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O. Introduction 

In this paper we present our work on various L~wenheim-Skolem-type proper- 
ties of infinitary logic. Fundamental to this work are the concept of a countable 
approximation to a model or a formula of I . . . .  and a filter on the countable subsets 
of an arbitrary set which provides a natural notion of almost all countable 
approximations. After some preliminaries in ~qection 1, these basic ideas are 
introduced in Section 2, In Section 3 we prove various Lrwenheim-Skolem results 
for I. ..... whieh show how L=.,, properties of models are determined by properties of 
their countable approximations. In particular we prove (Theorem 3.1) that a 
sentence o- of L=, is true on a model ~A if and only if almost all countable 
approximations to cr are true on the corresponding countable approximations to ~I. 
This is used, for example, in obtaining a biconditional strengthening of the usual 
downward Lrwenheim-Skolem theorem for L,:o (Corollary 3.2(a)) and a eharacter- 
isation of L=,-elementary equivalence in terms of isomorphisms between countable 
submodels (Theorem 3.5). Section 4 concerns reduced products modulo the special 
filter we introduce, 1 -".'ng which we give another characterisation of L~,-elementary 
equivalence (Theorem 4.2); the~e results are not needed for the later sections. In 
Section 5 we study classes of models satisfying certain abstract Lrwenheim-Skolem 
conditions suggested by the property sentences of L,,,:o were shown to have in 
Section 3. We introduce an interesting extension of L%,~ with some game quantifica- 
tion, called LP(,o), which suffices to axiomatise such classes (Theorem 5.5). This is 
exploited in proving, for example, that L"(o~) satisfies interpolation (Theorem 5.8). 
The ideas of Section 5 are applied in Section 6 to ~ yield a variety of 
Lfwenheim-Skolem (or "transfer") results for certain properties which can be 
expressed using LP(oJ). Section 7 concerns uncountable iapproximations and 
contains generalisations of many of the results of Section 3 (~o L~,) and Section 5 
(involving - larger logics with some game quantification). 

The main results of Sections 2-5 were presented without proof in [15], and some 
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of those in Section 6 were announced in [16]. Our  presentation here has benefited 
greatly from reading Ba~wise's paper  [2]. 

1. Preliminaries 

Throughout  this paper  L denotes a language all of whose relation and function 
symbols have just finitely many arguments. Except where expiicitly noted to the 
contrary, L is assumed to be countable. Models for L are denoted by ~[, ~q, etc, and 
their universes by the corr,~sponding capital letters A, B, etc. 

We will consider various logics built from the language L using equality and an 
unlimited supply of individual variables. If K and A are infinite cardinals then L~  is 
the logic whose formulas are defined as follows: 

(i) every atomic formula of L is a formula of L~a, 
(ii) if go is a formula of L ~  then so is -1 go, 

~,iii ), if goi is a formula of L ~  for each i E I and [ I t  < x then A ie~ q~ and V ,~x ~ are 
formulas of L~a, 
(iv) i f  ~a is a formula of L ~  end x ~s a sequence of less than A individual variables 
then '¢xgo and 3xgo ar~ formulas of L~.  

Note [hat L ~  is essentially the usual first-order logic on L, which we also denote 
simply by L. We write L~a fo~ I..J ~ L~a. Notice ~hat a formula of L~a can contain any 
number  of free variables but that only those formulas with fewer than A free 
variables can be subformulas of sentences of L®~. 

We assume the reader is familiar with the usual syntactic and model-theoretic 
notions and notations of the logics L~. For example, see [1], [4], [11], [12]. Some 
more  special, or less familiar, material follows. 

We frequently (as in the definition of L.~) use vectors as abbreviations for 
sequences. For example, x and a would abbreviate sequences xo, x~ . . . .  and 
a0, at . . . .  respectively, the precise lengths of the sequences (finite or infinite) to be 
determined by context. 

Often we write a formula go to exhibit its free variables, for example as ,p(x). By 
convention, we assume that al? the free variables of ~ are listed, but not that all the 
listed variables occur free° 

A formula is said to be iv negation-normal form if it only contains negations in 
front of atomic subformulas. Every formula of L,~ is equivalent to a formula of L~  
in negation-normal form. W~, define the canonical negation-normal form of ~, q~", 
by induction as follows: 

(i) ~"  is ~p if go is atomic; 
(ii) (A~rgo~) ~ is A ~ 7 ~  and (V~tgo~)" is V,~,~7;  

(iii) ('lxgo)" is ]xgo", aT, d 0/x~p)" is V x ~ ;  
(iv) (-acp) ~ is defined by cases on go as follows: 

(~go)" is ~ p  if ¢ is atomic; 
(-a A,E,q,,)" is V ,~ , (~p , ) "  and (--1 V,~,go~)" is A,~,(~go,)";  
( ~ V x ~ ) "  ~s ] x ( ~ ) "  and ( - ~ x ~ , ) "  is Vx(- '~t#) ' ;  
( ~ ) "  is ~ .  
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It is then clear that ~0 ~ is in negation-normal form and that ~ ~ ÷~ ~p". 
An  existential formula of L~  is a formula of L,,, in negation-normal form which 

contains no universal quantifiers. We use 3,~ and :i®~ for the classes of all 
existential for~:ulas of L,~ and L~,  respectively, The universal formulas of L,~ are 
those in negation-normal form without existential quantifiers. The positive for-, 
mulas of L,~ are those in negation-normal form without negations; the classes of 
positive formulas of L~,~ and L~a are denoted by P,x and P ~  respectively. 

If F is some class of formulas we write 91 F ~ to mean that every sentence in F 
true on sTt is also ~rue on ~ .  We write 0d ---. ~ ( F )  to mean that ~[ F 93 and ~ F ~I. 

If L'  is some other language, then (L'),~ is the logic built from the non-logical 
symbols in L'. If L'  contains L and ~[' is an L'-model then 9~' r L is the reduct of 9~' to 
the language L. If K '  is ~ class of L'-models then we define 

K ' [ L =  {Pt'[ L:  91'~ K'}. 

if ~,)l is any model and s ~ A then 9[ t s is the submodel of ~[ generated by s (that 
is, the least submodel of ,°I .aining s). 

The cardinality of a set X is denoted by I X]. If ~ is any infinite cardinal we define 

~ ( C )  = {s ~_ C:ls[  < ~}. 

The classical infinitary languages L~ are well-known to have intimate connec- 
tions with "back-and-forth" relations between models (see [1], [4], [10]). We sketch 
the connection between L ~  and "one-at-a-timt:" back-and-forths, which is all we 
shall require until the last section of this paper. 

Definition. A back-and-forth relation between models ?~ and ~ is a relation 
C U , ~ ( A "  × B")  such that 

(i) o ~ 0; 
(ii) if a ~ b and ot (x) is an atomic formula, then ~[ [= a [a ] If and only if ~ i = a [b]; 

(iii) if (a . . . . . .  a,_,) ~ (b0 . . . . .  b,-x) then given any a. E A (or, b, ~ B)  there is some 
b, ~ B (or, a. E A )  such that (a0 . . . . .  a , )  ~ (b0 . . . . .  b,). 

We write 9[ ~ ~ if there is a back-and-forth relation between 9I and ~ .  

Theorem 1.1 (Karp [10]). ~l ~ ~ if and only if ~=--~,o ~ .  

More precisely, the proof of Theorem 1.1 tells us the following: if 9~--®~ ~ then 
the relation ~ defined by a ~ b iff (?[, a)---~ (~,  b) is a back-and-forth relation; if 
~- is a back-and-forth relation then a ~ b implies (~1[i a ) - , ,  (93, b). 

As a consequence we obtain Scott's isomorphism theorem [26]. 

Corollary 1.2. (a) I f  ~[ and 93 are countable and 91~-®~ ~ then 9I ~ 93. 
(b) I f  ~[ is coum~able then there is a sentence cr~ of L%,~ such that ~ ~ (r~ if] 

Such a ~enten,:e (r,~ is often called a Scott sentence for ~,[. 
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We shall make considerable use of strings of quantifiers which al ternate infinitely 

often between V and .=. like 

V X o 3 X ~ ' C x 2 3 x 3 . . .  V~2. 3x~.+l • • • • (1) 

Until the last section we wil! only need to consider such strings of length to; the 
most general such quantifier-string, called a g a m e  quant( f ier ,  is 

O o x c O ~ x ~ ' "  Q . x ,  " "  , (2) 

where each O~ is either ::1 or V. 
The intuitive meaning of the quantifier string (1) is that given xo you can choose 

x~ such that given x= you" can choose x3 (depending on Xo, x=) etc. so that the 
assertion following the string is true. Formally the choosing is done by Skolem 
functions choosing xz~÷~ in terms of previous x~'s. That is 

91 ~ V x o 3 x ,  " . " Y x ~ ,  3x, . .+, . . . ~o (xo, x~ . . . .  ) 

means, by definition, ~hat there are functions [ ~+~:A~+~-->A for all k ~ to such 
that 

9.[ ~= ~o [ao, ft(a~), az~. f3(ao, az) . . . .  ] 

for t:ny ao, a2, a4 . . . .  in A. $uch ~ 's  will be said to be w i n n i n g  f u n c t i o n s  for the 
sentence, or to define a w i n , d n g  s t ra tegy  for the sentence, A similar defirfition can 
be given for the general quantifier in ~2) (see [5], [1 I]). 

Infinite quantifier-strings will be abbreviated in fairly obvious ways. Thus (2) will 
be abbreviated as (Q,x, )  . . . .  and (1) will be abbreviated as O t x 2 . 3 x z , + O  . . . .  

We will also use such quantifier-strings recta-theoretically, and their meanings 
would be explained in the same way. The meaning of a string of restricted 
quantifiers, such as 

Vx0E C 3 x z  E C "  "Vxz, ,  E C 3 x , . , ÷ ~  C "  ", _ 

is also clear. 
Keisler in [I1] introduced the logic L(to), an extension of L®,, allowing game 

quantification. The formulas of L(to) are defined as follows: 
(i) every atomic formula is a formula of L(to), 

(ii) if ~o is a formula c,f L ( o )  then so is -aq~, 
(iii) the conjunction or di%tmction of any set of formulas of L(to) is a formula of 
L(to), 
(iv) if ~0 is a formula o~ L(w) then so are Yx,p and ::Ix~o provider~ they have only 
finitely many free variai,les, 
(v) if q, is a formula of L(w) then sc is ( O , x . ) . < ~ ,  provided it has only finitely 

many free variables. 
Then every sentence o ~ L,~ is a sentence of  L(to), but not, of course, conversely. 

L(to) is not quite as strong as it might seem, however, due to the following result. 

Theorem 1.3 (Keisler [ l t  D, I f  91m.. ~ t h e n  !~---~(L(to)). 
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As is well-known, games are not always det~':rmined. That is, th~ negation of a 
game-quantif ied formula is not found by "pushing the negation through" the 
quantifier-string since 

is net usually true, although the implication from right to left does always hold. One 
useful criterion for the biconditional to hc, ld is the foltov, mg, which is essentially the 
Gate-Stewar t  theorem that open games are determined (see [24]). 

Theorem 1.4 (Ga le -S t ewar ) .  A s s u m e  each a, has only finitely many  free vari- 
ables. Then 

Proof. The implication from right to left is easy, and so omitted. By replacing any 
free variables of the bicon'ditional by new individual constants, we may assume no 
a~ contains any variable other  than the x~'s free. By associating together  all c~,'s 
with the same free varfables we may assume that I =  co and that a~ is 
a,(xo . . . . .  x.,,.~) for each i ~ ~o. For  each k E w let 0~ be the formula 

~fVx , .~3x , . ,+& . . . . . .  V a,. 

Ther~ Ok is Ok(xo . . . . .  x2~-,), and the following are all logically equivalent: 

So assume ~1 ~ 0o, and consider the following way to choose xo, x2, x 4 , . . . .  Let 
xe = .f0 ~ A be such that 

~ I  = -"a a0[fo, all  ^ O,[f~, a~] 

for every a~ E A. Given a~ let x2--f2(a~) be such that 

~! I = "a a,[fo, al, f2(al), a3] ^ O:[fo, a,, fz(a,) ,  a3] 

for every a 3 ~  A. Continue in this way to make every 0~ true. Then these are 
winning functions for the sentence (3x2,Vx~+~),<~ A ~ " a a ~ ,  as desired. -I 

By taking negatior s of both sides we derive the same statement with A and V 

interchanged. 
We use -1 to mark the end of a proof. 
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2. ]'he filter and cotmtable approximations 

We first define a fi~ter on the countable subsets of an arbitrary set C which will 
provide us with our concept of "almost  all countable subsets" of C, and derive the 

basic propert ies  of the filter. 

Definition. For  any set C the filter D ( C )  on ~ % ( C )  is defined as follows: 
X ~ D ( C )  it" and only if X C ~ . , ( C )  and there is sonic X'C_ X such that 
(i) for every s E ~ . , ( C )  there is some s' E X '  wi:h s C s ' ,  

(ii) X '  is closed under unions of countable chains. 
Any  set X '  with propert ies  (i) and (ii) will be called a closed unbounded subset of 

0'%(C). 

The following result gives the basic propert ies  of the filter which we will use 
~:hloughout the paper.  

Proposition 2.1. Let D be D ( C )  for some C. 
(a) D is a countably coral, Sere filter. 
(b) D is closed under diagonalisation ~ that is, if X .  ~ D for all a ~ Co then 

X = { s E ~ , ( C ) : s ~ X .  foral l  a E s A C o } E D .  

(c) X ~ D if and only if 

(d) I f  C is uncountable then D is non-principal and not an uitrafilter. 

Proof. (a). It is easily verified that the inzersection of countably many closed 
unbounded subsets of ~ % ( C )  is also closed unbounded,  hence D is closed under 
countable intersections. 

(b) We may assume that each X. is closed unbounded.  It is then easily verified 
that 2~ !s closed under  unions of countable chains. So we will have .~ ~ D once we 
show that for every s ~ , ~ , ( C )  there is some s'D_s with s ' ~ X .  Let s =  
so ~ :~. ,(C).  Then Yo = n {x, - a E so N Co} E D since D is countably complete.  
Hence there is some s~E Y,, with so C st. In general,  we get s..tD.D s. with 
s..~ E Y. = n {X. : a E ~. n Co; for each n ~ to. Let s '  = U.~ , . s . .  Let a E s '  n Co. 
Then a ~ s. n Co for all n ~ no for some no, hence s. E X.  for all n > no, and so 
s '  = U . . . . .  s. ~ x,, since X. is closed under unions of coun tabk  chains. Therefore  
s '  E X as desired. 

(c) We first show the condition is sufficient for X E D. Assume the condition 
holds; by definition this means there are functions f=. : C"*~-~ C such that 

{a. : n < to}U{f~..(ao, a . . . . . .  a . ) :  n < t o } E X  

whenever a .  E C for each n. Let X '  be the set of all s ~: b~%(C) such that s is 
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closed under f2. for all n E to, X '  is clearly closed unbounded, hence X '  E D. Let 
s ~ X ' ,  say s = { a .  : n  ~ to}. Then f 2 . ( a o , . . . , a . ) ~ s  for each n, hence 

s = {a. : n < o~} U {f2.(a ....... a . ) :  n < to}~ X. 

So X '  C X and therefore X ~ D. 
Now let X E D. We may suppose X is closed unbounded. For any a0 ,~ C let 

s,~,~ X, aoE  s,~,. In general for each n and any ao . . . .  , a. ~- C let s,,,, ....... ~ X be such 
that s .......... D s.o ........... U {a.}. Then given any countable sequence ao, a~ . . . .  from C 
we know that g =  U{s ......... : n ~ t a } E X  since X is closed under unions of 
countable chains. So, just define .f~. : C "÷'-~, C so that 

{f~,,(a . . . . . . .  a . ) :  n < ,o}  = ~. 

This can be done. for example, by having 

{f2k(a . . . . . .  a~):21 k} = soo, 

{f2~ (a . . . . . .  ak) : 2 ,~" k, 3 t k } = s ,.,, etc. 

Then these functions are such that given any sequence of a , ' s  from C 

{a, : n  < o~} t_J {f~,(a0 . . . . .  a . ) :  n ~ to}= ~ X. 

3~herefore the condition holds. 
(d) Let [CI > to. Then D is clearly non-principal since for any s E ~ ( C ) ,  

{s' : s ~ s'} ~ D. For a proof that D is not an ultrafilter, see [9]. All we will need 
later is that D(to,) is not an ultrafilter, which is clear since there are no countably 
ccmplete non-principal ultrafilters on a set of cardinality 2" = 1 ~ .  (to~)i. -I 

This filter was also studied in a different context by Jech [9], who independently 
obtained (a) and (b) (but not (c)) of Proposition 2.1. 

Part (c) of 2.1 is not just an interesting characterisation ot the tilter but will 
become cen~:ral to some developments in sections 5 and 6. Let us note the following 
useful ehar.zeterisation of the filter which follows from the proof of 2.1(c). 

Corollary 2.2. For X C__ 8~,~,(C), X ~ D if and only i f  there are functions [. on C, 

each o f  finitely many  arguments, such that s E X whenever s ~ ~ , ( C )  and s is 
closed under every / . ,  n ~ to, 

We will later need the following generalisation of 2.1(b), which could be proved 
in the same way or derived from it. 

Corollary 2.3. I f  X ......... ~ D for atg n ~ to and all a~ . . . . .  a, E Co, then 

X" = {s ~ ~ , , ( C )  : s E X ......... whenever a . . . . . .  a, ~ s O. Co, n ~ to} ~ D, 

Intuitively, a countable approximation to a model 2l should be a countable 
submodel of ?I. Similarly, a countable approximation to a fozmula ~ of L=,o should 
be a formula obtained from tO by replacing the uncountable conjunctions and 
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disjunctions inq~ by certain countable ones. The next definition states precisely how 
t~is is done and the result indexed by countable sets. 

Definition. If s is any countable set, then 
(a) 9.I" = 9~ r (s 17 A ) for any model .~I, 
(b) if ~p is a formula of L~,~, ~,~ is inductively defined as follows: 

(i) ~* is ~, if ~o is atomic; 
(ii) ("aq~)" is -a(q~'), (Vx~)' is Vx(q~"), and (3xq~) ~ is 3x(¢" ) ;  

(iii) ( A j ~ o , )  ~ is A . . . .  r~'~ and (V~ztp~)' is V ..... ~ .  
We want 9P and ~p' to be defined for all countable s, so two clarifications of the 

above definitions are needed. First, we do not allow the empty model, so by 
convention ~" is ~.I *°~ for some a ~ A if otherwise ~l" would be empty. Secondly, 
we allow empty conjunctions and disjunctions under the convention that an empty 
Conjunction is logically true and an empty disjunction logically false. We are thus 
abh to say without restriction that ~P is a countable submodel of .~1~ and q~" is a 
formula of Lo,,~ fo;  all countable s. 

Definition. A set C is larg~ enough to approximate ~l if A C C; C is large enough 
to approximate ¢ if every conjun:tion and disjunction in ~o is indexed by elements 
of C. 

We temporarily use a, an, etc. ambiguously to refer to either models or  formulas 
of L=~. If C is large enough to approximate a then a" = a "no for every countable s. If 
a is a countable model or a formala of L , , ,  some countable C is large enough to 
approximate a. The following definition states what it means for a predicate P to 
hold of almost all countable approximations to given at . . . . .  a,. 

Definition. P(a~ . . . . .  a~) holds for almost all countable s iff 

{s E ~ ,  (C) : P(al . . . . .  a;,) holds} E D ( C )  (*) 

for some C large enough to approximate a~ . . . . .  a.. 
The dcfillition is actually independent of the choice of C. 

Propositiot~ 2.4. I f  P(a] . . . . .  a~, f:olds for almost all countable s then (*) ,~olds for 
every C large enough to approxin~a',e a~ . . . . .  a.. This happens ff and only if 

(Vr:,  :Ix . . . .  ) . . . .  [P(a'i . . . . .  a~,) holds for s = {x, : n ~ ¢o}]. (t) 

Proof. By Proposition 2.1(c) condition (* )  is equivalent to 

i (Vx=. ~ C 3x2~+~ ~ C).<., [e(a~ . . . . .  a~) holds for s = {x, : n ~ o~}]. (**) 

If C is large enough to approximate a~ . . . . .  a,, then a~ = a7 ~c for every countable s 
and so ~il') is equivalent to 
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(Vx~,° 3x : , , , )  . . . .  [P(a~ . . . . .  a:) hokls for ~ = {x,, G C :  n < w}]. (5"?) 

But it is easy to see that (**) is equivalent ':o (??), since the tru~.h of (??) does not 
depend on any x, ' s  not in (7. Therefore, if (*) holds for some C large enough to 
approximate ai . . . . .  a, then (t) hcids; and if (?) holds then (*) holds for every C 
large enough to approximate a~ . . . . .  a,. -I 

We will often use a.e. as an abbreviation for "for  almost all countable s." In 
addition we will often say that P(~I[,) holds for almost all countable submodels Plo of 
91 to mean that P(Pl') holds a.e. 

As simple examples, notice that the universe of 9;[ ' is s f'l A a.e. (that is, s f7 A is 
closed under the functions of ~A for almost all countable s); if ~ is countable then 
9~" = ~![ a.e., and if q~ is a formula of L,¢, then q~' is ~ a.e. 

The following consequence of Proposition 2.4 will often be used without explicit 
mention. 

Corollary :;.5. For given at , . . . ,  a, the properties P such that P(a] . . . . .  a~,) holds a.e. 
are closed under countable conjunction. 

Proof. Let Pk, k ~ co, be any countable collection of such properties, and let C be 
lacge enough to approximate ai . . . . .  a,. Then, by 2.4, 

Xk = {s E ~%(C) : e~ (a] . . . . .  a~,) holds} ~ D(C) 

for all k ~ w, so ('~E~Xk ~ D(C)  by 2.1:~). But 

f'7 Xk = { s ~  ~o~(C): A ek(a~ . . . . .  a~,) holds}, : 

so the conjunction of all Pk, k E ,o, is also such a property. 
We will also speak of statements being true for almost all countable subsets of C 

eeen when they are not predicates of approximations. What we will mean, of 
course, is that the set of all s E ~%(C)  for which the statement is true belongs to 
D(C). The truth of such assertions usually depends heavily on C. For example, "s 
is an ordinal" is true for almost all countable s C oJ,, but not for almost ali 
countable s C w.,. When C is clear from context, however, we will say simply "for 
almost all countable s "  or  even "a.e.". 

Barwise in [2] has generalised our notion of countable approximation by defining 
the countable approximations a" *o any set a in such a manner that if a is a model or 
formula of L ~  then his definition agrees with ours almost everywhere. In addition 
he proves a strong general result concerning which properties of sets are inherited 
by almost all of their cour,~able approximations. 

To work best, however, his definition must be given in set theory with a proper 
class of ur-elements (individuals). He  also requires the universe of every model to 
consist only of ur..elements, and all symbols of  L to be ur-elements. The reason for 
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this is that in approximating a model ~ we wish to leave the elements of the model 
alone, and o~dy approximate the set-theoretic structure of ~I as built up from those 
elements, which are therefore best treated as objects which are not themselves 
approximated. 

H i s  definition, then, is the following. 

Definition (Barwise [2i). For any set s the approximation a" is defined by 
E-recursion on a: 

a ~ = a if a is an ur-element, 

a" = {x" :x  E a N  s} if a is a set. 

The definitio~ of "almost all" proceeds as above, and he then proves the 
following theorem, which generalises our Theorems 3.1, 3.5, and 3.7 given below. 

Theorem ~..5 (Barwise [2]). i f  P is a E-predicate o f  set theory and ~f P(a  . . . . . .  a , )  
holds, then P(a~ . . . . .  a~)~ holds a.e. 

Since in this paper we are only interested in approximating models and formulas, 
we decided to keep to our earliest approach and also to prove 3A, 3.5, and 3.7 
directly rather than appeal to Barwise's generalisation. 

3. The L6wenheim-Skolem theorem L~,,, 

In this section we use the material from section 2 to prove two generalisations of 
the L6wenheim-Skolem theorem for L~,. These make precise the way in which L~, 
properties of models are determined by properties of their countable submodels. 

Theorem 3.1. I[ ~r is a sentence o[ L ~  then 91 ~, cr if/ 9I" I ffi or" a.e. 

Proof. First notice that it is enough to prove the implication from left to right, 
since: if we know that imp!ieation for every sentence and if .011 ,t or then ~I Iffi ~ or, so 
by assumption ~l s I= (~o-)"  a.e., that is .°~ Iffi ~(or*) a.e., and so we cannot have 
9.~ Iffi cr ~ a.e. (since there is r;o s such that ~,)V i= or" and ~I'lffi ~ o r ' ) .  

Next notice that ( ~ ) '  is (or')~ for all or and s (where ¢"  is the canonical 
t egation-norm~.l-form of g,), and so it is sufficient to consider omy sentences in 
negation-normal form. 

Therefore the proof of the theorem will be completed once we show for every 
formula ~(xo . . . . .  x~) ot L . .  in negation-normal form and for every ao . . . .  , a~ E A 
that 

~1 ffi q~[a0 . . . . .  a ,]  implies ~" I- ¢ ' [ a  . . . . . .  a , ]  a.e. 

We do tkis by induction on ~0. 



Cot~ntable approximations 67 

So, assume that PI(~ ~[a]  and that the result is known fer sub'formutas of ~. Let 
D = D ( C )  for some C !arge enough to approximate 9[ and ~, and let 

X ( , p , a ) = { s  ~ ~ , ( C )  : ~.)l ~ ~ ~ [ a l } .  

We wilt show X(~, a ) ~  D. 

If ~ is atomic or negated atomic then X(q~, a)  contains {s ~ @.,,(C) : a~ . . . . .  a, 
s} and so belongs to D. 

Let ~ be V ~ , .  Then ~tl- ~ [ a ]  for some i ~  L so by our inductive hypothesis 
X(q~, a)  ~ D. But ~ is V ~ ,  t/~, so X(q~, a)  _~ X(O~,, a)  ~ {s : io ~ s} must cer- 
tainly be in D. 

The case where ~ is ~x~ proceeds just like the case of a disjunction. 
Let ~ be A,~,~,. Then ~[~ ~ [ a ]  for every i ~ L so the inductive hypothesis 

implies that X~ = X(~b, a)  ~ D fe- all i ~ L Hence hy diagonalisation, Proposition 
2.1(b), we know 

= {s ~ ~ , ( C )  : s ~ X~ whenever i ~ s f~ I} ~ D, 

But 

, '~= {s E CP,o,(C) : .~l ~ I = O~[a] all i ~ s N I} 

= X(~0, a ) ,  

go this case is finished. 
The case where ~ is Vx0 proceeds just like that of a conjunction, since it is just a 

conjunction over the elements of A,  and A C_ C. -I 
Theorem 3.1 has two immediate corollaries for the cases in which N~= ~l[ a.e. or 

O "~ = tr a.e. 

Corollary 3.2. (a) I f  or is a sentence of  L. ,~ then 91 t~ cr iff ~lol ~ cr for almost all 
countable sub~nodels ~Io o f  ~,[. 

(b) I f  !!~ is countable and tr is a sentence of  L~. then ~! ~ or iff ~l ~ tr ~ a.e. 

Theorem 3.1 implies that if ~r has a model then so does ~," for almost all 
countable s. The converse is easily seen to fail in general, ~ at under certain 
circumstances we do get the equivalence. 

Corollary 3.3. (a) A s s u m e  that cr o f  L~., is in negation-normal form and has no 
uncountable disiunctions. Then I~ tr iff tr ~ a.e. 

(b) I f  tr and  q~(x) belong to L . , .  for all " E l ,  then ~cr - ->3x  A~E,d~ if] 
cr ~ B x  A ~ o  ~ for every countable Io C_ I. 

Proof. (a) Theorem 3.1 implies that if - 'air has a model then so do "-atr' a.e. 
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Therefore I = or if I= or" a.e. For the other direction, it is easy to establish by 
induction or~ formulas q~ in negation-normal form with no uncountable disjunctions 
that ~ q~ --, ~ a.e. 

(b) is an obvious consequence of (a). -t 
For  any class F of formulas of L~,, let F~, be the class of all formulas of F that 

belong to L,oi~. For some choices of F (for example :!~. and P ~  see [4]) it has been 
noticed that if ?t and ~ ~'~re countable and ~F , ,  ~ holds, then in fact ? t I ' ~  holds. 
Corollary 3.3(b) e~tsily yields a general condition for this to be true. 

Cor,3llary 3.4. A s s u m e  that i f  ~o E F :hen q~" E F a.e. Le t  ~I and  ~ be countable. 
Then 

9 ~ F ~  ~mplie. ~ ~ F ~ .  

r a,~|. Assume 9 ~ F ~  holds, and let tr he a sentence of F such that ~,i I~ or. Then 
9~ I = or' a.e. by 3.2(h), and or" E F~, a.e. by hypothesis, so • I = or" a.e. Thus ~ 1- or by 
3.2(b) again. -] 

This has a natural gew~ralisation to models of power at most ~ which ceuld be 
proved either using Lemma 3.8 below or the uncountable approximations of 
section 7. 

The, following result is also a generalisation of Scott 's isomorphism theorem, 
Corollary 1.2(a). It is proved using Theorem 3.1 and a back-and4orth  argument,  
Notice that (b) is not an immediate consequence of (a) since the almost-all filter is 
not an ultrafilter. 

Theorem 3,5. (a) 9~ - - ~  ~ iff ~V ---- ~"  a.e. 

(b) ~ # ® , ~  iff 9 I ' # ~  ~ a.e. 

Proof. It su~ices to show the implications from left to right in both (a) and (b) 
since the reverse implications then follow immediately. 

(b) Assume ~1~ # ~  ~ .  Then there is a sentence or of L=~ such that  9[ I = or but 
~ t  = ~ c ~  By 3.1 ~[" ~ or~ a.e. and ~ I = - lo-" a.e. Therefore ~" #~,o,~" a.e., so in 
particular ~ ' ~  ~"  a.e. 

(a) Assume ~ ~=,. ~3. By the back-and-forth prooerties of L,~-elementaD~ 
equivalence (Theore m 1.1 mid the comments  following it), there are functions 
f , : A " + ~ x B " - - ~ B  and g . : A " × B " + ' - - * A  for all n E o ~  such that if 
(~,  a~ . . . . .  a . ) ~ .  (~,  b, . . . . .  b , )  then for any a E A and any b E B we have 

(9.i, a . . . . . .  a,, a . . . . .  (~ ,  b . . . . . .  b., f .  (a, a, b )) 

and 

(~I,  a . . . . . .  a., g. (,i, b, b ) ) ~ . .  (~ ,  b . . . . .  b., b). 

Let C _D A U B, and let 
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X = {s ~ ~,,,,(C) : s is closed under f,, g, ?or all n}. 

Then, by Corollary 2.2, X ~ D(C) .  It is easy to see ~.hat if s ~ X then you can use f, 
and g, to go back-and-forth to construct an isomorphism of ~-P and ~3 ". Thus 

Theorem 3.5 can be applied to particular cases. For example we easily obtain the 
following result (which we had proved earlier in a different way; see [11, [17]). 

Corollary 3.6. ~.~I is L~,-elementarily equivalent to a free group if and only if every 
countable subgroup of ~[ is free. 

ProoL Let ~ be a free group and let ~[m., ~ .  Then 92" ~ ~'~ a.e. by 3.5, so PI" is 
bee  a.e. and therefore every countable subgroup ot 92 is free, since subgroups of 
free groups are free. On the other hand, assume every coantable subgroup of 92[ is 
free. If ~,I is countable we are through; if ~| is not countable then, in particular, 92' is 
not finitely generated a,e,, and so ~" ~ ~3 a.e. where 2 is the free group on to 
generators, Hence, by 3.5, ~ i~ , ,  2 ,  -t 

The proof of the following is similar to that of Theorem 3.5 and is therefore 
omitted. 

Theorem 3,7. (a) ~I::L,,~ iff ~(' is embeddable iia 2"  a.e. 
(b) not (923~,~) if[ 92" is not embeddable in 93" a.e. 

It is not sufficient in 3.7(a) to say onty that ~l" is embeddable in 2 a.e. The 
following example shows that this does not imply ~ I -~ ,~ .  

Example I.  Let ~ = (to~, < ) and let .~1[ = (tat + 1, < ). Then ~P is embeddable in 2 
for all countable s. If ~.I3~,~ then there is some/x ~ tot such that (~, to~)3~(2, t-t), 
and so by 3.7(a) (~t', 00t) can be embedded in (2 ' , /x )  a.e., which is clearly impossible 
for any s D V~ + I. So 923®,,2 is false. 

It is weU-known that the eond,tions in 3.7(a) do not imply that ~[ can be 
embedded in ~ .  The following example shows that they do not even imply that 
~Im.,  ~ '  and ~--- ,o,~ '  for some models .0t' and ~Y such that ~ '  can be embedded 
in ~ ' .  

Example 2, Let ~ =  ( B , < )  for B = to t2 Q, where O is the set of rationals 
between 0 and 1. Let Q be enumerated as {r. : n E to} without repetition; then < 
on B is defined so that < on to and < on Q ar~ the usual orderings of to and Q, 
and if n E to and r E Q then r < n does not hold and n < r holds if and only if 
t = r,. Then every element of B is definable in ~ ,  so ~==®~, 93' implies ~ ~- ~ ' .  But if 
~.I = ( A , < )  is any linearly ordered model then '2P is embeddable ia (Q, < ), and 
hence in ~"  a.e. In particular this is true o~ (o~1, < ) which is not Lo-elementar i ly  
equivalent to any model which could be embedded in ~ .  
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We digress briefly to put this example into a different context. Let tr be a 
sentence of L%~, let Ko be the class of all submodels of models of or, let 2 be the set 
of all sentences of L %. true on every model of Ko, and let v ,  be the set of universal 
L . , .  consequences of or. By Malitz's interpolation theorem, M o d ( E ) =  Mod (~v,), 
Malitz [21] gave an example showing that ;.n general /('~,~Mod(-~), and asked 
whether  the class K~ of all models which are L ,  ~-elementarily equivalent to models 
in Ko was equal to Mod (~v). The  example just given shows this to be false in general 

let or be the Scott sentence of ~ ;  then ~1 = (e,~, < ) is a model of E but not in K,, 
It is, o f  course, true for any or of L , , ,  that 9I is a model of ,~" iff every countable 
submodel of 9.I belongs to Ko. 

We stated above that Theorem 3.1 generalises the (downward) 
L6wenheim-Skolem theorem for L~,. Corollary 3.2(a) shows that it implies an 
improved version of it for L%.. Now we poir~t out how 3.1 actually implies the usual 
form of the Lfwenhe im-Skoiem theorem for each L,+~, Corollary 3.9 below. A 
stronger generalisatio~, for L,~, will be proved in Section 7 as Corollary 7.4. 

Lemma 3.8. Let X E D (C), let ~ <~ tc < I C t, and let I CC. C, 111 ~ K. Then there is 
Co such that I C Co C_ C, [Col = K and X 13 ~% ( Co) E O ( Co), 

Proof. Using Corollary 2.2 let f, be functions on C such that s ~ X whenever 
s E ~ , ,  (C)  is closed under every f,, n E to. Let Co be such that I _C Co C_ C, t C01 = x 
and Co is closed under every f,. 7[hen s ~ X I3 ~%(Co) whenever s ~ ~%(Co) is 
closed under every f,, so X N  ~%(Co)E D(Co) by 2.2 again. -! 

Corollary 3.9. Let cr be a sentence of L.+. and ~et 9I ~ or. Then whenever Ao C A,  
i Aot <~ ~:, there is some ~ C '2~ such that Ao C B, I E I = K and ~3 ~ or. 

Proof. Let C be large enough to approximate .~ and or. Let X =  
{s ~ ~ . , ( C )  : ~I * ~ or" and A ~ = A ¢3 s }. Then there is some I C C, ] I I ~< x, which is 
!arge enough to approximate or. We may also take Ao _C L Take Co as given by 
Lerama 3.8 and let ~ = ~ [ Co. Then Co is large enough to approximate ~ and or, 
and 

{s E .9,.. (Co) : ~ ,~ ,:r'} = X f3 ~%(C0) ~ D(Co). 

Hence ~ '1= or~ a.e., and st: ~1 ~ or by 2.1. -1 
Using Lemma 3.8 in conjunction with Theorem 3.5 we obtain the following. 

Corollary 3.10. Ass , ,~e  that ~ 93 and 1A ] = tc < t B ]. Then there is ~o C ~ ,  
[Bo[ = to, such that ~[----oo, ~o - in fact, sJ:ch that ~ o < - ,  ~ .  

Looking at Theorem 3.5 it is natural  t~ consider what happens if .~I" ~ ~ '  for 
every cotintable s. This certainly can only happen if A = B, but easy examples show 
that we need not have ~l = ~ .  Some time ago we formulated the following 
conjecture, for purely relational models: 
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If ~l? ~ ~ '  for every countable s then !!I ~ ~ .  (*) 

Since then, this conjecture has been verified in several cases, but defeated in its 
complete generality. The results are as follows. 

Theorem 3.11, (a) (McKenzie; Galvin) (*) is true if 9l and ~ involve only unary 
and binary relations. 

(b) (McKenzie) (*) is true if 9~1 is a group (with the group operation considered as a 
ternary relation). 

(c) (McKenzie) There :~re ~ and ~ of cardinality oo~ such that 9P ~ "~ for every 
countable s but 91 ~ ~ .  

The restriction to countable languages in this section is not really essential. The 
best way to deal with uncountable languages is probably to make the countable 
approximation to a model be a model for a countable approximation to the 
language. That is, we say C is large enough to approximate 9~ if A C C and L C C, 
and define ~.~I~ = ~,~I r s f3 L r s f3 A. We can now proceed with essentially the same 
praofs as befare. Further details can be left to the interested reader. 

4. Reduced products 

The obvious thing to do with an indexed family of models and a fiker on the 
index set is to form the reduced product. Given models 9I and ¢~, if D is D ( C )  for 
some C large enough to approximate both 91 and ~ then an immediate conse- 
quence of Theorem 3.5(a) is: 

~ = ~  ~ implies I'I gP / D  ~ I'I ~" /D. 

The converse is easily seen to fail. But we will see that we do get the converse 
provided we first expand the language of the models so that in the expansions every 
negation of an atomic formula is equivalent to an atomic formula. 

Definition. (a) L* is the language L together with a new k-place predicate P~ for 
every k-place predicate P (including --- ) of L, for all k E ¢o. 

(b) If ,~t is an L-model then 9t* is its expansion to L* satisfying 
V:¢[P-,(x)~-,-~P(x)] for every predicate P of L. An L*-model of the form 9I* is 
called standard. 

(c) If 9I' is an L*-model and ~ '  C 9I' then ed' is strongly maximal  in ,~i' if for every 
~ E A '  there is exactly one b E B '  such that ~,l'1=---a(a=-~b). 

Notice that if ~* is standard and strongly maximal in 91i', then ~*  is a maximal 
standard sub.model of $I', The converse, as we shall see, is not true. 

The following characterisations of the relations 9~::1®,,~ and ~-- -~ ,~  use 
Theorems 3.7 and 3.5. In addition, the proof of 4.1 is used in the proof of 4.2. 
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Theorem 4.1. Let D be D(C)  where C is large enough to approximate ~I and ~3. 
Then the following are equivalent: 
(i) 9 ~ o ,  ~ .  

(ii) I'I~*'/D is embec' ~able in I'I~*~ID. 
(iii) 9~* i~ embeddable ,,t I'[~*'/D. 

Proof. If f is a function in r I { A ' : s  E ~%(C)} we use f / ~  to denote its 
equivalence class with respect to D, which is then an element of the universe of 
IIgI*~ID. 

(i) : = ~  (ii). Assume 92~®,,~. Then, by 3.7, ~" is embeddable  in ~"  a.e,, say by a 
mapping h ' .  Define /~ of I-I~*'/D into 1-[~*'/D by / ~ ( J / ~ ) =  g / ~  where 
g(s) = h'(f(s)) a.e. Then /~ is easily verified to be the desired em0edding. 

(ii) ~ 0ii). It suffices to show that 92* can be embedded  in I"Ig~*'/D. The 
?ping h defined by h ( a ) = g , ; ~  where g ( s ) =  a a.e. is clearly such an 

embedding. 
(iii) ~ (i). For  simplicity we assume L has only predicate symbols. Let /~  be an 

embedding cf  92* into 1-1~5*'/D, say that /T(a)= f , / ~  for each a e A. Now for 
a E s  NA,  !:tefine h ' (a )= f , ( s ) .  Then h '  is a mapping of A '  into B '  a.e. since 
A" = s N A a.e. We will show that h '  is an isomorphism of 9I' into ~"  for almest 
all countable s, and hence that f f = l ~ .  

Assume that 92" i = P[ao . . . . .  ak]. Then I'I~*'ID I~ P[/~(ao) . . . . .  /~(ak)] and so 
~* '~P[ f~(s )  . . . . .  /o,(s)] a.e., that is ~*'l=P[h'(ao) . . . . .  h ' (ak)]  a.e. The same 
implications hold for P-~, which is equivalent to --aP on 92"" and ~* ' ,  and so 

{s E ~P,,(C) : ~" ~ P[a . . . . . .  a~ ] iff ~ I ~ e[h" (ao) . . . . .  h" (a~)]} ~ D. 

Call this set X(P, a0 . . . . .  a~). Diagonalising, using 2.3, we obtain 

X(P)  = {s E ~% (C) : s E X(P, a . . . . . .  ak ) whenever a0 . . . . .  a~ ~ s N A } ~ D. 

So by 2.1(a), X = f'l {X(P) : predicates P of L} E D. Since h" is an isomorphism for 
all s u X we are through. -[ 

Later  in this section we will see that we can add another  equival~nt condition 
to 4.1. 

Theorem 4.2. Let D be D(C) w~;ere C is large enough to approximate ~I and ~.  
Then the following are equivalent: 

(i) ~ - ~  ~,  
(ii) 1-[92"~/D ~ I'I~*~/D, 

(iii) ~i* is isomorphic to a strongly maximal submodel of ~ * ~ ] D .  

Proof. (i) ~ (ii). Th is  is like the corresponding step in 4A. 
(ii) ~ (iii). It suffices to show that ~*  is isomorphic to a strongly maximal 

submodel of  l'[~I*'/D. Consider the mapping h defined by h(a)= go~ ~ where 
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g,(s)  = a a.e, As  in 4.1 this is an isomorphlsm. Since the image of 91" under h is 
s tandard we need only show that given any f~ ~ in I-I9,I*"/D there is some a E A 
such that II~I*' /D ~ - -n( f /~  =.~g°/~  ) to be able to conclude that the image is 
strongly maximal.  So, let f / ~  be given. !~ there is no such a, then ~ , I * ' / D  ~ ( f /  
=-~ g,, I ~ ) for every a ~ A, that is 

{s ~ ~'%(c):  f(s) ~ g°(s)} ~ D, 
so 

X,, = {s e ~,, (C) : f(s)  ~ a} ~ D. 

Diagonalising r2n~; 2.1(b) we see that 

X = { s  . % ( C ) : f ( s ) # a f o r a l l a ~ s O A } E D  

which is impossible since f ( s )  E A ~ = s N A a.e. 
(iii) ~ (i). Assume (iii) holds, and let the isomorphism be ft. Then, in 

particular,  ~,i* is embedded  by /~  into I I~* ' /D ,  so the functions h" defined in the 
proof  of 4.1 are isomorphisms of Pt" into ~ for almost all countable s C C. Define 

Z = {s ~ ~ % ( C )  : h ~ is not onto B*}. 

We first show that Zff. D. Define g E I1B"  so that g ( s ) E B ' - R a ( h ' )  for all 
s E Z. Then for s ~ Z and a ~ s (~1A we know g ( ~ ) ~  h ' ( a )  = fo(s). Assume that 
Z E D. Then for every a E A 

{s e ~ . , ( c ) :  g(s) ~ fo(s)} e D 

since this set contains Z O{s ~ ~ % ( C ) : a  ~ s}. Therefore r I ~ * ' / D ~ g /  
=-~f~/~ for all a E A, that is I I ~ * ' / D  ~ g / ~  = ~ / ~ ( a )  for all a ~ A  which 
contradicts the strong maximality of the range of /~ in I'If~*'/D. So Z ~  D. But 

{s E ,~°,(c):  ~P ~ czar} c_ z,  

so this set is not in D either. Therefore  it is not true that ~?l" N ~" a.e. and Theorem 
3.5(b) thus implies that } l - ~ ,  ~ .  -I 

Given ~ and a cardinal K, let D be D ( C )  where C is large enough to 
approximate ~ and I C[w,<.  Then every model  of cardinality at most K is 
;~omorphic to a model  which can be approximated by C. Therefore we may say that 
given ~ and x there is a filter D such that for every 91 of cardinality at most K (i) is 
equivalent to (iii) in both 4.1 and 4.2. Thus Flf~*'/D serves as a sort of K +-universal 
model  for the L.o,-theory of ~ ~ that is, the models 91 of cardinality at most K such 
that 9111t=~ are precisely those which are isomorphic to standard submodels of 
I ']~*'/D, and those such that ~.I~.., ?~ are precisely those which are isomorphic to 
standard strongly maximal submedels  of l ' I ~* ' /D .  Of course, this reduced product 
is not L , - e l e m e n t a r i l y  equivalent to ~ but it is as good as we can hope for, due to 
the following examples.  



74 D. W. Kueker 

Example 1 (Malitz): There are ~ and 8 with ~I-- . ,  93 which cannot be simul- 
taneously embedded in any model L, ,-elementari ly equivalent to them. This is 
contained in the theorem on page 180 in [20]. 

Example 2. There are ~t and ~ with ~:1®,~8 such that no model L , -e lementa r i ly  
equivalent to 9~ is embeddable in any model L~,-elementarily equivalent to ~ .  This 
is given in example two c ~ the previous section, This imp!ie~ that there are standard 
i~ubmodels of I ]~* ' /D  (namely isomorphic images of  ~t*) which are not contained 
in any strongly maximal standard submodel, Therefore~ condition (iii) of 4.2 cannot 
be weakened to require only that ~[* is isomorphic '.o a maxima! standard submodel 
of I I S * ' / D .  

Theorems ~..1 and 4.2 are capable of some ge aeralisation. In the proofs we never 
used the fact that the models ~" were the countc, bie approximations to some given 
model ~ ,  and in fact any suitably indexed family of countable models would do. 
9,ae resulting theorem is as follows. 

Theorem 4.3. Let D be D ( C )  for some C, let {93.~ : s e ~ , ( C ) }  be a family of 
countable models, and let 8 "~= II~3*/D. 
(a) For any ~ with A C_ C the following are equivalent: 

(i) ~t* can be embedded in ~ ' .  
(ii) {s E ~%(C):91" can be embedded in 93.,} ~ D(C) .  

(b) For any 9~ with A C_ C the following are equivalent: 
(i) 9/* is isomorphic to a s,'~rongly maximal submodel of 93". 
(ii) {s E ~,o,(C) : ~d ~ --- 8~} E D(C) .  

As a consequence notice that if ~ "  has any (non-empty) standard submodel then 
this standard submodel is a model of 

{or : cr is a universal sentence of L.~ and ~ ,  I= cr ~ a.e.}. 

For example, let C be a set of universal L,,,-sentences every countable subset of 
which has a model. If, for every s E ~%(C),  a model 8 ,  of s can be chosen so that 
the resulting product 93" has a standard submodel, then C has a model. If L is a 
finite language with no functb-n symbols, then it is easy to see that we can so choose 
8, .  We consequently obtain the following result (of (~udnovskil [5]) which is, of 
course, easier to prove withoat recourse to reduced products. 

Corollary 4.4, (~udnovskii). Let L be a finite language with no function symbols, 
and let ,~ be a set of  u iversal sentences of  L~o,. Then v has a model if ever 5, 
countable subset of  ~ does. 

We can also consider sentences preserved by reduced products modulo our filters 
D ( C )  and obtain compactness and related results for such ,sentences. 
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Definition. H. ..... the class of Horn formulas of L~+.,, is tt~e least class containing all 
atomic and negated atomic formulas, closed under conjurct ions  of length at most ~, 
closed under  both quantifiers, and such that (q~ ---> t/t) is in H.+~ whenever ~ E P.÷~ 
and q ~ E H .  .... 

We first prove the fol lowirg lemma about the class P.+,o of positive formulas. 

Lemma 4.5. Let D be D ( C )  for some t_~ let {~L : s E ~,o,(C)} be a family of 
arbitrary models, and let ~(x~ . . . . .  x . ) ~  P.÷~ be such that C is large enough to 
approximate ~. Assume that I-I~2[~/D ~ ~p[f~/~ , . . . .  f . / ~  ]. Then 

(s E ~'%(c):  ~L ~ ~ [ f , ( s )  . . . . .  f .(s)]} ~ D. 

Proof. The assertion is proved by ind,zetion on q" Assume all hypotheses and 
assume the lemma true for all subformuh of ~p. If ~ is atomic, the conclusion is just 
the definition of truth in a red t . ' ed  product.  Let  9 be A~erO~. Then 
• rI~.lJD ~ 4J~[ft/~, . . . .  f . / ~  ] for all i '£ I, so by our inductive hypothesis 

{s E ~ % ( C )  : ~L ~ *:Eft(s)  . . . . .  ~,(s)]} ~ D 

for every i ~ I. Diagonalising we obtain 

{s ~ ,~%(C): ','L ~ ^ ~,;[f,(s) . . . . .  f . ( s ) ] } ~  D, 

which is exactly the conclusion desired. The case where ~ is Vx$ is easy; the cases 
of V,Er$~ and ::ix¢ are easier. -{ 

Let C b e  any set such that I C i -  ~¢ and let ~p be any formula of L . . . .  Then ~o is 
equivalent to a formula ~p' in which al~ conjunctions and disjunctions are indexed by 
elements of C. and so C is large enou~;h to appzoximate ~ ' .  In the statement of the 
next theorem, we tacitly identify cr with some such o-'. 

Theorem 4.6. Let D be D ( C) for some C with I C t = K and let {~I~ : s E ~%(C)} be 
a family of arbitrary models. Th,.'n for any sentence tr in H.÷~, if {s E 
~ % ( C )  : ~i~ I = tr ~} ~ D. then [[~I,/D ~ (r, 

Proof. Assuming the hypotheses w~ show, by induction on O(xt . . . . .  x . )  of/-/.+,~, 

that if 

{s ~ ~ , ( C )  : ~1[~ t = O'[f,(s) . . . . .  f . ( s )]}E D 

then II~I, /D ~= e [ f J  ~ ,  . . . .  f.  ! ~ ]. This is clear if 0 is atomic or negated atomic. If 0 
is a conjunction or a quant~ca t ion  of Horn formulas for which the :.replication is 
k~]own then it is easily seen to be true of 0. So let 0 be ~ ---> ~b where ~p ~ P.+~ and 
the implication is true of 4,. Assume that 

{s e . ~ . , ( c ) :  ~.L ~ (~o --, g , ) ' [ f , (s )  . . . . .  f .  (s)l} ~ D. 
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S~;y that 1-[9~,/D ~ ~o[f~/~, . . . .  ]',1~]. Then, by Lemma 4.5, 

{s ~ ~'o , (c) :  ~ ,  ~ ¢ ' [ f , ( s )  . . . . .  f .  (s)]} e O; 

hence 

{s E ~%(C)  : ~i, 1 = 6"[f , (s)  . . . . .  f .  (s)]} (E D, 

and so by inductive hypothesi¢ I~ .L /D t= 6[f~/~-, , . . . .  f . / ~  ] as desired. -I 
As an easy conseqt~ence of 4;6 we have the following result on embeddings~ 

Corollary a.7. (Embedding for H.+, ). Let ,~ be a set of  sentences of  H,+,~. Then for 
any ~ the following are equivalent: 

(i) ~ can be embedded in some m ;dei of 2f ; 
(ii) ~ 3 ~ , ~  for some model ¢2~ of  Y.. 

Proof. That (i) implies (ii) is obvious. For the other direction, assume ~3~ ,~I  
where ~ 1 ~ .  Let o" be Ao~rO and let D be D ( C )  for some C large enough to 
approximate 9.I and or. Then ~ c ~  be embedded in I'I~.P/D by 4.1. But 91' I~ t r '  a.e. 
by 3.1, and so [Ig.P/D ~ cr by 4.0. -I 

We have already shown in example two of Section 3 that 4.7. is false for 
non-Horn sentences, even for ,v={cr} with tr in L , , .  ~ S is a set of sentences of 
H%e then the following condition is equivalent to those in 4.7: 

(iii) Every countable submodel of ~ can be embedded in a model of ~. 
But this condition cannot be added for arbitrary H,+,~. 

We could use 4.6 to obtain compactness and upward L6wenheim-Skolem results 
for H,+~, but we obtain stronger results more easily by simply using r+-complete  
filters and ignoring approximations. 

We omit the verification of the following easy result. 

Proposition 4.8. Let E be any ~ +-complete filter on L Then: 
(a) If  ~(x  . . . . . .  x . ) ~  e,+o. and [I£I,/E.~ ~ [ f , / - ,  . . . .  f , / -  ] then {i E 

I : ~d, ~ ~ [f,(i) . . . . .  f ,  (i)]} ~ E. 
(b) If  tr is a sentence in H~+~ and {~ e. I : $ L  I=t r}~ E then l-Io.IdE t- tr. 

Notice that {1} is K +-complete for e~ cry ~c, and that {/}-reduced products are just 
direct products. Hence sentences of every H,+,~ are preserved by arbitrary direct 
products. We therefore immediately obtain: 

Corollary 4.9, (Upward L6wenheim-Skolem for H. +.~ ). Let ~ be a set of  sentences 
of [-_t,÷~ which has a model with at least two elements. Then v has models o f  
arbitrarily large cardinality. 

The next corollary uses a non trivial filter, 
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Corollary 4,10. (Compactness for H,,,,),  Let X be a set of sentences of  H,+~, and 
assume that every ~',~ C b~ of cardinality at most r has a model. Then ~ has a model. 

Proof. Let E be a r~'-complete filter on ~ + ( ~ )  such that {,~,E ~,-~(~):,~oC_ 
~va}~ E for every , , ~  ~ , ( ~ ) .  Take ~l:z, lffi E,~ for each ,~0~ ~*(X) .  Then 4.8(b) 
implies the- t ~9I~,,/E ~= ~. -! 

Using Lemma 4,5 we can add a further equivalent condition to Theorem 4.11, 

Corollary 4.11. Under the hypotheses of Theorem 4.1 the following condition is 
equivalent to those listed: 

(iv) ~I '3~.  1-I~*'/D. 

Proof. It suffizes to show that (iv) implies mat ~ d : L ~ .  Let K :-" [ C 1. Then I B I ~< K. 
Let ~r be an existential positive sentence of L*~+o,, and assume that ~I* ~ tr. Then 
['I~*~'/D I= cr by hypothesis, and so ~*~ 1~ o ~ a.,~. by Lemma 4.5, hence ~* ~ cr by 
3.1. Now, any existential sentence of L,+,, is equivalent to an existential positive 
sentence of L*~,,~ on all standard models. Therefore we have shown that 9~ :L÷~.  
Since I B i ~< K this actually implies , ~ I ~ l ~  (see [4]). -I 

There are several interesting problems concerning the results in this section. For 
example, we do not know if H,,,~ is the largest class of formulas (up to logical 
equivalence) satisfying Theorem 4,6. We would also like to know if Theorem 4.3, or 
similar considerations, could be used to yield any "compactness" or model- 
existence theorems other than the rather weak application in 4.4. 

5. Closed classes and LP(~o) 

In this section we investigate classes of models satisfying certain 
L6wenheim-Skolem closure conditions, of which the two following are the most 
important. 

Definition. Let K be a class of models closed under isomorphism. 
(a) K is closed downward if: ~Y[ E K implies ?[~ E K a.e. 
(b) K is closed i~: ~I E K iff 9[" ~ K a.e. 

A class which ~s closed dc~wnward satisfies an abstract form of downward 
L6wenheim-Skolen.~ theorem. A closed class also satisfies a restricted sort of 
upward L6wenheim-Skolem propert:~, 72orollary 3.2(a) says precisely that if cr is a 
sentence of L%, then Mod (tr) i:, clesed. We will see shortly that there are closed 
classes which are not axiomatisable in any L,~ but that a fairly natural logic, [?'(to), 
suffices to axiomatise them all~ 

To show that K is closed downward it is sufficient to show t~e following for every 
~ I E K :  
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{s E ,~%(A) : ~ '  E K} ~_ D ( A ) .  

In other words, one shows that for every 9[ ~ K 

{9.Io_92:]A0[<~to and ~ o ~ K }  

contains a subset S '  closed under unions of countable chains and containing an 
extension of each countable submodel of ~l. Such an S '  will be cal!ed a closed 
unbounded set of countable submodels of 9[. 

The fo!lowing omnibus proposition lists most of the elementary facts about 
classes which are closed or closed downward. 

Proposition 5.1. (a) I f  K is closed then K is closed under L~-elementary equiva- 
lence. 
(b) I l K  and its complement - K are both closed downward then they are both closed. 
(c) Each class S of countable models closed under isomorphism determines a unique 
c.osed class whose countable models are precisely those in S. Hence there are exactly 
2:" different closed classes. 
(d) If  K '  is a class of L'-models which is closed downward, where L' is countable, 
then K '  [ L is also closed downward. 
(e) A countable intersection of closed classes (classes closed downward) is also 
closed (closed downward). 
(D A union of any number of classes closed downward is also closed downward. 

Proof. (a) This ~ clear from Theorem 3.5 and the definition of closed. 
(b) This is clear from the definitions since if ~.P E K a.e. then it cannot be true 

that ~.I~E - K  a.e. 
(c) The unique closed class K determined by $ is defined by: ~ ~ K iff 91' ~ $ 

a.e. The cardinality assertion follows since there are exactly 2" non-isomorphic 
countable models. 

(d) This is clear since, for any L'-model ,~1' we haw~ (PI') ~ [ L = (9.][' [ L f  a,e. 
(e) Let K. be closed~ downward for all n E to and let .~I ~ n . ~ K . .  Then .~V E K. 

a.e. for each n, hence ~I ~ E K,, for all n ~ o~ a.e. by 2.5. So A.~, .K~ is closed 
downward. If each K. is closed and 9V,~ A . ~ . K ~  a.e. then 9.P ~ K. a.e. for all n, 
so ~ ~ K~ for all n. 

(f) This is obvious. -I 

Corollary 5.2, I f  K contains onlv countably many non-isomorr,hic countable 
models, then K i's closed iff K = Mcd (or) for some sentence or of L,~,. 

Proof. Let K be clc;ed and contain only coun tab ly  many non-isomorphic 
countable models, say .~[k for k ~ o~. Let o-~ of L~,~ be the Scott sentence of  ~1~, for 
each k. Let tr be V~.,or~. Then or is a sentence of L%,  so Mod(cr) is closed. 
Mod(or) and K contain exactly the same countable models, so therefore K = 
Mod (or). -I 
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The following example is indicative ot the variety of closed classes that exist. 

Example. Let K be 

{(A, < ) : (A, < ) ~ (c~ + s, E ) for some ordinal a L 

Then K is closed and co-closed, but not equal to Mod (or) for any sentence c_r of any 

The non-axiomatisabitity of  K is due to Mafitz [22]. 
We first show K is closed downward. Let ~1 ~ K;  we may suppose ~,I is (a + s, ~ ) 

for an ordinal s. Let f be defined on a + s by f(¢)  = a + ~: and f ( a  + ~) = ~ for all 
< a. Then any submodel of ~1[ closed under f belongs to K. Hence the set of all 

countable submodels of ~1 closed under f is a closed unbounded set contained in K, 
which shows K is closed downward. 

We next show - K is closed downward; ~his will complete the proof by 5.1(b). 
Let °l ~ K. If A is not well-ordered by <'~ then clearly N ' ~  K a.e. and we are 
through. So we may assume that ?l is (y, E ) where - /cannot  be written as s ÷ a for 
any s. If T is closed under + (that is, s~, a~ < 3' implies s~ + a~ < 3') then the set of 
countable submodels of 91 clo~ed under + is closed unbounded and contains no 
element of K, as required. If y is not closed under + then 3' =/3o + fl~ where 
¢t~</3o< y and s +/3 < 3' whenever s </30 and ¢1 ~ cL Define f on T by 

f(s,/3)= { r t + / 3  if s < ~ "  and / 3 ~ a  t 

s if a<13o and s < 1 3 J  
and 

f (a, /3)=a, if a = C t o + s ~  for 0~c~,<13, .  

Now let ~IoC_'2t be closed under f and contain the element /3~. If 9Ao~ K then 
A0 = Bo U B~ where 

B o = { S E A o : 8 < s o }  and B~={8~Ao:o~o<~6} 

for some so ~ Ao and (Bt~, ~ ) ~ (Bt, ~ ). We show this is impossible. First. assume 
that so</30, Then g(y)  = f(ao, y) for y ~ Bo is a 1-1 order-preserving map of Bo 
into Bt, hence must be eofinal, which is impossible since f(ao, s~) ~ B~ but is greater 
than every value of g. So we must have 130 ~ no. But then g(x) = f(x, no) for x ~. B~ 
is a 1-1 order-preserving map of B~ into B0, hence must be cofinal, which is 
impossible since/3~ E Bo is greater than every value of g. Therefore the set of all 
countable submodels of ?1[ closed under f and containing/3~ is closed unbounded 
and disjoint from K, which completes the example. -1 

We have two main interests. One is developing a natural logic adequate to 
axiomatise every closed class and investigating it. The other is developing some 
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useful techniques for showing that classes are closed, or  closed downward, and 
finding applications; this is done in the next section. 

As one would expect from the game characterisation of "almost all," a logic 
which can axiomatise every closed class involves some game quantification. The 
logic we introduce here and call LP(a~) conwins the formulas of L(a 0 which we can 
put into prenex form. A more explicit definition follows. 

l)dinition. The formulas of L~(to) are inductively defined as follows 
(a) every open formula of L~, with only countable many free variables belongs to 
U'(to); 
(h) if {~0k : k E to} is a countable set of formulas of LP(to), each having only finitely 
many free variables, then A ~ , k  and V~E~k are formulas of LP(to); 
(c) if ¢ is a formula of LP(to) with only finitely many free variables then so are ::lxtp 

and v,~¢ ; 
(d) if ¢ is a formula of LP(e~) then so is (Q~.x.).<~¢ provided it has only finitely 
many free variables. 

Notice that every formula ~ .f L~ (to) is a subfornmla of a sentence of L~(to). Every 
formula of L.,~ with only finitely many free variables belongs to LP(,~), as well as 
every prenex existential or universal sentence of L% o. By Theorem 1.3 we know 
that ~1--~,o ~ implies ~[ ~ ~(L~(to)). The following theorem gives a simple normal 
form for LP (to) and justifies our calling it the logic of the prenex formulas of L(to). 

Theorem 5.3. Every formula of L~(to) with just finitely many [tee variables is 
equivalent to a formula of Lo(to) with the same free variables of the form (Q,x,) ,<~¢ 
where ~ is quantifier-free. 

Proof. The proof is by induction. Let 0 be a formula of L~(co) with finitely many 
free variables and assume the conclusion for all subformulas of ~ with finitely many 
free variables. If ~ is open or the result of quantifying on a single variable the 
conclusion is clear. Thus, the only cases needing consideration are those in which ,~ 
is a conjunction or disjunction or obtained by game quantification. 

Case 1. ~ is A~d~k.  By in0uctive hypothesis each ~k is equivalent to some 
(Q,x,) .... Ck where ~k is open. By changing the names of bound xariables and 
adding superfluous quantifiers on variables not occurring in Ck, we may aTsume that 
they all begin with the same i,,~finite quantifier-string but no x, occurs in more than 
one Ck. Then tp is easily verified to be equivalem to 

which has the right form. 

Case 2. qJ is Vk<~bk. We cannot proceed as in Case 1 since the equivalence we 
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used there is not valid with A replaced by V (a counterexample could be given 
using the result of Theorem 5.12). Instead, we may assume that each ~ is 
equivalent to (O.x.)~ . . . . .  ~ where ~ is open and contains no x. for n < k. Let ~b' 
be the following formula (where z~, )) are variables not occurring in any ~ ) :  

We claim that t = t/: ~ ~ ' .  Briefly, a justification is as follows, assuming tO and ~0' 
have no free variables..°I is a model  of ~b' if and only if (i) A has only one element  
Olz~zz(z~ = zz) is true) and some ~0~ is satisfied by the infinite sequence consistin~ of 
just that element,  or (ii) there is some k and a sequence y0 . . . . .  yk., such that y, = yk 
for all i <~ k and yk~ yk+~ and (Q.x.)k . . . .  q~ is true. Clearly this is the same as 
saying that 2~ is a model  of V ~ ( Q . x . ) ~  . . . . .  ck, and so ~0' is equivalent to qs. Since 
qJ' has the desired form that concludes this case. 

Case 3. ¢ is (Q.x.).<.,O. This is only non-trivial if 0 has infinitely malay free 
variables and is not open, in which case 0 is either the conjunction or disjunction of 
formulas q~k, k E to, each having only finitely many free variables, Let  us say that q~k 
is q~k(xo . . . . .  xk, z )  for each k, and take first the case in which 0 is A k~q~.  By our 
inductive hypothesis we may assume that each ~k is equivalent to (Q ~y.,)k . . . .  a~ 
where otk is open, and each y., occt~rs in at most one ak. Let 4s' be 

1 (O.x~O.y.) .<.  A otk. 
k~,o 

We claim that I = qJ ~ ~ ' .  It is easy to see that ¢ logically implies ~ ' .  The impiieation 
in the other  direction could be established directly, but it is easier to ~ee that 
~ t k  t~0' cannot have a model.  By Proposition 1.4, ~ 0  is equivalent to 
(Q' .x . ) .~ .  V k ~ , ~ o k  where Q;, is V if Q.  is 3 and Q" ~s 3 if Q.  is V. One may 
readily verify that this contradicts ¢ ' .  The case in which 0 is a disjunction is t reated 
in the manner  of Case 2, and is left to ~he curious reader, -1 

For  the purposes of this sectiov,, we only need to know that the sentences of 
Lr(to) are precisely those of the form given i~ Theorem 5,3 and are closed under  
countable conjunction and disjunction (up to logical equivalence). One could 
therefore take the prenex characterisation of Theorem 5.3 as the definition of 
L r (,.,~), ::nd simply use Cases 1 and 2 of its proof  as a verification that they are closed 
under  e~untable conjunctions and disjunctions. 

Thc following important  fact is an immediate  consequence of Theorem 5.3. 

Corollary 5.4. I[ ~ is a sentence of LP(to) then Mod(o-)  is dosed downward. 

Our main interest in L~(to) stems from the following result. ,, 
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Theorem 5.5. I f  K is a closed class then K = Mod (or) for some sentence or o f  

I P(~). 

Pn:~| .  Let K be ClOcked and let $ be the class of countable models in K. If ~ 6 S 
and a = (a. : n 6 to) is any listirrg of all the elements of  A, perhaps with repetitions, 
we let 0~,. be 

A {a(xo . . . . .  x . ) :  a is atomic or negated atomic, ~I1~ a [ao  . . . . .  a.]}. 

Let ¢p(x) be the disjunction over all ~1[ E S and all listings a of A of the formulas 
0~,,. Then ~ is an open formula of L®~, since ther~ are only 2" different possible 
formulas 8.,.. Finally, let ct be CqXz.BXz.+0.<.¢, Then o- is a sentence of IY(to), 
and we will show that it axiomatises K. Given ~ ,  let 

X = { s E ~ % ( A ) : ~ ' E S  and A ' = s } .  

Then {a. : n E to} E X ilt 71 ~ ~[ao, a~ . . . .  ]. We claim that the following statements 
are equivalent: 

(0 9a E X¢, 
(ii) X E D ( A  ), 

(iii) (Va2. ~ A 3 a  . . . .  E A) .< . [{a .  : n ~. oJ} E X],  
(iv) OCa=. E A 3 a  . . . .  E A).<~(~I I = q~[a0, a . . . . .  ]), 

(i) and (ii) are equivalent since K is closed; (ii) and (iii) are equivalent by 
Proposition 2.1(c); (iii) and (iv) are equivalent by the characterisation of X given 
above; and (iv) is obviously equivalent to (v). Therefore K = M o d ( t r )  as 
claimed. -1 

This theorem has se veral immediate consequences connecting sentences of LP(a -) 
with classes which are closed downward. 

Corollary 5.6. I f i £  is closed downward then there is some sentence tr of  L~(to) such 
that K C Mod (or) and every countable model o f  tr belongs to K. 

ProoL By Proposition 5.1(c) the~e is a closed class Ko which has exactly the same 
countable models as K. If ~ ~ K then ?P E Ko a.e., hence 9.1 ~ Ke since Ko is closed. 
Therefor:~ K C_ Ko. Bv Theorem 5.5 ho = Mod(or) for some sentence or of L~(toL 
which is then the desired sentence. -I 

Corollary 5.7. (Separation). Let K1 and 1£2 be closed downward and assume that 
Ka fq Kz = O. Then there are sentences tri and or2 o f  L~(o)  such that If, ~ Mod(tr~) 
for i = ~, 2 and I = -a (or 1 ̂  tr2). 

Proof. Let or~ be relat,;d to K, as in the statement of 5,6, for i = 1, 2, If ~ ~ o'l ̂  or2 
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then ~,*P I ~ o'~ A o': a.e. by 5.4, in particular some countable model is a model of both 
cr~ and ~r2 and hence belongs to K~ f'l K2, contradicting the hypothesis. -I 

Combining 5.4, 5.1(d), and 5.7 we obtain the following interpolation theorem for 
L"(~o). 

Theorem 5.8. Let L~ and L~. be countable languages such ::'at L~ f3 L~ = L, Let O~ 

be a sentence o f  (L,)P(o~), for i = 1,2, and assume that ~ ~(0~ ^ 0~). Then there are 
sentences ¢r~ and at2 of  LP(w) such that O~ ~ o', .for i = 1,2, and ~ ~(cr~ ^ cr.). 

Interpolation holds also for formulas 0, with free variables, as is seen by the 
standard procedure of replacing the free variables w.;th new individual constants, 
interpolating, and then replacing the new constants in the interpolants by the 
original variables. Using this we obtain the following: 

Corollary 5.9. (Definability). Let tr be a sentence o f  (L t3 {R})P(co) such that every 

L-model can be expanded in at most one way to a model of  ~r. Then there is a formMa 
~ ( x )  o f  LP(oJ) such that 

¢r ~ Vx [R (x) <--> #~ (x)]. 

ProoL Let at' be the sentence of (LU{R'})P(oJ) ¢:~btained by replacing R 
everywher~ in cv by a new predicate symbol R ', Then the hypothesis on cr implies: 

1 ~ "-1([o" ^ R (x)] ^ [o"a  -'n R'(x)]) .  

Let ~0(x) of L"(~o) be one of the interpolating formulas given by 5.8. Then 

o ' ~ R ( x ) ~ ¢ ( x ) ,  o " ~ R ' ( x ) - - - , ~ ( x ) .  

Replacing R '  by R in the second expression we see that q~ is just as desired. -1 

tf in fact every L-model can be expanded in exactly one way to a model of ~r, then 
Mod (or) is closed, not just closed downward. 

The special case of Corollary 5.6 in which K is Mod (,~')[ L for some set ,Y' of 
finitary sentences is due to Svenonius [28]. A similar result for PC%,  classes is 
found in [32]. Malitz's counterexample [22] shows that we cannot require in 5.8 that 
the interpolants cr~ are in some L,x, even if we require the O~ to also be sentences of 
(L , ) , , , .  

Takeut i  [30] (see also [25], [29]) proved an interpolation theorem which is related 
to Theorem 5.8 and to its extension in Section 7. His theorem states that any valid 
implication in L ~  has an interpolant involving game quantifiers (of arbitrary 
lengths), which can be taken to occur only in a prefix. His theorem can be applied to 
sentences oI  L~(a~), since it the existentially quantified variables in a sentence of 
LP(a0 are replaced by new Skolem functions one obtains a universal sentence of 
L , ,  c One  thus can obtain 5.8 except that the in te~olants  ~rt and or2 might involve 
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quantifier prefixes of length greater than to. Thus his result does net appear to imply 
our Theorem 5.8. 

It. is also worth emphasising that 5.7 is stronger than its consequence 5.~. For 
example, consider sentences with partially-ordered quantifiers (introduced in [6]). 
If o, is a sentence consisting of a partially-ordered quantifier .m only countably 
many variables followed by an open formula, and if each variable in the quantifier 
has only finitely many predecessors, then Mad (at) is closed downward. Therefore 
we obtain 5.8 where 0~ and 02 are allowed to be such sentences but the interpolants 
are still in La(o). Interpolation with partially-ordered quantification is treated 
in [29]. 

The logic L p (to) has several other pleasant properties, in particular the following 
preservation results. 

Definit m.  Let /3 be any non-zero cardinal. ~.I is the [3-union of the set S of 
submodels of 9.l if every B C A of cardinality less than 13 ~s contained in the 
universe of some model in S. 

Definition. C4"::l)~(t,~) is the set of all sentences of LP(~o) of the form 
Vx0"'Vx,-t(::lyk)~<,a, with a open. 

Theorem 5.10. (a) K is closed downward and closed under (n + O-unions iff 
K = Mad(or) for some cr E ~¢"B~'(to). 

(b) K is closed do~vnward and closed under ~o-unions iff K = Mod(A,~.cr , )  
where o', ~ 0f"=l)"(to) .for each n. 

Proof. (a) It is easily verified that the class of models of any sentence of (V"-~)P (to) 
is closed under (n + O-unions. For the other direction, let K be closed downward, 
and let q~(x) be the formula defined during the proof of Theorem 5,5. Let tr be 
Vxo" "Vx~-~(Bxk).~k<~¢. Then ~r ~ 0/"3)P(to) and ~[1= ¢r if and only if ~/ is an 
(n + 1)-union of countable models in K. So K = Mad (~r) if K is closed under 
(n + 1)-unions. 

(b) Let K be closed downward and for each n ~ ¢o let or, be the sentence defined 
in the pro,:>f of (a), Then ~1~ L ~ , ~ r .  if and only if ~I is, for each n, the 
(n + 1)-union of countable models in K, teat is, if and only if 21 is an to-union of 
countable models in K. So K =Mod  (A.  ~. or.) if K is closed under to.unions. -1 

A sentence of L~(~o) of the form (Vx.),<~,a with a open is called universal. 
Notice that any conjunction (not just countable ones) of universal Ln(to) sentences 
is equivalent to a universal LP(to) sentence. Since a universal LP(a0 sentence is 
equivalent to the negation of a sentence of (V°B)P(¢o), Theorem 5.10 implies the 
following, which is essentially a theorem of Tarski [31]. 
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Corollary 5.11, l (  i~ closed and dosed under submodets iff K = Mod (~)  for some 
universal sentence or of I.?(~o). 

There are a number  of obvious questions about closed classes and LP(to) ~ for 
example, does the converse of Theorem 5.5 hold? We now answer this, and several 
other questions, negatively using the example given in the following theorem. 

Theorem 5.12. The class of all countable well~orders is the union of two disjoint 
closed classes. 

Proof. By 2A(d) D(to~) is not an ultrafilter, so there is some X C ~%(~o0 such tha,~ 
X g  D(to~) and @ % ( ~ ) - X ~  D(to~). Let St be 

{ ( A , < ) : ( A , < ) - - - - ( a , < )  f o r s o m e  a ~ o ~ f ~ X } ,  

and let S2 be 

{ ( A , < ) : ( A , < ) ~ ( a , < )  f o r s o m e  a E o ~ l - X } .  

Then every countable well-order belongs to exactly one of St and Sz. We will show 
that St and $~ are both closed. If $1 is not closed, then there is some ,~I such that 
~,I '~ $1 a.e. and t A]  = ~ot. Let Y be a closed unbounded chain contained in 
{s : ~I ~ ~ Sl}, and let X '  be 

{ a ~ t 0 1 : ~ i ' ~ ( a , < )  for some s ~ Y } .  

Then X'C_ X. But X '  contains arbitrarily large countable ordinals and is closed 
under unions of countable chains, since ~[ is uncountable and Y is a closed 
unbounded chain. Therefore X '  is actually a closed unbounded subset of 9.,(to~), 
hence X '  ~ E'(tot) and therefore X ~ D(to~), contradicting the choice of X. Hence 
St is closed. We similarly know that $2 is closed, since o ~ - X =  
,o, n ( ~ % ( , ~ , ) -  X).  -I 

Corollary $.13. (a) There is a closed class whose complemem is not closed 
downward. 
(b) There are two closed classes whose union is not closed. 
(c) There is a sentence o/LP(to) whose negation is not equivalent to a sentence of 
L~(~o). 
(d) There are sentences or of  L~(~o) such that Mod (or) is not closed; such acr can be 
taken to be truc of  all countable models, or to be preserved under submodels (and 
therefore not equivalent to any universal LP(to) sentence). 

Proof, (a) Sl is closed but - S~ is not closed downward since (~o~, < ) E - St but 
not almost all of its countable submodels belong to - S t .  

(b) $i and 82 are closed but St tA $z is. not. 
Let oq and or, be the sentences of L~(~o) axiomatising $~ and $~. 
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(c) -ao'~ is not equivalent to a ~entence of Lr(oJ) since by (a) Mod("acr  0 is not 
closed downward. 

(d) cr~ v 6r2 is a sentence of L~(m), but Mod (o,~ v ,r..) is the class of all countable 
well-orders, which is closed under submodels but not closed. Let or, be the sentence 
of L~(¢o) saying that < is not a well-order. Then o-~ v cr: v ~r, is trm: of every 
countable model but does not define a closed class since no uncountable well-order 
is a model of it. -1 

These counterexamples ~"aise several questions. The first two are suggested by the 
fact that not every LP(oJ) sentence axiomatises a closed class. 

(1) Is there some natural syntactical description of a logic whose sentences 
axiomatise precisely the closed classes? 

(2) If 9.I-m_ ~3(L~(m)) then ~ and ~ belong to the same closed classes. Does the 
converse hold? If so, the sentences of L~(m) which do not define closed classes 
would be "harmless" as far as equivalence is concerned. 

/ more serious objection to L~(~o) is that it is not closed under negations, Is this 
in any way essential in findi~ag "small" extensions of L . ~  satisfying interpolation? 

(3) Is there a natural sublogic of L~(co), properly extending L%,o, which is closed 
undei" negation and satisfies interpolation? 

A natural logic to look at ~s the maximal sublogic of L ~ (o~) closed under negation. 

Definition. L~(o~) is the class of all formulas of  L~(~o) whose negations are 
equivalent to formulas of LP(co). 

Then L 8 (co) is closed under negation, countable conjunction and disjunc~:ion, and 
finite quantificatio,1 of formulas with only finitely many free variables. The 
sentences of L~(¢o) are precisely those which axiomatise classes which ,~:e closed 
and co-closed. 

L6(~o) satisfies a weaker version of interpolation, called the A-interpolation or 
Suslin-Kleene property - -  that is, if K = Mod (o~) r L and - K = Mod (~:~',.) ~ L for 
some sentences crl~ or, of the logic in a language containing L, thea K = Mod (00) 
for some ~o of L~(w) (for A-interpolation, see [3], [19]). The reaso~ this property 
holds i~ that the hypotheses imply that both K and - K  are closed downwar6, 
hence both are closed, and so K is La(~o) axiomatisable. 

However, I.~(~o) does not s: ~isfy full interpolation. The reason for this is that 
every closed class can be expressed as Mod (o',)f L for a sentence or, of some 
(L')~(w) ~ in fact, cr~ can he taken to be universal, So if this logic satisfied 
interpolation we would know that wi3enever Kt and K2 are disjoint elose~ classes 
there would be a sentence cro of La(co) such that K~CMod(:7o) and 
K2 N Mod (cro) = 0. If K2 ;~ the maximal closed class disjoint from K~ this would 
imply that K~ = Mod (o'o), which is impossible if K~ is taken not to be c~>closed. 
(Note that this shows that no logic as in (3) could contain all universal LP(¢o) 
sentences,.) 

The interested reader should convince himself ~hat a logic equivalent to L a (~o) is 
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obtained by taking all the formulas of J ( ( o )  whose negatio~ts are equivalent to 
their duals - -  that is, a formula of l.?(to) is in L~(to) iff ic can be written as 
(Q~x,),<,~a where c~ is open and 1~ -a(Q~xo),<,c~ ~(Q'~x, , )  . . . .  ~c~, where Q" is V 
if Q, is 3 and Q"  is 3 if Q~ is '¢. (Hint: the sentence written down in the proof of 
Theorem 5.5 has this property if K is closed and co-closed.) 

A syntactically very natural sublogic of L~(to) is the class L,~,,(to) built using only 
countable conjunctions and disjunctions, that is the class of LP(to) fc "mulas which 
can be written as (Q~x,) ..... tr where ~ is an open formula of L~,,,,. Sentences in this 
class correspond to Borel games, and Martin's recent proof of Borel determinacy 
[23] shows this logic is closed under negations. 

(4) Does L~,((o) satisfy interpolation, or A-interpolation? 
Finally, let us note that extensions of LP(to) within L(to) which are closed under 

negations do no: even satisfy A-im.~rpolation. Let tr be the sentence obtained 
above which is true of precisely the countable well-orders. Let at* be "-1 at ^ 0, 
where 0 ~ays " <  is a well-order of the universe." Then at* is the negation of a 
sentence ~)f L~ (to) and at* is true of precisely the uncountable well-orders. Let L0 be 
the empty language. Then K = M o d ( t r ) t l ~  contains exactly the countable L0- 
models, and -- K = Mod ((r*)I" Lo. So any logic containing at and ~* and satisfying 
A-interpolation must contain an L-sentence axiomatising K and so not preserved 
by L , -e lementa ry  equivalence. By Keisler's Theorem 1.3 such a sentence cannot 
belong to L(to). 

If K,, is closed downward then, by 5.1(c), there is a unique closed class K 
containing Ko and having the same countable models as Ko. We call this K the 
closed class generated by Ko. The next theorem shows how the closed class 
generated by Ko is axiomatised by a class of L=, sentences. Any class closed under 
L~. elementary equivalence is axiomatisable by a class of L=~ sentences, so the 
point of the theorem is exactly how these sentences are determined by K0. 

Definition. Let Ko be closed downward and let at be a sentence of L=~. We say at is 
approximated in K, if, for almost all countable s, at* is true on some model in Ko. 

Theorem 5.14. Let Ko be closed dowr.ward and let K be the closed class generated 
by Ko. 

(a) .~l E K iff every L~,-sentence true on ?l is approximated in Ko. 
(b) K = Mod (,v) where $ is 

{o" of  L,,~ : ~ at is not approxima:ed in Ko}. 

One could regard 5.14(a) as a very weak sort of compactness for closed classes. 
The main point in the proof of 5.i4 is the following lemma, which could also be 
used to give an alternate proof of the implication from left to right in 3.5(a). 

Lemma 5.15. For any ~ there is some sentence at of L~, such that for almost all 
countable s we have for every 
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~ o r ~  /ff ~ - ~ . , ~ t  ~. 

Proof. We will take or to be a s tandard Scott sentence for ?[. For  any a0, . . . .  an 
A let q~,,o...,.(xo . . . . .  x , )  be  a formula of L~, such that for any a~ . . . . .  a ' , , ~ A ,  

~ q ~ , [ a ' ]  iff (OI, a)=-~.,(~t,a') .  

For  each n, let {a~(xo . . . . .  x , , ) :k  Uto} list all the atomic and negated atomic 
formulas of L in the variables xo . . . . .  x~, Given any a from A, let h be 

{k ~ t o  : ~1~ ak[a]}. 

Let or be the conjunction of the follow~ng five sentences: 

~Xo V q~,, A :3xoq~, 
a E A  a ~ A  

. .  [ 3 x  7 A h Vxo ".fiX,, ¢,---~ A ,.,+:t~ . . . . .  , 
n ~o a ~ A  n+t L On+l~,A .~ 

[ , A A V X o ' ' " / x , ,  ~o.-~Vx,,+~ V ~ . . . .  , 
n l ~  I i ~ A  ~+1 an+lEA 

^ ^ o,]. 
nE,.a a~.A ~+l ~ l .m  

Then, as is well-known, ~1 = or iff ~---=, ~t. In particular,  2II= or and hence 2I" t= or~ 
a.e. Now, if to C_ s then tr '  is also the conjunction of five sentences which look like 
the preceding except that q~o is replaced everywhere by ~,~, " a  E A "  is replaced in 
conjunctions and disjunctions by " a  E s t"l A ", and " a  E A " ~ ' '  is replaced by 
"a  ~ s f) A "÷~". But for almost all countable s, ~ f3 A is A ' ,  the universe of ?U, and 
s t3 A "+' is (s iq A )  "+~. Therefore,  for almost all countable s, or" is a Scott sentence 
of ~ ,  and hence 

With this lemma we can easily prove the theorem. 

Proot of Theorem 5.14. Assume the hypotheses on Ko and K. 
(a) If 2~ ~ K and 91 ~ 6- ther~ 21' I= or" a,e. and 91" ~. Ko a.e., so or is approximated  

in Ko. Conversely, ~ssume that every L=, sentence true on ~ is apprc, x imated in K,.  
Let or be the sentence given by Lemma 5.15. Then for almost all countable s or' has 
a model  in Ko; since Ko is closed downward these models may be taken to be 
countable, and hence isomorphic to ~.t" by 1.2(a). Therefore  ~" ~ Ko a.e., and hence 
~I~K. 

(b) If ~ ~ K then every sentence true on 2t is approximated  in Ko, hence ~1 is a 
model of every sentence whose negation is not approximated  in Ko, and thus .~ ~ Z. 
On the other hand, if ?I ~ K then by (a) there is a sentence or of L~,, such that .~t I~ tr 
but or ~s not approximated in Ko. Then -'~ or ~ 2, and therefore ~ is not  a model  
of z~. -I 
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We introduce a third sort of Lfwenheim-Skolem property, intermediate be- 
tween being closed downward and being closed, 

Definition. K is locally closed iff K is closed under isomorphism and whenever 
~I ~ K there is a se~ S of countable submodels of ~l' such that ~I" ~ S a.e. and ~ E K 
whenever ~ C_ ~1 and ~ '  ~ S a.e, 

Notice that the definition implies that S C K\ since if ~ E S then ~ = ~ a.e. 
Therefore locally closed classes are closed downward. Further, if K is locally closed 
and ~l ~ K then K also contains "man~" submodels of 9l of every infinite 
cardinality less than that of ~l. If or is a sentence of L p (to) then Mod (or) :s locally 
closed, and Propositions 5A(d)(e)(f) remain true for locally closed classes. We will 
refer to locally closed classes again ir the next section, and for now give only the 
following interesting characterisation. 

Proposition 5.16. K is locally closed iff K = K '[  L where L' is some countable 
language extending L and K '  is some class of  L'-models closed under submodels and 
isomorphism. 

Proof. The implication from right to left is easily verified. For the other direction, 
assume K is locally closed and let L' be the extension of L which adds countably 
many n-place functions for each n E to. If Pt E K and if S is a set of couptable 
submodels of ~,~I as in the definition of locally closed, then we can interpret the 
functions in L ' - L  so that ~lo E S whenever Ao is closed under all ~hose functions 
and [Aol -<-< to (cf. 2.2), and so ~ E K whenever ~ C 9I and B is closed under the 
functions. That is, we can expand ~l to an U-model  0d' such that whenever ~ '  C 91' 
then ~ '  [ L ~ K. Thus, if we let K'  be the closure under submodels of the class of all 
such ,W, then K is as desired. -t 

If Kis  locally closed and closed under ultraproducts is K actually PC,, (in finitary 
logic)? 

We could also, following Barwise [2], speak of relations between models as being 
closed downward, or closed, as in the following definition: 

Definition. The n-ary relation ~ between models is closed downward if: 
(i) ~(~It . . . . .  Pl.) ,rod ?L ~ ~1~ for i = 1 . . . . .  n imply ~(~I~,.: . .~I ') ,  and 

(ii) ~(? l t  . . . . .  s.~l.) implies ~(2I~ . . . . .  ~U,) a.e. 

For example, the relation Pt~<~,o 9[2 is closed downward, and in fact closed (see 
the next section), We could handle relations as special sorts of classes of models by 
putting an n-tuple of L-models all into one model for a language L'  which contains 
n distinct copies of each non-logical symbol of L and n new unary predicates to be 
interpreted as the universes of the old models. We will not carry this further since 
we will not require a theory of such relations. 
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To close this section we wish to consider what happens to our results if the filter 
D(C) is changed, that is, if the notion of "almost all" is altered, 

First of all, let D '  be some filter on ~%(C)  such that D ( C ) ~  D "~. Then it is easy 
to find a model ~,I with A C C such that 

{s ~ ~%(C) :  9.I" ~ ,~I}E D' ,  

and so Theorem 3.1 fails badly for such a filter. 
If D '  is some filter on ~ , ( C )  which properly contains D(C), such as an 

ultrafilter, then the results of Section 3 remain true, since they follow from the 
theorems as given for D(C). But some results of Section 5 then fail. Let closed* and 
closed downward* be the new notions defined by a weaker notion of almos!: all*. 
Then clearly closed downward implies closed downward*. Let K be dosed* and 
closed downward. Then K is in fact closed, since if ~l ~ ~ K a . e . i . ~ l  ~21 ~ ~ K  a.e.* 
I~ ace ~l ~_ K. Therefore if K is closed* but not closed then /i is not closed 
downward ~md in partict:lar is not ariomatised by a sentence o~ Lr(oJ). Hence 
Theorem 5.5 fails for any weaker concept almost all*. This s~ ems a serious 
drawback to any attempt to alter our definition of almost all. 

6. Some L6wenheim-Skolem applications 

This section is concerned with some applications of the concepts of the previous 
section. They depend mainly on the following two remarks. 

(1) Let Ko be closed downward. If K is any class closed downward and 
K f3 Ko ~ 0, then some countable model in K belongs to Ko. 

(2) Let Ko be closed, if K is any class closed downward and if every countable 
model i n K  belongs to Ko, then K _C Ko. 

What we do is show that certain interesting classes Ko are closed or closed 
downward (Theorem 6.1). Remarks (1), and (2) then imply the results we are zfter 
(Theorems 6.3 and 6.4). The statements of some of our final results are improved by 
taking into consideration the interesting model-theoretic characterisations of the 
countable models in the classes we consider (Proposition 6.2). The results in 6.3 and 
6.4 were announced in [16] 

Those consequences using remark (1) are "t~ansfer" results, that is, they state 
that if K contains some modet with a certain property then it also eonr.ains a model 
of a certain cardinality with the same property. The applications u~ing remark (2) 
are upward L6wenheim-Skolem results, but we could also call zhem ~global 
definability" results (a~ ~n [18]), since they imply that every model in  K has a 
semantic property if and only if every model in K satisfies a syntactical definability 
condition. The corresponding local theorems are the relevant results of 6.2, and the 
L6wenheim-Skolem argument is the "globalising" procedure. 

The classes we will coqsider first are the following: 
K 1= {~l: every element of A is L~o,-definable in 9t}. 
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K" = {~I : there is some finite S C A such that every element of A is L~o,-definable 
in ?I from the elements of S}. 

K ~= {(?i, P ) : P  is definable in ~.~[ by a fornmla of L,o}. 
K* = {(Pl, P)  : there is some finite S C_ A such that P is definable in 9[ from the 

elements of S by a formula of L=~}. 
K s = {?I:PI has a proper  I ...... -elementary submodel}. 
K ~ = {~! : ~1[ has a proper  L~,,,-elementary submode! ~ such that U,~t = U~}. 

In K ~ and K 4 it is understood that (~.)[, P)  is a model for a language L t2 {P} 
formed by adding a new predicate symbol to L, In K ~ U is a predicate of L, and U~ 
and Ue its interpretations in ~I and ~ .  

Theorem 6.1. (a) K' ,  K 2. K ~ and K 4 are closed a,~d co-closed. 
Co) K s and K ~ are closed downw ~rd. 

We could give direct proofs of 6.1 using the results in S:ction 3. We prefer, 
however, to proceed by writing down sentences of L~(to) which axiomatise K '  
~hrough K 4 and by showing that K s and K 6 are reducts of classes which are so 
axiomatise& The details are left until after the statements of our end results. 

The following proposition is a list of known results (see [14] concerning most of 
them). We first recall the following notation: 

M(~I, e )  = {O : (~,  P)  ~: (~l, O)}. 

Proposition 6,2. If  g is countable then: 
(a) ~2~ E K t iff ~I has no non-trivial automorphism, 
~o) ~.1 ~ K 2 iff ~[ has <~ to (or, < 2 ̀ °) automorphisms, 
(c) ( ~ I , P ) ~  r "  iff I M ( ° . I , e ) l =  1, 
(d) (gI, P ) e K  if] Im(gl,  P ) l ~ t o  (or, <2" ) ,  
(e) ~ E K s if]; ~ has an uncountable L~,o-elementary extemion, 
(f) ~ ~ K s iff ~l has an uncountable L . -e l emen tary  extension ~ such that 

The followiwg theorem contains the " transfer"  consequences of the preceding. 
They are all immediate from 6.1, 6.2 and remark (1). 

Theorem 6.3. Let K be closed downward. 
(a) I f  K Iq g ~  t 0 then some countable model in K belongs to K', for i = 1 . . . . .  4. 
(b) If  K f'l K ~ ¢ O  then some countable model in K has an uncountable L ~ -  

elementary extension. 
(c) If  K f3 K ~ ~ 0 then there is some countable ~.I in K which has an uncountable 
L~,o-elementary extension with U~ =: U~. 

The following are the "upward"  or "global definability" results 

Theorem 6.4. Let K be closed downward. Then O) is equivalent to (ii) in each of 
(a),  (b), (c), and (d). 
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(a) (i) Ever), countable model in K has no paper  automorptalsms. 

(ii) K _C K ' .  
(b) (i) Every countable model in K has less than 2 ~ .~, ~,norp~isms. 

(ii) K C K ' .  
(c) (i) For every countable (9[,F) in K, IM(~.I,P)[ = 1. 

(ii) K C K ~. 
(d) (i) For every countable (~I,P) in K. IM(~[,P)I<2*'. 

(ii) K C K ' .  

Also note the negative consequences of Theorem 6.4, that is, that -a (ii) ~mplies 
(i) in (a)-(d). For (b) this is an improvement  of a result first proved by Hickin [7]; 

see below. 
The results of 6.3 and 6.4 are interesting and largely ~ew even for the special case 

in which K is defined by a sentence of L~,~,. Theorem 6.4 could, for such K, also be 
derived from the Motohashi-style global definability results (Proposition D and 
Theorems 2 and 3 in Makkai  [18]), as has also been aoticed by Makkai.  KeSsler [12] 
gives a two-cardinal theorems: for L%~ which neither implies nor is implied by 6.?.',c) 
for K definable in L ,~ .  

The sentences we use in proving 6.1 are written L, sing the formulas E ,  and E~ 
which we now define. 

Definition. (a) E,(uo . . . . .  u,, vo,...~ v~) is the following: 

0¢xk3y~)k<,~ A [a(u, xo, y~,x:,y . . . . .  ),~,ct(v, yo, x ,  y,.,x . . . . .  )] 
atomicc¢ 

(b) If P is a unary predicate not in L then E~(uo . . . . .  u,,vo ...... v,) is the 
following: 

^ [a (u, x,,, y,,  x~, y . . . . . .  x.~,~, y . . . .  ) , - ,  a (v, y0, x . . . . . .  y.~,~, x . . . . .  )]) ] 
_1 

where Im is the set of all atomic formulas a (u ,  x0, y~ . . . . .  x:,~, y:~+~). 
We drop the subscript n when lhe number  of free variables is clear or  irrelevant. 

E is a formula of Le(~),  and -~ E is (equivalent to) a formula of LP(t0) by Theorem 
1.4. Similarly, E P and -~E e both belong to (L U {P}~'(to). What these formulas say 
is contained in the followi"g lemma. 

Lemma 6.5. (a) ~[~E[a ,b]  iff (~ ,a ) -=~ , (~ l ,b ) .  
(b) I f  ao . . . . .  a . ~ P  then ( ~ L P ) ~ E P [ a , b ]  iff ,~[P has universe P and 
(~I [ P, a )~=~, (°d, b ). 

Proof. We just prove (a) and leave (b) to the reader. Assume first that .~I I~ E[a, b] 
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and let gk (x0 . . . . .  xk) be winning functions for E picking the yk's in ~.  Then for 
every atomic formula c~, 

?1 I~ o~ [a, xo, g~(xo, x O, x . . . . .  ] ~ e~ [ b, g,~(xo), x,,  g~(xo, x~, x~) . . . .  ] 

for all x0, x~ . . . .  in A, By induction we easily show that this equivalence holds for 
ev~ D' formula ¢7 of L~.,  with only finitely many free variables, and so 
(~ l ,  a ) ~ , . .  (~L b), 

Next, assume that (~,)[,a)~,, (~l~b). Using Theorem 1.1 we knox~ there are 
functions gk (x0 . . . . .  xk) such that for every n ~ to and any xo,. . . ,  x. ~_ A 

(~ l ,  a, Xo, g,(xo, x,) . . . .  ) = - ~ .  (~t, b, go(xo), x . . . . .  ) .  

Using these functions to pick the y~'s clearly wins the game of E, hence 
~l t~ E[a ,  b I. -I 

Proof of Theorem 6.1. (a) Let or~ be 

VuVL, [u  = v v -~E(u ,  v)].  

Then K '  = Mod  (or~) and both er~ and -mor~ are sentences of LP(to), hence both K '  
and its complement are closed downward and therefore closed. 

Let or., be 

V =lUo.  • .  3u.VzoVz,[zo = z, v ~ 3 ( t ,  . . . . . .  u., Zo, u . . . . . .  u. ,  z , ] .  

Then K 2 = Mod(orz) a~d or: and --'1 o-, are sentences of L"(to), hence K 2 is closed 
and co-closed. 

We similarly axiomatise K ~ and K4; details are left to the reader. 
(b) Let P be a new uz~ary predicate symbol, and let ors be the following sentence 

of (L U {P})"(to): 

A V U o .  • • u , [ e ( U o ) ^  • • • ^ P ( u . ) ~  E"(u, u ) ]  ^ 3x - , P ( x ) .  

Then (~l,P)k = or~ if and only if P is the universe of a proper L~-elementary  
submodel of ,~l. Hence K s = Mod (ors) r L is closed downward, in fact locally closed. 

Let or, be 

ors ^ VZ,  " " Zk [ U ( z  . . . . . .  z~)--* P(zO A ' ' '  A P(z~ )]. 

' I~en K ~= Mod(or~)[L is also closed downward. -! 

Another approach to the proof of theorem 6.1 uses iust the approximation 
results of Section 3. For example, let el belong to K~. Then there are formulas 
~p,(x) of L,~, for a ~ A .  such that 

,°lt=Vx V ( ~ , , ( x ) ^ - m ~ y [ y # x  ^~,,(y)]). 

Therefore, by Theorem 3,1, 
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~ ' l ~ V x  V ( q ~ , ( x ) ^ - n 3 y [ y ~ ! x ^ c p ~ ( y ) l ) a . e .  
~ E s n A  

This means that every element  of ~" is definable by a formula of L%. a , e .  at~d 
hence 9/" E K ~ a.e. Therefore K ~ is ~losed downward.  Let ~I not belong to K ~. 
Then there are a, b in A such that a ~ b  but ( ~ [ . a ) ~ ( ~ J , b ) .  Therefore  by 

Theorem 3.5, 

(W, a)=-(,°[ ~, b)  a.e., 

in part icular ~["~ K ~ a.eo Therefore  - K ~ is also closed downward. Similar proofs 

couff' be given of the other  parts of 6.1. 
We could, of course, immediately define many more classes which could easily be 

shown to be closed downward. It seems to be harder,  however, to determine 
whether a class is closed. For  example,  it, K 5 c~osed? If true this would be 
interesting since it would imply, for example,  that if tr is a sentence of LP(w) and 
ev,zry countable model of tr is L~ , -e lementar i l /  equivalent to an uncountable 
model,  then every model  of tr has a proper  L=,~-ele v, entary submodel.  If L contains 
a binary predicate < then we can easily show tha. 

{.~1 : some proper  < -initial segment of ~[ is an L . , - e l emen ta ry  submodel of ~1} 

is closed. But if the L.,~-elementary submodels are not definable in some way, we 
do not know the answer. 

We can ask the same question for K 6 and 

K ~ = {.~I : ~lf---~, ~[o for some proper  submodel  9[0 of ~}, 

which is easily seen to be closed downward. The class 

K 7. = {~[ : ~[~]~. ~[o for some proper  submodel Plo of ~I} 

is easily shown to be closed and contain precisely the same countable models as K ~. 
Therefore K ~ is closed if and only if it equals K ~*. 

We ~ow wish to look at the uncountable models in our classes. Using the concept 
of a "locally closed" class introduced at the end of Section 5, we have the following 
immediate consequence of TI~ o r e m  6,1. 

Corollary 6.6. Let K be Iocahy closed, Then, for each i from 1 to 7, if K f3 K ~ 
contains a model of cardinality ~ then K f3 K ~ cot~tains models of  all infinite 
cardinalities less than x. The same is trite of  K f3 ( - K ' )  for 1 <~ i <~ 4. 

Consider the following ,:~ass: 

K s = {Pl : for every finite S C A, ~.3I has some non-trivial automorphism 
fixing the elements of S}. 

Then K s C - K ~" and they contain the same countable models; hence K s is closed 
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downward, a fact first proved by Hickin [7], K ~ is locally closed, in fact PCa, so we 
can add i -= 8 to 6.6. 

Of probably more interest are the uncountable naodels in the classes correspond- 
ing to - K 2 and K 8 but in which "S finite" is replaced by "S  of cardinality less than 
IA I". Corresponding to K 8 we have 

K* = {~l : for every S ~ A with ]SI < i A i there is some non-trivial 
automorphism of ~'[ fixing each element of $}, 

and correspondirg to - K :  there is 

K 1° = {P~ : there is no S C A with tS ! < I A I such that every element 
of N is L~-definable from elements of S}. 

There are at leasl two significant ways of understanding the phrase "eve~y eleCnent 
of Pl is L~,.-definable from elements of S",  

(a) For every b~, bz E A if b~ ~ b~ then (~l, b~, a ) ~ s ~  (~t, bz, a).es. 
(b) For every b~,b, .UA if b ~  b.~ then there are a~ . . . . .  a. ~ S  such that 

(~, b~, a)- . , , ,  (~1~. :%,a ), 
Everything we s~:,y about K TM will be true for both senses (a) and (b), 

K ~ C K ~ ° ~  - ~ and all three contain precisely the same countable models, 
Hence K ~ and K '° are closed downward, but not clesed, Although they are not 
locally closed, the following is true, 

Theorem 6.7. II K is locally closed and K f3 K 9 (or K 0 I(~°) contains a model of 
cardinality K, then this intersection contains models of each regular cardinality less 
than or equal to the co]inality of  x, 

Proal. The proof is essentially the same for K" and both senses of K ~°. We phrase 
it in terms of K 9. Let < be a new binary predicate symbol, and let K"  be the class 
of all models (~I, < )  where < well-orders A and for every a ~ A there is some 
non-trivial automorphism of .0[ fixing every element less than a. Then K "  is locally 
closed and K ~ C_/17" ~ L. 

Let ~,~ ~ K f3 K 9 have cardinality K and let < well-order A in type ~¢. Then 
(~t, < ) E  K ~. By Theorem 5.16 there are finitary functions f. for n ~ to such that 
~Io E K and (~lo, < ) ~ K "  ior every $to C_ ~I closed under every .f., Let A be regular, 
A <~ ¢f(~). Take ,~)/o _C .~ of cardinality A, closed under a l l / . ' s .  We might not have 
~.~I0 U K 9 since some S C Ao with t S t < A might be < -cofinal in Ao. We define a 
chain {~.1~}~.~ of submodels of .~I, each of cardinality ,~t and closed under a~l f . ' s  as 
follows..~I0 is the given submodet, and P~. = U~<.$~ if ~ <~ A is a limit ordinal. 
91e+t is some extension of 91~ of cardinality A, contained in 91 and closed under all 
f . 's ,  such that A~+, contains some element which is greater than every element of 
A~ unless A~ is cofinal in A, in which case we let ~)t~+~ = ~ ,  Then $I, ~ K, 
(~I~, < ) ~ K ~, and every cofinal subset of A~ has cardinality ,~, hence ~ ~ K 9 as 

desired. -t 
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The complement of/,po is not clo~ed downward, but we do not know if it has the 
following property: if K is closed and K A ( - K ~°) contains an uncountable model 
then this intersection contains a model of cardinality o~. If true, we would have the 
following interesting transfer property: if a closed class contains a mode~ of 
cardinality K > ~o every element of which is definable from some subset of 
cardinality < K, then the class contains an uncountable model ever), element of 
which is definable from some cotmtable subset. This would be worth establisb:ing 
for either sense of definability, and seems open even if the ,.'losed class is defined by 
a set of sentences of finitary logic. 

An interesting question on uncountable models conce :as what could be called 
the "Hanf  number"  for particular closed properties. Let Ko be some closed class. 
Then for any sentence o" of L~, ~,, Mod (or) Iq Ko either co,drains models of all infinite 
cardinalities or there is some x such that Mod (or) f3 Ko contains infinite models of 
precis .~, the infinite cardinat,ities less than x. The Ha~lf n u m ~ r  (w.r.t. L , , )  for Ko 
is the least K such that, for every sentence cr of L%~, if Mod (~r) f'l Ko contains a 
model of cardinality K then ~t contains models of all im~ni~e cardinalities. What is 
the Hanf number for certain ~r, ~eresting K0? In general, of course, this number  may 
be eno:rmous, simply because the Hanf number of the Io~ic of closed classes is 
enormous. But }t seems that |or  some Ko this number could be small. In particular 
we raise this question for the class/~-t of all models in which every element is L ~  
definable. The Hanf number w.r.t, finitary theories (where sentences of L,~. are 
replaced by finitary theories) Js equally as interesting. Determining these numbers 
of K ~ takes an additional interest due to Shelah's destruction of Ehrenfeucht 's  rigid 
spectrum problem. 

It seems to us that the methods of ~his section should prove useful in establishing 
further transfer results. 

The following easy lemma gives tw¢, more useful properties of classes ,:losed 
downward. 

Lemma 6.8. Let P be a unary predi ate "tot i~ L. 
(a) I f  K '  is a class o f  L U {P}-mos;  s which is closed downward, then 

K = {~[ ~ P : (¢2[, P)  E K'} 

is closed downward. 

(b) I f  K is a class o f  L-models which is closed downward, then 

is closed downward. 

Part (a) implies, for example, that the class of relativised reducts of a class 
axiomztised by a sentence of LP(o~) is closed downward. Since it can be shown that 
every ,Y~-definable class of models closed under isomorphism is such a class of 
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relativised r,~ducts, this therefore implie~ that Z~ classes of models are closed 
downward, a version of Barwise's :esult, Theorem 2.6. 

As an example of an application of part (b) of 6.8 we prove a theorem about 
groups. We first recall some group-theoretic terminology. 

Definition. (a) Let '~,, Pit and *)I~. be groups. ~ is an extension of ~lz by '~[2 if Pit _C ~3 
and there is a homomorphism of ~ onto ~I: whose kernel is A~. 

(b) If Kt and K: are classes of groups, then K~K~. is the class of all extensions of 
groups in K1 by groups in K:. 

Proposition 6.9. I f  K~ and K2 are clos~ ~ downward then so is K~K2. 

Proot Expand the language L of group ff, eory by adding new unary prddicates PI 
and P2, a new unary function symbol H and a new binary function symbol F. Let 
K* be the class of all models (~,  Pt, P2, E H)  where ~ is a group, ~ r P 1 E  K1, 
(P.-,FrP2) is a group belonging to K,. and H is a homomorphism of ~ onto 
(P , ,FrP, )  whose kernel is Pt. Then, using 6.8(b), we see that ~ *  is closed 
downward. Therefore K * r L  is closed downward, and this class is precisely 
K,K.,. -j 

It is convenient ~o have the following definition for the subsequent discussion. 

Definition. A class Kclosed under isomorphism is closed upward if, for any model 
~, ~ 5 K whenever ,~I' E K a.e. 

K is closed iff it is closed downward and closed upward. K is closed upward if 
(but not only if, by 5.13(a)) its complement is closed downward. K is closed upward 
iff it includes some closed class with exactly the same countable models. 

Determining whether classes of groups are closed upward is related to group- 
theoretical questions concerning local-type theorems. 

Recall that a class of groups is local if a g~oup belongs to the class whenever all 
its finitely generated:~subgroups do. Various people (see [7], [8] for an account) have 
considered the following countable generalisation: a class is countably local, or of 
countable character, if a groul: belongs to the clasps whenever all its countable 
subgroups do. A c!ass which is closed upward is countably local; the converse is also 
true if the class is closed under subgroups. 

Quite recently Hickin and Phillips [8] have cons,~dered classes of groups closed 
upward, and show that various classes of groups are closed upward or of countable 
character. For example, let A be the class of abelian groups and let S be the class of 
simple groups. T~ey establish [8, Theorem 5] that AS is closed upward. Since A 
and S are both closed (S is axiomatisable by a sentence of L , , ,  by Kopperman and 
Mathias [13]) we obtain the following from 6.9. 

Corollary 6.10. AS is closed. 
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Notice that by Proposition 5.1(a!, A S  is therefore closed under L , -e lementa ry  
equivate, lce~ 

We refer the reader to [7], [8] for ~th 'z results and techniques concerning upward 
and local theorems for classes of groups. We conclude this section by mentioning a 
problem adapted from [13]. Let Ko be the class of all groups with some 
automorphism which is not i~:Ler. /(0 is easily seen to be closed downward, but it 
seems to be open whether or not it is closed, We can write down the sentence tr of 
L~(to) a×ic, matising the closed class generated by Ko, and show that the comple- 
ment of this closed class is also closed, but we do not know whether ,3r not tr 
axiomatises Ko. 

7. Uncountable approximations 

Our basic frat lework of countable approximations g,~.neralises to approximations 
of cardinality at most K. In this section we give these g~neralisations and indicate, 
without proof, the major resu:ts which carry over. 

For any set s we define 9.P to be ~ r s N A, as before, if ~ is a formula of L~ then 
q~" is defined by the obvious extension of the definition in Section 2; that is, 
conjunctions and disjunctions in q~ indexed by I arc replaced by the subconjunc- 
tions and subdisjunctions indexed by I tq s. If K ~ A and r ~> Is 1, then ~p" is a 
formula of L,*~. 

In dealing with approximations by sets s of cardinality at most K we tacitly 
assume that the language L has at most K non-logical symbol:~. 

The generalisation of the filter D ( C )  is defined by a game of length K. 

Definition. Tile filter D.~(C) on ~ ( C )  is defined as follows: X E D.~(C)  iff 

(Vx~ ~ C3x,,~+, ~ C)~<, [{x~ : ~ < K } ~ X]. 

The following proposition lists the relevant properties of these •ters. 

Proposition 7.1, (a) D,+(C) is a x +-complete filter. 
(b) Assume K "~ = K, and that X,  E D,*(C) for every a-termed sequence a [tom C. 
Then 2 ~ D , . (C)  where 

f f  = {s ~ ~ ,*(C):  s E Xo for e,ery a [roms}.  

(c) I[ w ~= K, then X ~ D,*(C) iff there is some X '  ~ X such that: 
(i) for every s E ~ , - (C)  Fete  is some s' ~ X '  with s C s', 
(ii) X '  is closed under unions of  chains of length equal to K. 

As in Section 2 we say that C is large enough to approximate ~1 if A ~: C, and C 
is large enough to approximate tp if every, conjunction and disjunction in ~ is 
indexed by elements of C. Using a~ . . . . .  a,  to stand for either models or formulas of 
some L®~, we make the following definition. 
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Definition. Pl, a~ . . . . .  a~) holds for ahnost all s of  cardina/;~y <~ ~ iff: 

Is E ~ - ( C )  : P(a~ . . . . .  a~,) holds} E D k" (C) (*) 

for some C large enough to approximate a~,...,a,,. 
As before, the property in the definition is independent of the choice of C. We 

use K-a.e. as an abbreviation for "for  almost all s of cardinality ~ K". 

Proposition 7.2. U P(a~ . . . . .  a~) holds ~.a.e. then (*) holds for every C large enough 
to approximate a~,.. ,, a~. 

Our general downward LiSwenheim-Skolem theorem is now proved just like 
Theorem 3.t. 

Theorem 7.3. l for isasentenceof  L ~ a n d x ~ =  K, then ~ l ~ o r i f f ~ l ~ t r ~  x-a.e. 

As a particular consequence we have the following biconditional strengthening of 
the usual downward L6wenheim-Skolem theorem for L,+~. 

Corollary 7.4. Let or be a sentence of  L,, ~ and let x be such that K ~ Iz and K2. = ~¢, 
Then ~l 1 = or iff ~.{" I= or K-a.e. (that is, iff almost all submodels of ~,I of power ~ are 
mod~'fs of or). 

Note that the obvious analogues of Corollaries 3.2(b)--3.4 also hold. 

Definition. Let K* be the least infinite cardinal such that (~*)~= K*. 

Using Theorem 7.3 and a baek-~nd-forth argument the following is proved just 
like 3.5. 

Theorem 7.5. (a) ~l~-~, ,~ iff ~.l*-~, ~ •*-a.e. 
(b) ~ l ~ ,  ~ iff ~ { ~  93" g*-a.e. 

Unfortunately, this theorem for ~ > oJ does not have the interest of Theorem 3.5, 
even if K = K*, since L,,-elementarily equivalent models of power K need not be 
isomorphic, Thus, for example, it says nothing about the relationship between two 
L , - e l emen ta r i ly  equivalent models of power co,. 

Also for this reason, the results in Section 4 do not generalise (except for those on 
Horn sentences, which we omit here). 

On the other hand, the results in Section 5 on closed classes and :~entences with 
game quantifiers generalise rather well  

Definition. Let K be a class of models closed under isomorphism. 
(a) K is ~-ciosed downward if: ~ E g implies ~[~ ~ K g-a.e. 
(b) K is ,c-closed if: ~t ~ K iff ,~I ~ E K ~-a.e. 
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If o- is a sentence of L,*A then Mod(o,) is K'-closed for all ~¢'~K such that 
0¢')~= K', by Corollary 7.4. However a K-closed class need not be closed under 
L,-elementary equivalence (even assuming x = K*), The obvious generalisations 
of parts (b)--(f) of Proposition 5.1 do hold, but we omit the statements here. 

A logic adequate to axiomatise every Jc-closed class is obtained, as one would 
expect, by allowing sentences with game quantifiers of length ~¢. Instead of giving an 
inductive definition paralleling that of LP(¢o) we simply use the prenex game 
characterisation as a aefinition. 

Definition. The sentences of L~(x) are the sentences of the form (O~x~)~.~,~, 
where ¢ is open. 

One can show that every sentence of L,*, is eqaivalent to a sentence of L~(x). If. 
o. is a sentei,ce of L~(x) then Mo6 (,r) is ,~ -closed downward for evetT A such that 
A -~ = ~. On particular for A = i¢*). 

Our main result is the following, whose proof exactly follows that of Theorem 
5.5. 

Theorem 7.6. I l K  is K-closed then K -- Mod(o-) for some sentence cr o f  LP(x). 

As an immediate consequence we have a separation theorem. 

Corollary 7.7. Let hq and K: be K-closed downward and assume ti~at K,  fl K2 = O. 
There are sentences era and o.: of  L~(K) such that K~ C Mod(cr~) for i = 1,2 and 
~= ~ (o.~ ̂  o.2). 

The immediate interpolation consequence is less satisfactory. 

Corollary 7.8. Let LI and L2 be language:," with at most K non-logical symbols such 
that L ~ A L : = L .  Let O~ be a sentence of  L,P(K), i = 1 , 2  and assume that 
t=-n(O~ ^ 0~). Then there are sentences o.~ and o'2 of  L*(x *) such that O~ ~= cr~ for 
i = 1, 2, and ~ -'~ (m ^ o.~). 

Due to the necessity of passing from Lr(K) to L p (x*) in 7.8, this result is perhaps 
better formulated concerning a larger logic containing every L~(x). 

Definition. L÷(~) is the logic containing all atomic and negated atomic formulas 
and closed under arbitrary conjunctinns, disjunctions, and homogeneous and game 
quantification. 

Then any sentence of L÷(oo) is equivalel;t to a sentence of some L~(K), hence 7.8 
implies: 

L÷(o~) satisfies interpolation, 
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Takeuti ' s  interpolation theorem [30], already mentioned in :?ectic~n 5, can be 
phrased as saying that any valid implication in L ~  has an interp~ ~lant in L*(oo). At 
least as proved by Nebres [25], it is true allowing functions with infinitely many 
arguments in the language. And in this form it implies th:~t L+(0o) satisfies 
interpolation~ since replacing existential quantifiers in an L ( ~ )  sentence by 
(infinitary) Skolem functions results in an L,~,-sentence. That is, a cla~:,s which is PC 
in L*(~) is already PC it~ "L,~ with infinitary functions, Once again, however~ we 
wish to point out that this does not appear  to imply 7.8, and certai'.~ly not 7.7. 

LP(K) is also easily seen to satisfy preservation theorems analogous t~ Theorem 
5.10. 

There  are many questic~ns and problems concerned with uncountable approxima- 
tions. 

There is a sentence cr of L%% which has a model of po~er  ~ iff K "~ = K, and so 
Mod (or) is K-closed dowr~vard iff K" = K. In particular, Ka-closed and K~ < K2 need 
not imply K:-closed. Doe~, the example indicate the only difficulties that can arise? 
That  is, assuming G.C.H.  ilor simplicity, i f~ t  and K: are regular, K~ < K2, and K is 
K~-closed, must K be Kr.clc:,sed? We know it must at least be ~2-elosed downward. 

The situation as far as applications like those in Section 6 is ~ot satisfactory. For 
example, let Ko be the class of  all models with a non-trivial automorphism, and let 
Kt be the class of all models in which some element is not ~L,-definable. Then Ko is 
K-closed downward, Ko~Kx and Kt is K-closed assuming K = K *. But K~ is not the 
smallest ~¢-closed class containing Ko, if K > <o, since there are models of cardinality 
P¢ in Kt but not in K0. What is the smallest K-closed class containing Ko? Is it the 
class of all models in which some element is not definable in some natural logic (like 
L(K), see [11])? 

Related to this is the problem of finding a logic L * such that we obtain a full 
generalisation of Theorem 3.5, that is, such that PI m ~ ( L ' )  iff ~P ~ ~ ~-a.e. 

Just as with LP(~o) one can find sentences of LP(K) whose negations are not 
equivalent to sentences of L~(K), Let L*(K) be the maximal sublogic o~ LP(K) 
closed under negation. Then, assuming K = K *, Ls(K) satisfies z~-interpolation but 
not full interpolation. Are  there " large"  natural sublogics of L~(K) closed under 
negation and satisfying full interpolation? 

The sentences of L~(to) we constructed whose negations are not equivalent to 
sentences of L~(o~) all have the pr,,~,perty that their negations are equivalent to 
sentences of L~(~) for some K > a~. Is this in fact always true? More generally, if cr 
is a sentence of L~(Kt) is ~ ~r equivalent to a sentence of L~(K~) for some K~ ~ K~? If 
true, this would mean that L*(e~) itself is closed under negations, and is therefore 
equivalent to L(o~) (defined in [11]; we use Shelah's result [27] that non-well- 
ordered quantifiers are superfluous). 

Let L~(~ 0) be the maximal sublogic of L*(~) closed under negations. Then L*(oo) 
satisfies ,a-interpolation and, as just pointed out, may be equivalent to L*(~). In 
any case, does L*(~o) satisfy interpolation? 

We are interested in these questions because it seems to us that the concept o~ 
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K-closed is one  abstract  cri terion to help distinguish second-order  proper t ies  from 

tllose which are ,  in some weak sense, first-order. Even  the  simplest ,  mosf na tura l  
second-0rder  sen tences  (for example,  " P  has cardinal i ty strictly less than the 
cardinali ty of the  un iverse" )  define classes which are  no t  r - d o s e d ,  o r  even  to-closed 

downward,  f o r  any  r. I t  seems to us that any  logic all of  whose sentences  define 

classes which are K-Clt3sed f~," some ~ has some right to be  cons idered  z~ general ised 

first-order logic, ra ther  than second-order .  Thus,  if L*(~) does tu rn  out  to be  closed 
u n d e r  negations this would  say that even negat ions  of game-quant i f ied  sentences  

are no t  t oo  outrageously second-order .  
Finally,  re turn ing  to L~,, it seems worthwhile  to remedy the defect  in Theorem 

7.5  by f inding a cri terion for 9 1 - ~  ~ which is in teres t ing w h e n  IA  I = !B t = K. 
Resul ts  on this l ine for free algebras, or  models  having similar characteristics, have 

been  announced  by the au thor  [17]. 
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