish that B is increasing for values smaller than mb and decreasing for values greater
than mb . Hence, we obtain

inf
q∈R

IW

(
B(q),L

�
d (p, q)

) =
{

IW (B(p + d),L
�
d (p,p + d)) if p < mb − d

IW (B(mb),L
�
d (p,mb)) if p � mb − d

We thus find

max
(

sup
p�mb−d

TW

(
A(p), inf

q∈R

IW

(
B(q),L

�
d (p, q)

))
, sup
p<mb−d

TW

(
A(p), inf

q∈R

IW

(
B(q),L

�
d (p, q)

)))

= max
(

sup
p�mb−d

TW

(
A(p), IW

(
B(mb),L

�
d (p,mb)

))
, sup
p<mb−d

TW

(
A(p), IW

(
B(p + d),L

�
d (p,p + d)

)))

= max
(

sup
p�mb−d

TW

(
A(p), IW (1,0)

)
, sup
p<mb−d

TW

(
A(p), IW

(
B(p + d),0

)))

= max
(

sup
p�mb−d

TW

(
A(p),0

)
, sup
p<mb−d

TW

(
A(p),1 − B(p + d)

))

= sup
p<mb−d

TW

(
A(p),1 − B(p + d)

)

Due to its convexity, A is increasing for values smaller than ma and decreasing for values greater than ma . Hence if
p < mb − d and p > ma , it holds that TW (A(p),1 − B(p + d))) � TW(A(ma),1 − B(ma + d)). Therefore, we have
that

sup
p<mb−d

TW

(
A(p),1 − B(p + d)

) = sup
p<mb−d,p�ma

TW

(
A(p),1 − B(p + d)

)

proving (20). Eq. (21) is shown entirely analogously.
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A.3. Proof of Lemma 3

As an example, we show that there is a path from v to the left neighbour of u when v is a black beginning node
and u is a white beginning node. Let v0 = v, v1, v2, . . . , vn = u be a path in G from v to u. If an edge from vj

to vj+1 in G corresponds to a linear constraint that is the result of an FI-formula of the form bb
�
d (x, y) � k, with

k ∈ {0,2Δ,4Δ, . . . ,1 − 2Δ}, then vj and vj+1 are either both white beginning nodes, or both black beginning nodes.
If this edge is the result of an FI-formula of the form ee

�
d (x, y) � k, vj and vj+1 are both white ending nodes or both

black ending nodes. Finally, if the edge from vj to vj+1 is the result of an FI-formula of the form be
�
d (x, y) � k, or

an FI-formula of the form eb
�
d (x, y) � l, with l ∈ {2Δ,4Δ, . . . ,1}, either vj is a white ending node and vj+1 a black

beginning node, or vj is a black ending node and vj+1 a white beginning node. The only remaining possibility is that
the edge from vj to vj+1 corresponds to a linear constraint of the form (46)–(48).

First assume that none of the edges on the path from v to u corresponds to a linear constraint of the form (46)–
(48). Then all of the nodes v1, . . . , vn−1 need to be beginning nodes, as none of the remaining types of edges starts
at a beginning node and ends at an ending node. This means that all edges (v0, v1), (v1, v2), . . . , (vn−1, vn) would
correspond to a linear constraint that is the result of an FI-formula of the form bb

�
d (x, y) � k. Thus, from the fact that

v is a black node, we establish that v1, v2, . . . , vn are all black nodes. This, however, is not possible since u = vn is a
white beginning node.

Hence, at least one of the edges corresponds to a linear constraint of the form (46)–(48). Let (vs, vs+1) be the last
of these edges. If (vs, vs+1) corresponds to an edge of the form (46), vs+1 is a white ending node. Then all edges
between vs+1 and vn correspond to FI-formulas of the form ee

�
d (x, y) � k, be

�
d (x, y) � k, or eb

�
d (x, y) � l. This

would imply that the nodes vs+2, vs+3, . . . , vn are all white ending nodes or black beginning nodes. This, however, is
not possible since u = vn is a white beginning node. Therefore, (vs, vs+1) has to correspond to either (47) or (48). In
both cases, vs+1 is the right neighbour of vs , and the path v0, v1, . . . , vs, v

′
s+2, v

′
s+3, . . . , v

′
n, where v′

i denotes the left
neighbour of vi , is a path from v to the left neighbour v′

n of u. Moreover, the edge labels of v′
s+2, v

′
s+3, . . . , v

′
n are the

same as those of vs+2, vs+3, . . . , vn (i.e., (�,0)), and the edge label of (vs, vs+1) is (�,0), which adds nothing to the
sum of the edge labels on the original path.

A.4. Proof of Lemma 4

Assume that G2 contains a forbidden cycle v1, v2, . . . , vn, v1, and let (vr , vr+1) be an edge in G2 that does not
occur in G1. Then (vr , vr+1) is the right neighbour of the edge (v′

r , v
′
r+1) from G1.

Moreover, first assume that vr is a white beginning node and vr+1 is a black beginning node. Suppose that the
edge from vr to vr+1 is the only edge in the cycle that corresponds to an FI-formula of the form bb

�
d (x, y) � l,

ee
�
d (x, y) � l, be

�
d (x, y) � l or eb

�
d (x, y) � k. This means that the path vr+1, vr+2, . . . , vn, v1, . . . , vr in G2 also

exists in G1. Indeed, none of the constraints on the edges of this path fulfills the conditions for replacement in the
construction process of G2 from G1. Furthermore, all of the constraints on the edges of this path fulfill the conditions
of Lemma 3. Hence, we establish that in G1 there is a path from vr+1 to v′

r whose edge labels sum up to the same
value as the edge labels of the path vr+1, vr+2, . . . , vr−1, vr . This would mean that G1 contains the forbidden cycle
consisting of the path from vr+1 to v′

r , the edge from v′
r to v′

r+1 and the edge from v′
r+1 to vr+1. Note that the latter

edge exists since v′
r+1 is the left neighbour of vr+1.

Therefore, at least two edges in the forbidden cycle have to correspond to an FI-formula of the form bb
�
d (x, y) � l,

ee
�
d (x, y) � l, be

�
d (x, y) � l or eb

�
d (x, y) � k. Let the edge from vs to vs+1 be the first such edge in the forbidden

cycle after vr+1, and let the edge from vt to vt+1 be the last such edge in the forbidden cycle before vr (where r +1 = s

or t + 1 = r are also allowed). Fig. A.1 depicts the forbidden cycle. It holds that vs is either a white beginning node
or a black ending node, because of the way we transformed G1 to G2. In both cases, we can establish by Lemma 3
that there is a path from vr+1 to the left neighbour v′

s of vs whose edge labels sum up to the same value as those of
the path from vr+1 to vs . In the same way, we have by construction of G2 that vt+1 is either a black beginning node
or a white ending node. From Lemma 3, we obtain that there is a path from vt+1 to v′

r , whose edge labels sum up to
the same value as those of the path from vt+1 to vr .

Thus we have established that the forbidden cycle in G2 is independent from the fact that the edge (v′
r , v

′
r+1) in

G1 was replaced by (vr , vr+1). In a similar way, we can show this result when vr is a black ending node and vr+1
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Fig. A.1. The forbidden cycle in G2 is independent from the fact that the edge (v′
r , v

′
r+1) in G1 was replaced by (vr , vr+1).

is a white ending node, or when vr is a white beginning node and vr+1 is a white ending node. We can repeat this
argument for every edge that was changed in the transformation from G1 to G2. Hence, if G2 contained a forbidden
cycle, then G1 would contain a forbidden cycle as well.

A.5. Proof of Lemma 5

As an example, we show that Θ ∪ {bb
�
d (x, y) � l + Δ} is FI-satisfiable iff Θ ∪ {bb

�
d (x, y) � l + 2Δ} is FI-

satisfiable. If Θ is not FI-satisfiable, or x or y does not occur in the FI-formulas in Θ , the proof is trivial. There-
fore, assume that Θ is FI-satisfiable and contains both FI-formulas involving x and FI-formulas involving y. If
Θ ∪ {bb

�
d (x, y) � l + Δ} is not FI-satisfiable, then clearly Θ ∪ {bb

�
d (x, y) � l + 2Δ} is not FI-satisfiable either.

Hence, we only need to show that if Θ ∪ {bb
�
d (x, y) � l + 2Δ} is not FI-satisfiable, Θ ∪ {bb

�
d (x, y) � l + Δ} cannot

be FI-satisfiable.
Let Ψ be the set of linear constraints corresponding to the FI-formulas in Θ , and let I be a P-model of Ψ . The

linear constraint corresponding to bb
�
d (x, y) � l + Δ is given by:

x−
l+Δ < y−

Δ − d ∨ x−
l+2Δ < y−

2Δ − d ∨ · · · ∨ x−
1 < y−

1−l − d (A.4)

while the linear constraint corresponding to bb
�
d (x, y) � l + 2Δ is given by

x−
l+2Δ < y−

Δ − d ∨ x−
l+3Δ < y−

2Δ − d ∨ · · · ∨ x−
1 < y−

1−l−Δ − d (A.5)

If Θ ∪{bb
�
d (x, y) � l +2Δ} is not FI-satisfiable, a forbidden cycle emerges when adding an edge corresponding to

any of the disjuncts of (A.5) to the graph representation of Θ which corresponds with I . This means that any P-model
of Θ will correspond to a choice of disjuncts that leads to a graph representation G of Θ in which there is a path from
y−
Δ to x−

l+2Δ, a path from y−
2Δ to x−

l+3Δ, etc. Moreover, the edge labels of the path from y−
(i+1)Δ to x−

l+(2+i)Δ sum up

to a value (di,�) or (di,<) such that di + d � 0 (i ∈ {0,1,2, . . . , 1−l
Δ

− 2}).
We now transform the graph G to a graph G′ by applying the transformation from Lemma 4. The changing of

edges in this transformation corresponds to choosing different disjuncts for the disjunctive linear constraints in Ψ .
As this transformation cannot introduce forbidden cycles, the graph G′ corresponds to a P-model of Ψ . Therefore G′
contains a path from y−

(i+1)Δ to x−
l+(2+i)Δ for every i in {0,1,2, . . . , 1−l

Δ
− 2}. Let y−

Δ = v0, v1, v2, . . . , vn = x−
l+2Δ be

a path from y−
Δ to x−

l+2Δ.
If this path contains no edges that correspond to an FI-formula of the form bb

�
d ′ (x′, y′) � l′, ee

�
d ′ (x′, y′) � l′,

be
�
d ′ (x′, y′) � l′ or eb

�
d ′ (x′, y′) � k′, we can apply Lemma 3 to establish that there is a path in G′ from y−

Δ to x−
l+Δ,

the left neighbour of vn, and a path from y−
2Δ, the right neighbour of y−

Δ , to x−
l+2Δ. As none of the edges in these paths

are changed in the transformation from G to G′, these paths also occur in G.
Next, assume that the path from v0 to vn contains at least one edge which corresponds to an FI-formula of the

form bb
�
d ′ (x′, y′) � l′, ee

�
d ′ (x′, y′) � l′, be

�
d ′ (x′, y′) � l′ or eb

�
d ′ (x′, y′) � k′. Let (vs, vs+1) and (vr , vr+1) be the first

and last of these edges respectively. Then vs is either a white beginning node or a black ending node, because of the
nature of the transformation from G to G′. The path between v0 and vs therefore satisfies the conditions of Lemma 3.
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Thus we find that G′ contains a path from y−
2Δ, the right neighbour of y−

Δ , to x−
l+2Δ. Similarly, vr+1 is either a black

beginning node, or a white ending node. By Lemma 3 we find that G′ contains a path from y−
Δ to x−

l+Δ, the left
neighbour of vn.

In the same way, we find from the fact that G′ contains a path from y−
3Δ to x−

l+4Δ that G′ also contains a path
from y−

3Δ to x−
l+3Δ and from y4Δ to x−

l+4Δ, etc. Adding an edge to G′ corresponding to any of the disjuncts in (A.4)
therefore leads to a forbidden cycle in G′. Using Lemma 4, we can conclude from this that adding an edge to G

corresponding to any of the disjuncts in (A.4) would lead to a forbidden cycle as well. Hence, in any P-model of Θ ,
it holds that neither x−

l+Δ < y−
Δ − d , x−

l+2Δ < y−
2Δ − d , . . . , or x−

1 < y−
1−l − d can be satisfied, or, in other words, that

Θ ∪ {bb
�
d (x, y) � l + Δ} is not FI-satisfiable.

A.6. Proof of Lemma 6

As an example, we show that for k ∈ {4Δ,6Δ, . . . ,1}, Θ ∪ {bb
�
d (x, y) � k − Δ} is FI-satisfiable iff Θ ∪

{bb
�
d (x, y) � k − 2Δ} is FI-satisfiable. Clearly, if Θ ∪ {bb

�
d (x, y) � k − 2Δ} is FI-satisfiable, then also Θ ∪

{bb
�
d (x, y) � k − Δ} is FI-satisfiable. Conversely, we show that if Θ ∪ {bb

�
d (x, y) � k − 2Δ} is not FI-satisfiable,

then also Θ ∪ {bb
�
d (x, y) � k − Δ} is not FI-satisfiable.

Let Ψ be the set of linear constraints corresponding to Θ . The linear constraints corresponding to bb
�
d (x, y) �

k − 2Δ are given by:{
y−
Δ � x−

k−Δ + d, y−
2Δ � x−

k + d, . . . , y−
1−k+2Δ � x−

1 + d
}

(A.6)

while the linear constraints corresponding to bb
�
d (x, y) � k − Δ are given by

{
y−
Δ � x−

k + d, y−
2Δ � x−

k+Δ + d, . . . , y−
1−k+Δ � x−

1 + d
}

(A.7)

Assume that Θ ∪ {bb
�
d (x, y) � k − 2Δ} is not FI-satisfiable. This means that the graph G corresponding to the

linear constraints in Ψ contains a path from x−
k−Δ to y−

Δ , or a path from x−
k to y−

2Δ, or . . . , or a path from x−
1 to

y−
1−k+2Δ. Moreover, the edge labels in this path sum up to (<,d ′) where d ′ + d � 0, or (�, d ′′) where d ′′ + d > 0,

i.e., adding the edges corresponding to (A.6) would introduce a forbidden cycle in the graph. Note that there is only
one graph G corresponding to Ψ , as Ψ contains no disjunctive linear constraints.

Let v1, v2, . . . , vn be a path from x−
k+(i−1)Δ

to y−
(1+i)Δ

, for some i in {0,1, . . . ,1 + 1−k
Δ

}, where v1 and vn are both
white beginning nodes or both black beginning nodes. First assume that this path contains no edges corresponding
to an FI-formula of the form bb

�
d ′ (x′, y′) � 1, ee

�
d ′ (x′, y′) � 1, be

�
d ′ (x′, y′) � 1 or eb

�
d ′ (x′, y′) � 0. Note that edges

corresponding to FI-formulas of the form ee
�
d (x, y) � k, be

�
d (x, y) � k, and eb

�
d (x, y) � l always start at an end-

ing node. Hence, either the path from v1 to vn contains no edges of the form ee
�
d (x, y) � k, be

�
d (x, y) � k, and

eb
�
d (x, y) � l, or this path contains at least one edge corresponding to (46). In the former case, however, it is not

possible to obtain a path from a node a−
k1

to a node b−
k2

if k1 > k2. Hence, since k > 2Δ, the path from v1 to vn

needs to contain at least one edge of the form (46). Assume that v1 and vn are white beginning nodes, and let the edge
from vi to vi+1 be the last edge of the form (46). Then vi+1 is a white ending node, and by Lemma 3 there exists a path
from vi+1 to the left neighbour of vn. Hence, there is a path from x−

k+(i−1)Δ to y−
iΔ. In particular, we obtain that adding

the edges corresponding to (A.7) would introduce a forbidden cycle, in other words, that Θ ∪ {bb
�
d (x, y) � k − Δ}

cannot be FI-satisfiable. Next, assume that v1 and vn are black beginning nodes and let the edge from vj to vj+1 be
the first edge of the form (46). Using Lemma 3, we now find that there must exist a path from the right neighbour
of v1 to vj , and again, that Θ ∪ {bb

�
d (x, y) � k − Δ} is not FI-satisfiable.

Finally, assume that the path from v1 to vn contains at least one edge corresponding to an FI-formula of the form
bb

�
d ′ (x′, y′) � 1, ee

�
d ′ (x′, y′) � 1, be

�
d ′ (x′, y′) � 1 or eb

�
d ′ (x′, y′) � 0. Let the edge from vi to vi+1 and the edge

from vj to vj+1 be the first and the last of these edges respectively. Then vj+1 is either a black beginning node or
a white ending node and vi is either a white beginning node or a black ending node. Using Lemma 3, we find that
there must exist a path from v1 to the left neighbour of vn if v1 and vn are white beginning nodes, and a path from
the right neighbour of v1 to vn if v1 and vn are black beginning nodes. In either case, we find that adding the edges
corresponding to (A.7) would introduce a forbidden cycle.



1192 S. Schockaert, M. De Cock / Artificial Intelligence 172 (2008) 1158–1193
References

[1] J. Allen, Maintaining knowledge about temporal intervals, Communications of the ACM 26 (11) (1983) 832–843.
[2] J. Allen, Planning as temporal reasoning, in: Proceedings of the Second International Conference on Principles of Knowledge Representation

and Reasoning, 1991.
[3] E. André, T. Rist, Coping with temporal constraints in multimedia presentation planning, in: Proceedings of the Thirteenth National Confer-

ence on Artificial Intelligence (AAAI-96), 1996.
[4] S. Badaloni, M. Giacomin, The algebra IAfuz: a framework for qualitative fuzzy temporal reasoning, Artificial Intelligence 170 (10) (2006)

872–908.
[5] S. Barro, R. Marín, J. Mira, A. Patón, A model and a language for the fuzzy representation and handling of time, Fuzzy Sets and Systems 61 (2)

(1994) 153–175.
[6] R. Barzilay, M. Elhadad, K. McKeown, Inferring strategies for sentence ordering in multidocument news summarization, Journal of Artificial

Intelligence Research 17 (2002) 35–55.
[7] U. Bodenhofer, A new approach to fuzzy orderings, Tatra Mountains Mathematical Publications 16 (1999) 21–29.
[8] A. Bosch, M. Torres, R. Marin, Reasoning with disjunctive fuzzy temporal constraint networks, in: Proceedings of the 9th International

Symposium on Temporal Representation and Reasoning, 2002.
[9] F. Bry, B. Lorenz, H. Ohlbach, S. Spranger, On reasoning on time and location on the web, in: Proceedings of the International Workshop on

Principles and Practice of Semantic Web Reasoning (PPSWR 2003), in: LNCS, vol. 2901, Springer, 2003.
[10] M. Buchanan, P. Zellweger, Scheduling multimedia documents using temporal constraints, in: Proceedings of the Third International Work-

shop on Network and Operating System Support for Digital Audio and Video, 1992.
[11] A. Cohn, N. Gotts, The ‘egg-yolk’ representation of regions with indeterminate boundaries, in: P.A. Burrough, A.U. Frank (Eds.), Geographic

Objects with Indeterminate Boundaries, Taylor and Francis Ltd., 1996.
[12] R. Dechter, I. Meiri, J. Pearl, Temporal constraint networks, Artificial Intelligence 49 (1–3) (1991) 61–95.
[13] T. Drakengren, P. Jonsson, Eight maximal tractable subclasses of Allen’s algebra with metric time, Journal of Artificial Intelligence Research 7

(1997) 25–45.
[14] T. Drakengren, P. Jonsson, Twenty-one large tractable subclasses of Allen’s algebra, Artificial Intelligence 93 (1–2) (1997) 297–319.
[15] D. Dubois, H. Prade, Ranking fuzzy numbers in the setting of possibility theory, Information Sciences 30 (3) (1983) 183–224.
[16] D. Dubois, H. Prade, Processing fuzzy temporal knowledge, IEEE Transactions on Systems, Man, and Cybernetics 19 (4) (1989) 729–744.
[17] A. El-Kholy, B. Richards, Temporal and resource reasoning in planning: the parcPLAN approach, in: Proceedings of the 12th European

Conference on Artificial Intelligence (ECAI-96), 1996.
[18] R. Erfle, Specification of temporal constraints in multimedia documents using HyTime, Electronic Publishing 6 (4) (1993) 397–411.
[19] M. Fox, D. Long, PDDL2.1: an extension to PDDL for expressing temporal planning domains, Journal of Artificial Intelligence Research 20

(2003) 61–124.
[20] A. Gerevini, M. Cristani, On finding a solution in temporal constraint satisfaction problems, in: Proceedings of the International Joint Confer-

ence on Artificial Intelligence, 1997.
[21] H. Guesgen, J. Hertzberg, A. Philpott, Towards implementing fuzzy Allen relations, in: Proceedings of the ECAI-94 Workshop on Spatial and

Temporal Reasoning, 1994.
[22] S. Harabagiu, C. Bejan, Question answering based on temporal inference, in: AAAI-2005 Workshop on Inference for Textual Question

Answering, 2005.
[23] P. Jonsson, C. Bäckström, A unifying approach to temporal constraint reasoning, Artificial Intelligence 102 (1) (1998) 143–155.
[24] P. Kalczynski, A. Chou, Temporal document retrieval model for business news archives, Information Processing and Management 41 (2005)

635–650.
[25] H. Kautz, P. Ladkin, Integrating metric and qualitative temporal reasoning, in: Proceedings of the Ninth National Conference on Artificial

Intelligence (AAAI-91), 1991.
[26] L. Khatib, P. Morris, R. Morris, F. Rossi, Temporal constraint reasoning with preferences, in: Proceedings of the 17th International Joint

Conference on Artificial Intelligence, 2001.
[27] M. Koubarakis, Tractable disjunctions of linear constraints: basic results and applications to temporal reasoning, Theoretical Computer Sci-

ence 266 (1) (2001) 311–339.
[28] A. Krokhin, P. Jeavons, P. Jonsson, Reasoning about temporal relations: The tractable subalgebras of Allen’s interval algebra, Journal of the

ACM 50 (5) (2003) 591–640.
[29] M. Lapata, A. Lascarides, Proceedings of the North American chapter of the association of computational linguistics, in: Proceedings of the

International Conference on Ontologies, Databases and Applications of Semantics (ODBASE), in: LNCS, vol. 2888, Springer, 2004.
[30] R. Marín, S. Barro, A. Bosch, J. Mira, Modelling the representation of time from a fuzzy perspective, Cybernetics and Systems 25 (2) (1994)

217–231.
[31] I. Meiri, Combining qualitative and quantitative constraints in temporal reasoning, Artificial Intelligence 87 (1) (1996) 343–385.
[32] D. Moldovan, C. Clark, S. Harabagiu, Temporal context representation and reasoning, in: Proceedings of the 19th International Joint Confer-

ence on Artificial Intelligence, 2005.
[33] G. Nagypál, B. Motik, A fuzzy model for representing uncertain, subjective and vague temporal knowledge in ontologies, in: Proceedings of

the International Conference on Ontologies, Databases and Applications of Semantics (ODBASE), in: LNCS, vol. 2888, Springer, 2003.
[34] A. Nakhimovsky, Temporal reasoning in natural language understanding: the temporal structure of the narrative, in: Third Conference of the

European Chapter of the Association for Computational Linguistics, 1987.



S. Schockaert, M. De Cock / Artificial Intelligence 172 (2008) 1158–1193 1193
[35] I. Navarrete, A. Sattar, R. Wetprasit, R. Marin, On point-duration networks for temporal reasoning, Artificial Intelligence 140 (1–2) (2002)
39–70.

[36] B. Nebel, Solving hard qualitative temporal reasoning problems: Evaluating the efficiency of using the ORD-Horn class, Constraints 1 (3)
(1997) 175–190.

[37] B. Nebel, H.-J. Bürckert, Reasoning about temporal relations: a maximal tractable subset of Allen’s interval algebra, Journal of the ACM 42 (1)
(1995) 43–66.

[38] H. Ohlbach, Relations between fuzzy time intervals, in: Proceedings of the 11th International Symposium on Temporal Representation and
Reasoning, 2004.

[39] E. Saquete, P. Martínez-Barco, R. Muñoz, J. Vicedo, Splitting complex temporal questions for question answering systems, in: Proceedings
of the 42nd Annual Meeting of the ACL, 2004.

[40] S. Schockaert, D. Ahn, M. De Cock, E. Kerre, Question answering with imperfect temporal information, in: Proceedings of the 7th Interna-
tional Conference on Flexible Query Answering Systems, in: LNAI, vol. 4027, Springer, 2006.

[41] S. Schockaert, M. De Cock, E. Kerre, Fuzzifying Allen’s temporal interval relations, IEEE Transactions on Fuzzy Systems, in press.
[42] S. Schockaert, M. De Cock, E. Kerre, Imprecise temporal interval relations, in: Proceedings of the 6th International Workshop on Fuzzy Logic

and Applications, in: LNAI, vol. 3849, Springer, 2006.
[43] S. Schockaert, M. De Cock, E. Kerre, Qualitative temporal reasoning about vague events, in: Proceedings of the 20th International Joint

Conference on Artificial Intelligence, 2007.
[44] E. Sontag, Real addition and the polynomial time hierarchy, Information Processing Letters 20 (3) (1985) 115–120.
[45] K. Stergiou, M. Koubarakis, Backtracking algorithms for disjunctions of temporal constraints, Artificial Intelligence 120 (1) (2000) 81–117.
[46] I. Tsamardinos, M.E. Pollack, Efficient solution techniques for disjunctive temporal reasoning problems, Artificial Intelligence 151 (1–2)

(2003) 43–90.
[47] J. Zacks, B. Tversky, Event structure in perception and conception, Psychological Bulletin 127 (1) (2001) 3–21.
[48] L. Zadeh, Fuzzy sets, Information and Control 8 (3) (1965) 338–353.


