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a b s t r a c t

We study non-Newtonian effects on the layout and geometry of flow channels using a
material distribution based topology optimization approach. The flow is modeled with
the single-relaxation hydrodynamic lattice Boltzmann method, and the shear dependence
of viscosity is included through the Carreau–Yasuda model for non-Newtonian fluids. To
represent the viscosity of blood in this model, we use non-Newtonian similarity. Further,
we introduce a scaling to decrease the effects of the non-Newtonian model in porous
regions in order to stabilize the coupling of the LBM porosity and non-Newtonian flow
models. For the resulting flowmodel, we derive the non-Newtonian sensitivity analysis for
steady-state conditions and illustrate the non-Newtonian effect on channel layouts for a
2D dual-pipe design problem at different Reynolds numbers.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The effects of non-Newtonian fluid properties on biomedical design problems are of considerable interest and have
been studied, for example, by Abraham et al. [1], Gijsen et al. [2], Lauprecht and Perktold [3], Lukác̆ová-Medviďová and
Zaus̆ková [4], and Boyd and Buick [5]. In a few instances, shape optimization techniques have been utilized to study the
difference in optimal designs assuming Newtonian and non-Newtonian flow models. Shape optimization of an arterial
bypass has been studied by Abraham et al. [1] and Quarteroni and Rozza [6], leading to differences in optimum bypass graft
angles and entrance regions for Newtonian and non-Newtonian fluids. Further, optimal shape design of rotary blood pump
components has been studied by Antaki et al. [7]. While these references have considered the optimal shape modification
of existing designs under non-Newtonian flow considerations, the present work investigates the effect of a non-Newtonian
model on the overall layout and geometry of flow channels. Namely, a topology optimization approach is utilized to identify
fundamental differences in design topologies between Newtonian and non-Newtonian flows, and to optimize the overall
layout of fluidic devices undergoing non-Newtonian flow phenomena. The conceptual differences between the layout of
flow channels optimized for Newtonian and non-Newtonian flow regimes are illustrated through an example of a dual-pipe
inlet/outlet flow.
Topology optimization for fluids was introduced by Borrvall and Petersson [8]. In recent years it has received increased

attention due to its general applicability to a wide range of problems in hydrodynamics and beyond, using the Stokes and
Navier–Stokes equations [9–14]. The authors and co-workers have developed a topology optimization framework for low
Reynolds number flows based on the lattice Boltzmann method [15–17]. The LBM features algorithmic simplicity, parallel
scalability, inherent use of immersed boundary methods, a well suited porosity model for topology optimization, and
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applicability beyond traditional hydrodynamics. To account for non-Newtonian flowphenomena, this topology optimization
framework is augmented by the Carreau–Yasuda (C–Y)model for the lattice Boltzmannmethod [18] in the present study. To
ensure the stability of the coupled porosity and non-Newtonian LBMmodels in areas of high porosity, a scaling of the non-
Newtonianmodel is introduced to reduce the non-Newtonian effects in porous regions. Further, the LBM sensitivity analysis
is modified for non-Newtonian flows and non-Newtonian similarity is used to model blood flows with the standard (single
relaxation) LBM on small meshes. It is the goal of this work to extend the authors’ LBM topology optimization algorithm
to non-Newtonian flows, performing a proof of concept study that illustrates the basic influence of non-Newtonian flow
behavior on designs.
The lattice Boltzmann method for non-Newtonian flows is discussed in Section 2, including a discussion on non-

Newtonian similarity (Section 2.2) and the coupling of the porosity and non-Newtonian LBM models (Section 2.3). The
resulting non-Newtonian optimization problem and corresponding sensitivity analysis are discussed in Section 3. The
differences between Newtonian and non-Newtonian optimal designs are illustrated for a dual-pipe at various Reynolds
numbers in Section 4.

2. The lattice Boltzmann method for topology optimization

The lattice Boltzmann method (LBM) has become a popular alternative to conventional, Navier–Stokes based
computational methods for a variety of problems in fluid dynamics (cf., e.g., [19–21]). The hydrodynamic lattice Boltzmann
method approximates the Navier–Stokes equations and is based on the discretized Boltzmann equation, constituting a two
step computational process:

Collision− � : f̃α(xi, t) = fα(xi, t)−
1
τ
[fα(xi, t)− f eqα (xi, t)]. (1)

Propagation−5 : fα(xi + δteα, t + δt) = f̃α(xi, t). (2)

In (1) and (2), eα is the velocity vector, fα is the distribution function associated with the corresponding velocity eα using
the D2Q9 lattice model in the current study, xi represents the location in physical space, eαδt is the lattice spacing, and δt
is the time step. Further,

τ(γ̇ ) =
λ

δt
=
ν(γ̇ )

c2s δt
+
1
2
, (3)

is the dimensionless relaxation time, which for non-Newtonian problems depends on the shear-rate γ̇ . The relationship
between viscosity ν and relaxation time τ is obtained fromaChapman–Enskog expansion of the Lattice Boltzmann equations
[22] as

ν(γ̇ ) = (τ (γ̇ )− 1/2)c2s δt. (4)

For low Mach number flow conditions, the equilibrium distribution function f eq in Eq. (1) can be derived by a Taylor series
expansion of the Maxwell–Boltzmann equilibrium distribution:

f eqα = wαρ
[
1+ 3(eα · u)+

9
2
(eα · u)2 −

3
2
u2
]
, (5)

whereρ represents themacroscopic density, the vectoru is themacroscopic velocity, andwα are latticeweights that depend
on the lattice geometry. The macroscopic parameters, such as density, velocity, pressure, and viscosity, are evaluated by the
statistical moments of the distribution function f .
For gradient-based topology optimization of fluids, a continuous transition from fluid to solid and vice versa is required

and generally achieved through a Brinkman penalization [23]. This was done first by Borrvall and Petersson [8], modifying
the Stokes equation with a Brinkman term to model the flow through porous media [24]. Similarly, the authors [15]
adopted and augmented the porosity model originally introduced by Spaid and Phelan [25] for LBM topology optimization
purposes. Here, the macroscopic velocity is rescaled during the collision step (1) for all lattice nodes occupied by the porous
medium,

ũ(t, x) = (1− p(x)κ)u(t, x), (6)

where p(x) is related to the inverse permeability in the domain and ũ(t, x) is substituted into the equilibrium distribution
function (5) instead of u. This porosity model permits a smooth transition from fluid sites (p(x) = 0) into solid sites
(p(x) = 1) as needed for gradient-based topology optimization. The shaping factor κ has been introduced by the authors
[17] in order to improve the convergence properties of the design optimization process. Numerical studies have shown
best results for κ ' 3. This modification from the original porosity model by Spaid and Phelan is justified as we are not
primarily concernedwith the accuratemodeling of porous flows, but use porosity in order to transition from fluid to solid and
vice-versa.
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For topology optimization under steady-state flow conditions, the governing flow equations are expressed by the
following fixed-point problem:

R(f, p) = M(f, p)− f = 0, (7)

where R denotes the residual vector. The operator M performs one collision � (1) and one propagation 5 (2) step, which
is exactly what is needed to advance the flow to the next time step. The fixed-point problem (7) is solved by advancing the
transient lattice Boltzmann equations (1) and (2) in time until the flow is converged to steady-state, that is, the difference
between two or more successive flow states is negligible. The convergence criterion used in this work can be written as
follows,

R
Rref
=
‖ft − ft−1‖∞
‖f1 − f0‖∞

≤ ε (8)

whereRref is the reference residual for the initial time step, and for ε > 0. For the presented examples, we choose ε = 10−10,
resulting in approximately 10,000 to 100,000 iterations, depending on flow parameters, until flow convergence is achieved.
A strict convergence is used to ensure sufficient convergence of the macroscopic variables and forces, in particular the
pressure-drop used as an objective in the presented work.

2.1. Non-Newtonian flow

In recent years, the lattice Boltzmann method has been applied to non-Newtonian flows, in particular the modeling of
blood flow via power-lawmodels, the Cassonmodel, and the Carreau–Yasudamodel for shear thinning fluids [18,26–28]. All
models are based on introducing a shear-rate γ̇ dependent viscosity ν(γ̇ ) in the standard lattice BGK equation (1) through
the relaxation time τ(γ̇ ) (3) in the lattice Boltzmann algorithm. The current study uses the Carreau–Yasuda (C–Y) model.
Following the discussion by Boyd et al. [18], the shear rate is defined as

γ̇ = 2
√
DII , (9)

where DII is the second invariant of the strain tensor Sαβ :

DII =
l∑

i,j=1

SijSij. (10)

Here, l is the dimension of the problem. Considering 2D flows, the shear rate can be expressed in terms of the strain tensor
as:

γ̇ = 2
√
S112 + S222 + 2S122. (11)

It is shown by Artoli [29], that the strain rate tensor, macroscopically defined as

Sij =
1
2
(∇jui +∇iuj), (12)

can be computed locally as

Sij = −
3
2τ

∑
α

f (1)α EeαiEeαj, (13)

where f (1)α is approximated as the non-equilibrium distribution function f (1)α ≈ f
neq
α = fα − f

eq
α .

Thus, the shear rate γ̇ can be computed locally as a function of the distribution function values fα . This shear-rate is then
used in the C–Y model to obtain the shear-rate dependent viscosity as

ν(γ̇ ) = ν∞ + (ν0 − ν∞)[1+ (λγ̇ )a](n−1)/a, (14)

where a, n, and λ are constant parameters with λ being the characteristic non-Newtonian relaxation time. In this study we
only consider blood flow and use the model parameters given by Abraham et al. [1]:

• a = 0.64
• n = 0.2128
• λ = 8.2 s
• µ∞ = 0.0035 Pa s, leading to ν∞ = 0.0000033 m2/s for ρblood = 1060 kg/m3

• µ0 = 0.1600 Pa s, leading to ν0 = 0.000151 m2/s.

Utilizing these parameters leads to the viscosity/shear-rate relation illustrated in Fig. 1.
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Fig. 1. Log–log plot of shear-rate dependent viscosity for blood using the Carreau–Yasuda model.

2.2. Non-Newtonian similarity

TheCarreau–Yasudaparameters are introduced into the LBM flowmodel in lattice units. The conversion canbeperformed
with the following relations:

∆x =
L
N
,

∆t =
∆xcs
asb

,

νreal =
(∆x)2

∆t
ν lb,

Eureal =
∆x
∆t
Eulb,

λreal = ∆tλlb.

(15)

Here, L is the characteristic length, N is the number of lattice units along the characteristic length, and asb = 1500 m/s is
the speed of sound in blood. Using an average value for the diameter of a human artery of L ≈ 4.0 mm and an LBM channel
width of N = 10 LBM units, one finds ν lb

∞
≈ 3.198 · 10−6, which results in a required LBM relaxation time of:

τ ≈ 0.500001. (16)
However, the practical stability limit of the single relaxation time LBM (SRT-LBM) is τ ≈ 0.502 [30], leading to a minimum
achievable LBM viscosity of ν lbmin ≈ 0.0066.
For Newtonian flows, the inability of the SRT-LBM to model low viscosity flows is overcome by utilizing the Reynolds

number similarity, permitting the scaling of both velocity and viscosity while maintaining a constant Reynolds number
and thus similar flow behavior. The Reynolds number similarity must be augmented for non-Newtonian fluids, since the
shear-rate and thus the non-Newtonian flow properties depend on the velocity gradients through equations (11) and (12).
These non-Newtonian flow properties can be scaled by maintaining a constant Deborah number [31], De, defined as the
ratio between the characteristic non-Newtonian relaxation time λ and characteristic time for the problem L/Eu:

De =
λEu
L
. (17)

Using the scaling:

Eus = FsEu,
νs = Fsν,
Ls = L,

(18)

where Fs is the scaling factor, leads to

λs =
λ

Fs
. (19)



2344 G. Pingen, K. Maute / Computers and Mathematics with Applications 59 (2010) 2340–2350

Fig. 2. Non-Newtonian similarity illustrated with viscosity contours for a 500× 100 flow channel at Re = 1. (a) Baseline blood flow, (b) and (c) Reynolds
similarity, and (d) and (e) non-Newtonian similarity. Small differences between non-Newtonian similarity results originate from the flow boundaries.

Fig. 3. Illustration of the unsteady behavior caused by the coupling of the LBMporosity and non-Newtonian flowmodels at intermediate to large porosities.
(a) Velocity and viscosity contours for a uniform porosity of p = 0.1. (b) Velocity and viscosity contours for a uniform porosity of p = 0.5.

The effect of non-Newtonian scaling (constant Re and De) is visualized in Fig. 2. Fig. 2a shows the viscosity contours
and coefficient of pressure for C–Y blood flow through a 500 × 100 flow channel at Re = 1, considered our baseline
result. Application of a Newtonian Reynolds similarity leads to incorrect non-Newtonian behavior as seen from the viscosity
contours in Fig. 2b and c for a velocity and viscosity scaling by factors of Fs = 10 and Fs = 100, respectively. Fig. 2d and
e show the corresponding viscosity contour plots for non-Newtonian scaling by the same factors, showing that the correct
non-Newtonian viscosities from the baseline example are recovered except for small differences due to boundary effects.

2.3. Effects of coupling porosity and non-Newtonian LBM models

In developing the presented non-Newtonian topology optimization framework, we have observed that the coupling of
porosity and shear-rate dependent flow leads to unsteady flow behavior for intermediate to large porosity values, p. This is
illustrated in Fig. 3 which compares the viscosity distribution for blood flow at Re = 10 in a 50× 20 channel for a uniform
porosity distribution of p = 0.1 in Fig. 3a and p = 0.5 in Fig. 3b, showing unsteady/non-converged behavior for p = 0.5.
This behavior is a side effect of the porosity model, which modifies only the equilibrium distribution function f eqα . On

the other hand, the shear-rate needed for the non-Newtonian model depends on the non-equilibrium distribution function
f neqα = fα − f eqα , which is used to locally determine velocity gradients in LBM. Therefore, scaling the velocity in f

eq
α through

the porosity model leads to an ‘‘inconsistent’’ modification of the velocity gradients, which results in an oscillatory flow
behavior.
For topology optimization of fluids, we are interested primarily in final designs that consist of pure fluid and pure solid

states. The porosity model is utilized to continuously transition between the two states. We can overcome the unsteady
behavior caused by the coupling of porosity and non-Newtonian LBMmodels by reducing the non-Newtonian effects in areas
of high porosity. For simplicity, we introduce a scaling ((1−p)κ ) analogous to that in the porosity model (6) to continuously
activate the non-Newtonian model, leading to the following modification of the viscosity/shear-rate relation (14):

ν(γ̇ ) = ν∞ + (ν0 − ν∞)(1− p)κ [1+ (λγ̇ )a](n−1)/a. (20)
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Fig. 4. Steady-State velocity contours at a uniform porosity of p = 0.5 obtained with porosity dependent scaling of the non-Newtonian flow properties.

Fig. 5. Conceptual illustration of material distribution based topology optimization for a pipe-bend.

Thus, when p = 1 the material is fully solid and Newtonian in nature. When p = 0 the material is fully fluid and non-
Newtonian in nature. This scaling is justified by the observation that porous material primarily occurs along the flow
boundaries where velocity gradients are high and non-Newtonian effects are minimal, and in regions where velocities are
approximately zero. Implementing this porosity-based scaling of the non-Newtonian model (20) leads to converged flow
behavior as shown in Fig. 4 for the 50×20 flow channel at Re = 10with a uniformporosity distribution of p = 0.5. However,
the resulting velocity distribution includes artifacts, e.g., ‘‘bands’’ of higher velocities.While interesting anddeserving further
study, these artifacts are not essential for the present study, as we utilize porous flows to transition from fluid to solid, and
are not primarily interested in correctly modeling flows with intermediate porosities.

3. Topology optimization of non-Newtonian fluids

The optimization problems considered in this study can be formulated as follows:

min
s

F (s, f(s)),

s.t. γF (s) ≤ γmax,
(21)

where, F is a particular performance (objective) functional, s is the vector of design variables mapped into the local LBM
porosities s→ p, and γF ≤ γmax is a constraint on the design. The distribution function f(s) is treated as a dependent variable
of the design variables s and determined by solving the state equations (7) that explicitly depend on the LBM porosities p.
The porosity distribution in a given design domain is discretized by elements with a locally constant porosity (see Fig. 5).
Each element can continuously vary from fluid to solid and vice versa. The resulting optimization problem (21) is continuous
and smooth in the optimization variables s and can be solvedwith any large-scale gradient-based optimization algorithm. In
this study, we use the Globally Convergent Method of Moving Asymptotes (GCMMA) by Svanberg [32], a sequential convex
approximation-based algorithm. Here, globally convergent refers to converging to a Karush–Kuhn–Tucker (KKT) point from
any initial design that satisfies the bound constraint. GCMMA is not guaranteed to converge to the global optimum.
While objectives such as a shear-stress relation to blood clotting/coagulation will be considered in future applications of

the presented topology optimization approach, the present study uses a pressure drop objective to allow for comparison to
results published for Newtonian flows [8,15]. The loss of total pressure or pressure drop PD between fluid inlets and fluid
outlets is defined as:

F = PD =

∫
in

[
p+

ρ

2
|v|2

]
−

∫
out

[
p+

ρ

2
|v|2

]
. (22)

Further, we use a volume constraint, limiting the amount of fluid and thus driving the porosity distribution towards
the upper and lower bounds, i.e., a fluid–solid solution with little intermediate values. We prescribe that, at most, a given
fraction of the design domain volume, γF , is allowed to be occupied by fluid, and the remainder must be solid:

γF ≤
∑
i

(1− pκi ), (23)
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where κ is the polynomial shaping introduced for the porosity condition (6). In addition, we enforce a symmetric outlet
flow-rate for the dual-pipe example in Section 4.
A directmapping betweendesign variables and LBMporositiesp = smay lead to highly oscillatory porosity distributions.

Tomitigate this effect, the authors [17] have introduced amapping that leads to a smoother porosity distribution. Eachdesign
variable is located in the center between four lattice nodes, leading to:

px,y =
sx−1/2,y−1/2 + sx−1/2,y+1/2 + sx+1/2,y−1/2 + sx+1/2,y+1/2

4
. (24)

3.1. Sensitivity analysis

The derivatives of the performance functional F in the optimization problem (21) are computed by the adjoint method,
owing to the large number of design variables. The derivative of the objective functionF with respect to the design variables
s is written as follows:

dF
dsj
=
∂F

∂sj
−

[(
∂R
∂f

)−t
∂F

∂f

]t
∂R
∂pi

∂pi
∂sj

(25)

where f is the state vector at steady-state and (∂R/∂f) is the Jacobian of the LBM fixed-point system (7). Solving the adjoint
sensitivity equation (25) requires the evaluation of four partial derivatives: ∂F /∂sj, ∂F /∂f, ∂R/∂pi, and ∂R/∂f. Pingen et al.
[17] have presented an adjointmethod evaluating these derivatives based on theNewtonian lattice Boltzmannmethod. Here
we focus on the LBM Jacobian (∂R/∂f) and its extension to non-Newtonian flows. For the current pressure drop objective
∂F /∂sj = 0 and ∂F /∂f is equivalent to the Newtonian case. The derivative ∂R/∂pi is similar to the Jacobian and the terms
can be determined by following an analogous procedure.
The transposed Jacobian of the LBM fixed-point system (7), (∂R/∂f)T, is expanded as,(

∂R
∂f

)T
=

(
∂M
∂f

)T
− I. (26)

Here, (∂M/∂f)T is a function of the operatorM, which performs one collision� and one propagation operation5. Similarly
(∂M/∂f)T is separated into its collision and propagation components:(

∂M
∂f

)T
=

(
∂5

∂f

)T
◦

(
∂�

∂f

)T
. (27)

For the sensitivity analysis of non-Newtonian flows, only the sensitivity analysis of the collision step must be augmented,
as no changes are made to the propagation step. The propagation Jacobian effectively shifts rows in the collision operator,
just as the propagation step moves distribution functions to neighboring nodes.
The collision component is computed locally at each node and expressed as:

∂�

∂f
=
∂ f̃α
∂ fβ
=
∂ fα
∂ fβ︸︷︷︸
I

−
1
τ

[
∂ fα
∂ fβ
−
∂ f eqα
∂ fβ

]
︸ ︷︷ ︸

II

−
∂ 1
τ

∂ fβ︸︷︷︸
III

[fα − f eqα ], (28)

where α and β represent the directions of the discretized velocity space and the partial derivative ∂ fα/∂ fβ = 1 if α = β and
zero otherwise. For this non-Newtonian Jacobian of the collision step (28), only term III has been added due to the shear-rate
dependent relaxation time. Solving the viscosity relation (4) for (1/τ)

1
τ(γ̇ )

=
2

2ν(γ̇ )c−2s + 1
, (29)

the derivative term (∂ 1
τ
/∂ fβ) can be evaluated as:

∂ 1
τ(γ̇ )

∂ fβ
=

−2

[2ν(γ̇ )c−2s + 1]2
6
∂ν(γ̇ )

∂ fβ
. (30)

Here, (∂ν(γ̇ )/∂ fβ) is given by,

∂ν(γ̇ )

∂ fβ
=
n− 1
a

(ν0 − νinf)(1− p)κ [1+ (λγ̇ )a][(n−1)/a]−1a(λγ̇ )a−1λ
∂γ̇

∂ fβ
, (31)
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a

b

Fig. 6. Dual pipe design domain with inlet, outlet, and symmetry conditions.

Fig. 7. Comparison between non-Newtonian and Newtonian optimal designs at Re = 0.01, 0.1, 1.0, and 10.

with

∂γ̇

∂ fβ
=

1√
S211 + S

2
22 + 2S

2
12

(
2S11

∂S11
∂ fβ
+ 2S22

∂S22
∂ fβ
+ 4S12

∂S12
∂ fβ

)
, (32)

∂Sij
∂ fβ
= −

3
2τ

∑
α

EeαiEeαj
∂ f (1)α

∂ fβ
, (33)

and (∂ f (1)α /∂ fβ) given by term II in the collision Jacobian (28), which is explicitly derived in the authors recent work [17].

4. Example: Dual-pipe

A dual-pipe flow topology optimization problem, as illustrated in Fig. 6, was first used by Borrvall and Petersson [8] for
topology optimization of fluids, showing different design topologies (dual pipes vs merged pipes) for short and long design
domains, respectively. The problem has also been used by the authors and co-workers [15] to validate the Newtonian LBM
topology optimization framework. The design has two inlets and two outlet ports with symmetric inlet and outlet flow, and
the fluid volume γF is restricted to 33% of the design domain. For the non-Newtonian flow, we use the C–Y properties of
blood given by Abraham et al. [1]. Further, all design optimizations are initialized with a uniform porosity distribution of
p = 0.1.
The example illustrates the ability of topology optimization to identify designs with conceptually different channel

layouts and geometry under Newtonian and non-Newtonian flow modes. We show results for Newtonian and non-
Newtonian designs at different Reynolds numbers and perform a cross-comparison between the results. Finally, we briefly
compare non-Newtonian optimal designs at Re = 0.01 for three different mesh resolutions: 30×20, 60×40, and 120×80.
Topology optimization results for both non-Newtonian and Newtonian flows on a 60 × 40 mesh are shown in Fig. 7 for
Reynolds numbers of Re = 0.01, 0.1, 1, and 10. The results show that at low Reynolds numbers (Re = 0.01, 0.1), optimal
non-Newtonian and Newtonian design topologies differ significantly, resulting in dual and merged pipes, respectively. At
larger Reynolds numbers (Re = 1 and 10), both the non-Newtonian and Newtonian optimization results lead to similar
designs (mergedpipes), aswould be expected due to the decreasing importance of non-Newtonian effects at higher Reynolds
numbers. This decreasing shear-rate dependent effect on the viscosity is shown explicitly for the four non-Newtonian
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Fig. 8. Illustration of the decreasing non-Newtonian effects on flow viscosity with increasing Reynolds number for the non-Newtonian optimal designs at
Re = 0.01, 0.1, 1, 10.

Table 1
Non-Newtonian design cross-comparison for coefficient of pressure: Optimal designs at each Reynolds number are indicated in bold.

Reynolds number Dual-channel Merged-channel

0.01 9678.8e5 12976e5
0.1 908.16e5 1033.5e5
1 56.738e5 49.974e5
10 2.3582e5 1.8629e5

Table 2
Newtonian design cross-comparison for coefficient of pressure: Optimal designs at each Reynolds number are indicated in bold.

Reynolds number Dual-channel Merged-channel

0.01 1072.8e5 759.62e5
0.1 108.64e5 76.014e5
1 10.868e5 7.6531e5
10 1.2160e5 0.84110e5

designs in Fig. 8. While the global optimality of the obtained results cannot be guaranteed, a cross-comparison for non-
Newtonian (Table 1) and Newtonian (Table 2) flows between dual and merged pipes at the four Reynolds numbers shows
that the obtained results are indeed optimal in comparison.
The physical response of the non-Newtonian design at Re = 0.01 for both non-Newtonian and Newtonian flow is

visualized in Fig. 9. It can be seen that the difference of streamlines is minimal between the two flow models. However, the
differences in pressure and velocity are more significant. The non-Newtonian velocities are larger near the boundaries to
increase the boundary velocity gradient, decreasing the viscosity. Given the porous nature of the boundary and the relatively
coarse mesh for the design, the no-slip boundary conditions are only approximately enforced. The pressure plots show that
the non-Newtonian pressure drop is approximately 10 times larger than the Newtonian counter-part due to the increased
non-Newtonian viscosities. In addition, it should be noted that irregularities exist in the non-Newtonian pressure plots close
to the boundaries, a similar phenomenon to the velocity artifacts previously shown in Fig. 4, and an effect that will be further
investigated by the authors.
Finally, amesh refinement comparison between optimal non-Newtonian designs at Re = 0.01 for threemeshes (30×20,

60×40, and 120×80) is shown in Fig. 10. Themesh refinement study suggests that the obtained optimal designs aremesh-
independent, with the main difference being the reduced porous boundary effects for finer meshes.

5. Conclusions

In this paper, we have introduced a topology optimization approach for non-Newtonian flows based on the lattice
Boltzmann method and the Carreau–Yasuda model for non-Newtonian fluids. We have presented a scaling of the non-
Newtonian effects in order to overcome flow instabilities caused by the coupling of the LBM porosity and non-Newtonian
flow models. While resulting in steady flows, the scaling of the non-Newtonian effects introduces artifacts (e.g. velocity
banding) in the computed flow fields and requires further study. The obtained optimal results for a dual-pipe flow topology
optimization problem illustrate the significant differences between optimal designs for Newtonian and non-Newtonian
flows at small Reynolds numbers. Further studies are needed to explore the application of the introduced non-Newtonian
topology optimization framework to 2D and 3D biomedical problems (e.g. maximizing wall shear-stress to reduce blood
clotting) and to fluids with different non-Newtonian properties.
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Fig. 9. Physical response (streamlines, velocity, and pressure) of non-Newtonian design at Re = 0.01 for both non-Newtonian and Newtonian flow. Both
the streamline and ‘log10’ velocity plots are overlayed onto a plot of the design.

Fig. 10. Comparison between the non-Newtonian optimal design at Re = 0.01 on three meshes (30 × 20, 60 × 40, and 120 × 80) showing a mesh
independent optimal design.
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