
Information and Computation 207 (2009)1044–1077

Contents lists available at ScienceDirect

Information and Computation

j ourna l homepage: www.e lsev ie r .com/ loca te / i c

Relating state-based and process-based concurrency through linear logic

(full-version)�

Iliano Cervesato a,∗,1 , Andre Scedrovb,2

a Carnegie Mellon University in Qatar, Doha, Qatar
b Mathematics Department, University of Pennsylvania, Philadelphia, PA, USA

A R T I C L E I N F O A B S T R A C T

Article history:
Received 21 November 2006

Revised 14 July 2008

Available online 11 April 2009

Keywords:

Linear logic

Concurrency

Multiset rewriting

Process algebra

Security protocols

This paper has the purpose of reviewing some of the established relationships between

logic and concurrency, and of exploring new ones.

Concurrent and distributed systems are notoriously hard to get right. Therefore, fol-

lowing an approach that has proved highly beneficial for sequential programs, much effort

has been invested in tracing the foundations of concurrency in logic. The starting points

of such investigations have been various idealized languages of concurrent and distributed

programming, in particular the well established state-transformation model inspired by

Petri nets and multiset rewriting, and the prolific process-based models such as the π-

calculus and other process algebras. In nearly all cases, the target of these investigations

has been linear logic, a formal language that supports a view of formulas as consumable

resources. In the first part of this paper, we review some of these interpretations of concur-

rent languages into linear logic and observe that, possibly modulo duality, they invariably

target a small semantic fragment of linear logic that we call LVobs.

In the secondpartof thepaper,weproposeanewapproach tounderstandingconcurrent

and distributed programming as a manifestation of logic, which yields a language that

merges those twomain paradigms of concurrency. Specifically,wepresent a new semantics

for multiset rewriting founded on an alternative view of linear logic and specifically LVobs.

The resulting interpretation is extended with a majority of linear connectives into the lan-

guage ofω-multisets. This interpretation drops the distinction betweenmultiset elements

and rewrite rules, and considerably enriches the expressive power of standard multiset

rewritingwith embedded rules, choice, replication, andmore. Derivations are now primar-

ilyviewedasopenobjects, andareclosedonly toexamine intermediate rewriting states. The

resulting language can also be interpreted as a process algebra. For example, a simple trans-

lationmaps process constructors of the asynchronousπ-calculus to rewrite operators. The

languageofω-multisets formsthebasis for thesecurityprotocol specification languageMSR

3. With relations to both multiset rewriting and process algebra, it supports specifications

that are process-based, state-based, or of a mixed nature, with the potential of combining

verification techniques from both worlds. Additionally, its logical underpinning makes it

an ideal common ground for systematically comparing protocol specification languages.
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1. Introduction

In his seminal paper [37], Girard anticipated the potential for linear logic to act as a model for concurrency, but left the

task of precisely pinpointing this relationship to the research community. This challenge was soon taken up by numerous

researcherswho explored the link between the then new and promising formalism and various understandings of the notion

of concurrency and distributed computing.

The state-transition model of concurrency [21,48,55,67,73], epitomized by place-transition Petri nets and propositional

multiset rewriting (the two formalisms being syntactic variants of each other), was almost immediately given an inter-

pretation in linear logic in the work of numerous researchers. Asperti [7] and Gunter and Gehlot [38,39] independently

explored the relation from a proof-theoretic point of view, noticing that once Petri nets were interpreted as logical theories

in the multiplicative fragment of linear logic, their computation amounted to proofs. Kanovich [44–46] followed a similar

path to study the complexity of sublanguages of linear logic. Instead, Martí-Oliet and Meseguer [52,51] and Brown and

Gurr [16] approached the issue from a categorical perspective, motivating the use of additional linear connectives as net

operators. Engberg and Winskel [27] reached a similar conclusion using quantales, an early model of linear logic. A few

years later, Cervesato [18] compiled a comparison of a number of encodings of linear logic. In the state-transition paradigm,

concurrent computation takes place on a global state shared by all agents. Each agent can act on portions of this state by

applying local transformations which are often modeled as rewrite rules. Rules operating on disjoint portions of the state

can be applied in any order, possibly concurrently. Iterating the application of rules will produce a succession of states.

This leads to the natural notion of reachability among states. A number of actual programming and specification languages

have been based on this notion of concurrency, the most prominent being Maude [24,55] (which actually mechanizes a

broader form of rewriting), Colored Petri Nets [43], and the programming language GAMMA [48]. The interpretation of the

state transition model of concurrency in linear logic relies on two observations: first, this formalism embeds connectives

that have the same monoidal algebraic structure as multisets; second, its ability to “consume” context formulas during the

construction of a derivation ideally models the non-monotonic nature of rule application. This permits simulating multiset

reachability by derivability in linear logic. This basic interpretation has been extended to more expressive languages based

on the state transition model. In particular, we have enriched it in [20] to support a first-order notion of multiset rewriting

with existentials which we have extensively used to model cryptographic protocols [19,21,26], an eminently subtle type of

distributed systems.

The alternative process-based model of concurrency identifies each agent with a process and communications between

agents replace the global state as the vehicle of computation. Languages following this model include CSP [41], CCS and

the π-calculus [63,74], the join calculus [34], and a large number of other process algebras, each characterized by subtle

differences in behavior. The correlation between logic and process algebra has been investigated along two planes, with

occasional contacts. The first approach encodes process operators as term constructors so that a process is represented by a

term in the logic. Within this process-as-term model, process computation takes the shape of term reduction. Abramsky [2]

and Bellin and Scott [10] rely on classical linear logic for this purpose. Miller et al. have performed a similar investigation

using intuitionistic linear logic [53], andmore recently using a refinement of linear logicwith a newquantifier that resembles

name generation [59,62,77]. Abramsky has recently suggested extracting processes from proofs [3]. The process-as-terms

approach provides a simple way to logically express relations between processes, such as bisimulation, although capturing

bothmay-andmust-propertiesofprocesseshas remainedachallenge. Thealternativeencoding, knownasprocess-as-formula,

maps process constructors to logical connectives and quantifiers, with the intended effect of identifying computation with

derivability. Bisimulation, structural equivalence and other process relations now correspond tometa-level properties of the

logic itself. Linear logic has proved a suitable candidate for this purpose, although some issues are not satisfactorily resolved

yet. This approach, which goes back to early work by Andreoli and Pareschi [6], has been applied to theπ-calculus by several

authors [23,53,56] and to the study of security protocols [20]. A few researchers have compared the process-as-term and

process-as-formulas approaches [53] or used them together [23]. Readers interested in a broader perspective of the research

on process algebra and (linear) logic may start from the web page of a recent workshop [61] dedicated to this lively topic.

The first part of this paper has the purpose of reviewing some of the interpretations of concurrency into linear logic

in a methodical way. While the treatment of the state-transformation model will be fairly complete, we refrain from any

claim of exhaustiveness in relation to the many process-based languages as active research is underway to achieve a unified

understanding of their subtle semantic differences (we postulate, however, that logic could be the appropriate middle

ground to frame these differences). Furthermore, we will not discuss at all the proof-as-term approach. As a by-product of

this review, we observe that, once normalized with respect to duality, these interpretations of concurrency target a well-

defined semantic fragment of linear logic, which we call LVobs. This language makes a prominent use of tensorial formulas

and relies on a nominal interpretation of the existential quantifier akin to Miller and Tiu’s ∇ [62], while constraining the use

of other constructs of linear logic in a uniform way.

The second part of the paper builds on this tutorial introduction to the field and reports on recent research whose intent

is to explore an alternative interpretation of the relationship between concurrency and (linear) logic. It stems from the

observation that although the aforementioned efforts have drawn useful bridges between linear logic and concurrency, they

often make a rather limited use of the logic and often target limited aspects of concurrency. Indeed, adopting derivability

as a meta-theoretic target for the interpretation has the effect of reducing the semantics of concurrency to finitary concepts
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such as reachability (with [53] being a partial exception). Instead, a concurrent system is typically open-ended, meant to

have infinite computations. In this paper, we postulate that the traditionally static notion of derivation is insufficient to fully

capture the semantics of a concurrent system. Instead, we investigate the use of standard logical inference rules to build

open, possibly infinite, objects that closely model the infinitary behavior that characterizes concurrent systems. Moreover,

nearly all solutions are interpretation of a concurrent language into linear logic rather than as linear logic (with [2,10] being

exceptions). In those proposals, the logic is subordinate to the concurrent language: the interleaving of connectives and

quantifiers is frozen by the translation procedure, and there is often little interest in extending these interpretations with

additional linear logic constructs. By contrast, we propose a methodology that interprets a majority of the connectives and

all quantifiers in intuitionistic linear logic as the operators of a freely generated concurrent language. This language embeds

the targeted translations mentioned above (and several others) and, to the extent of our knowledge, is the first formalism

that makes both the state-transition and the process-based models of concurrency and distributed computing available in

the same language.

Wedevelop this ideawith respect to a fragmentof intuitionistic linear logic [37] inPfenning’s LV sequentpresentation [69],

which we reinterpret in a non-standard way to provide a new understanding of concurrent and distributed programming.

We turn LV’s left rules into a form of rewriting over logical contexts. It transforms a rule’s conclusion into its major premise,

with minor premises corresponding to finite auxiliary rewriting chains (they can be in-lined using the cut rules). The axiom

rule and a few of LV’s right rules are consolidated into a single rule that becomes ameans of observing the rewriting process.

The remaining right rules are discarded. It is shown that LV’s cut rules are admissible.

The resulting system, which we call LVobs, is much weaker than LV (because of the absence of right rules), but is the

foundation of a powerful form of rewritingwhichwe callω. We show that a tiny syntactic fragment ofω corresponds exactly

to traditional multiset rewriting (or place/transition Petri nets). This constitutes an interpretation of multiset rewriting as

(a fragment of) logic [2,10], which we like to contrast to most previous interpretations into (a fragment of) logic [7,16,18,27,

38,46,52]. The system ω similarly provides a new logical foundation to more sophisticated forms of multiset rewriting and

Petri nets.

Considered in its entirety, ω can be seen as an extreme form of multiset rewriting: it drops the distinction between

multiset elements and rewrite rules, and considerably enriches the expressive power of standard multiset rewriting with

embedded rules, parametricity, choice, replication and more. Yet, its semantics is derived from the rules of logic. Under this

interpretation, we call formulas ω-multisets.

The system ω has also close ties to process algebra, in particular to the join calculus [34] and the asynchronous π-

calculus [63,74]. A simple execution-preserving translation maps process constructors of the latter to rewrite operators.

With relations to the two major paradigms for distributed and concurrent computing, ω is a promising middle ground

where both state-based and process-based specifications can coexist. This prospect is particularly appealing because each

paradigm has developed its own theories, tools and verificationmethodologies, which are often complementary and overlap

only partially. Mappings of one model to the other have for the most part failed, however, to carry the benefits of each

over to the other. The integrated language we propose has the potential of fostering new ways to use these theories, tools

and methodologies cooperatively. We test this proposition in the arena of cryptographic protocol analysis, in which both

approaches are prominently used, and only ad-hoc mappings exist to bridge them. We outlined the development of ω into

the protocol specification language MSR 3 and scrutinize various ways of expressing a protocol. Another field where the

dichotomy between state-based and process-based specifications has been identified as a hindrance is model checking; we

postulate that a language derived from ω could beneficially bridge this gap, although we do not explore this prospect here.

The review portion of this paper starts with a quick refresher of key elements of linear logic in Section 2, which also

lays the logical foundations for the development in the rest of the paper. We then describe in some detail the traditional

correspondence betweenmultiset rewriting and linear logic in Section 3 and proceedwith a description of some embeddings

of process algebra into this logic in Section 4.

The research portion of the paper starts with Section 5which distillsω out of LV. Section 6 exposesω as a form ofmultiset

rewriting. Section 7 relates it to the process algebraic world. Section 8 brings the two together in the applied domain of

security protocols.3 Additional remarks and ideas for future developments are given in Section 9.

2. Linear logic

Linear logic was defined in [37] with the aim of overcoming some representational shortcomings of traditional logic. It

quickly reached a wide audience and the new possibilities offered by this formalism were soon exploited in a number of

fields. Girard’s original paper [37] already foresees the benefits of the expressiveness of linear logic as a tool for describing

concurrent systems.

We give a general review of linear logic, mainly of its intuitionistic fragment, in Section 2.1. Section 2.2 explores the rela-

tionship between the linear context of a sequent and the class of tensorial formulas. Section 2.3 extends this correspondence

3 For the chronicle, this research developed almost opposite to this narration: while relating multiset rewriting and process algebraic languages for

security protocol specification, we considered an extension to the former with embedded rewrite rules. This led to noticing the relation to the treatment

of contexts in the sequent calculus presentation of linear logic. Formalizing this aspect yielded the structural properties, and the observation that they

correspond almost exactly to the structural equivalences of the π-calculus.
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Fig. 1. Linear languages discussed in Section 2 and the road to ω.

to signatures and formulas introduced by a restricted form of existential quantification. By then, we will have identified a

useful semantic fragment of linear logic for the purpose of expressing concurrent systems, which we further massage in

Section 2.4. We prove a form of cut-elimination for it in Section 2.5. Additional comments can be found in Section 2.6. The

discussion in Sections 2.1–2.3 underlies the traditional interpretations of concurrent systems, reviewed in Sections 3 and 4.

The remainder of the present discussion will mostly be relevant to the developments in Sections 5–8.

We will examine a number of languages based on linear logic in this section. While all will share the same syntax and

sequent structure, they will differ in the rules describing their semantics and in the sequent instances that are derivable in

them. This is summarized in Fig. 1, to which we will often refer as a roadmap: an edge of the form L1
⊃ L2 indicates

that the set of sequents derivable in L1 is a (strict) superset of the sequents derivable in L2, i.e., that L2 is a derivationally

weaker L1; edges of the form L1
≡ L2 mean that L1 and L2 are equally expressive in the sense that they derive the exact

same sequent instances. The most expressive language we will consider is LV, a mainstream presentation of intuitionistic

linear logic [69]. All others will be strictly less expressive as they will omit or significantly restrict some of the standard

rules of linear logic. Because of these restrictions, it can be debated whether they can be considered logics at all. We will not

take a position on this issue. Similarly to the language of Horn clauses, which underlies early logic programming and is still

prominent, these formalisms have a strong connection to logic, which we will investigate in this section. Most of them have

been the natural target of linear encodings of specific classes of concurrent languages, as we will see, and we will develop

one of them, LVobs, into a powerful computational paradigm in Section 5 as the rewrite system ω.

2.1. A very brief review of linear logic

Linear logic is a refinement of traditional logic based on the idea of providing explicit control over the number of times an

assumption can be used in a proof. While the set of assumptions, or context, growsmonotonically in a traditional derivation,

the controlled-use option of linear logic allows contexts to growand shrink as logical rules are applied. This property is crucial

in order to model concurrent systems, hence the popularity of linear logic for this purpose. Control over context formulas

is obtained by replacing the connectives of traditional logic with a new set of operators. For example, conjunction (A ∧ B)

gives way to a multiplicative tensor (A ⊗ B) which forces its subformulas to compete for assumptions, and to an additive

conjunction (A B) which instead requires that they use the exact same assumptions. The expressiveness of traditional

logic is recovered by flagging some assumptions as reusable and promoting this concept to a first-class status as newmodal

operators (e.g., !A allows A to be used arbitrarily many times).

Linear logic comes in as many variants as traditional logic: classical, intuitionistic, minimal, propositional, first-order,

higher-order, etc. In this paper, we will base our investigation on the following fragment of intuitionistic linear logic [37]:

Formulas A, B, C ::= a | 1 | A ⊗ B | A −◦ B | !A
| � | A B | ∀x. A | ∃x. A

Here, a and x range over atomic formulas and term-level variables, respectively. We do not distinguish formulas that differ

only by the name of their bound variables, and rely on implicit α-renaming whenever convenient. We write [t/x]A for the

capture avoiding substitution of term t for x in A, and FV(A) for the set of free variables occurring in A. We shall not place

any restriction on the embedded term language except for predicativity (term substitution cannot alter the outer structure

of a formula). However, the applications in this paper will only require a first-order term language (extended with sorts

in Section 8). In addition to the operators mentioned at the beginning of this section, we make use of the multiplicative

and additive versions of truth, 1 and �, respectively, of multiplicative implication −◦, and of the usual quantifiers. Other

operators of linear logic (for example the multiplicative and additive notions of disjunction, and ⊕, and falsehood, ⊥ and

0) will not be of primary importance in this paper: although some authors have used them to express concurrency, these

ideas can generally be recast in the fragment examined here by exploiting duality. We will, however, briefly comment on

them in appropriate sections of the paper.

Ourdefinitionof provability is basedonan intuitionistic versionof Pfenning’s LV sequent calculus [69]. It relies on sequents

of the form

�; � −→� C.

Similarly to Barber’s DILL [9] and Hodas and Miller’s L [42], LV isolates reusable assumptions in the unrestricted context �

(subject to exchange, weakening and contraction), while assumptions to be used exactly once are contained in the linear
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Fig. 2. LV sequent presentation of intuitionistic linear logic.

context � (subject only to exchange). The combination corresponds to the single context (!�,�) of Girard [37], where !� is

the linear context obtained by prefixing each formula in � with the ! modality. The signature � lists the term-level symbols

in use. We call C the goal formula. We will deemphasize its traditional importance in the second part of this paper.

We shall be very precisewhendiscussing the structure of contexts and signatures. Therefore,wewill use different symbols

for their constructors, as given by the following grammar:

Linear contexts � ::= · | �, A

Unrestricted contexts � ::= ◦ | � A

Signatures � ::= ·· | �,, x

For each of these collections, the comma (“,” or “ ” or “,,”) stands for the extension operator while the bullet (“·” or “◦” or
“··”) represents the empty collection. The former will be overloaded into a union operator. From an algebraic perspective,

unrestricted contexts behave like sets, while signatures and linear contexts are commutative monoids. Additionally, signa-

tures shall not contain duplicate symbols (we will extend them only with eigenvariables and rely on implicit α-renaming to

ensure this constraint). A signature� is legal for a sequent�; � −→� C if FV(�,�, C) ⊆ � (slightly abusing notation). All

sequents in this paper will be assumed legal, and we will use this term explicitly only for emphasis.

Given these conventions, Fig. 2 displays the sequent rules for intuitionistic linear logic in its LV presentation [69]. We

divide them into five segments and refer to a rule defined in the segment labeled “s” as an “s”-rule. The first segment (labeled

S) contains the axiom rule (id) and rule clone that allows repeatedly using an unrestricted assumption in a derivation. The

second segment (C) lists the two applicable cut rules of LV.

The left sequent rules for the fragment considered above are listed next (L). Observe how !’ed (pronounced banged) linear

assumption are made available in the unrestricted context in rule !l. In rule ∀l, we rely on the auxiliary judgment � � t

to ascertain that the term t is valid with respect to signature � (but do not define this notion further since we are leaving

the term language unspecified). Whenever one of these rules has premises, one of them mentions the same goal formula

(systematically written C) as the rule’s conclusion. We will call it the major premise of the rule. The cut rules and −◦l also

have aminor premise in which the goal formula changes.
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The right sequent rules of linear logic will have marginal importance in the second part of this paper. The part of Fig. 2

labeled R lists some of them, as they are sufficient for the first part of the paper and will play an indirect role in later

developments. It is conceivable, however, that these and the remaining right rules (listed in part X) can be useful query tools,

as demonstrated for example in [27,38] relative to Petri nets. This, however, goes beyond the scope of this work.

Derivations are defined as usual, and denoted D. In the second part of this paper, we will emphasize the process of

constructing a derivation starting from a given sequent. A partial derivation D[ ]missing justification for exactly one sequent

is incomplete. D[ ] is called open if it is incomplete along a path from the end-sequent that only follows the major premises

of the rules.

We write ≡ for the notion of logical equivalence given by inter-derivability. Formally, A1 ≡ A2 iff for all � and legal �

containing at least one term-level object, there are derivations for both �; A1 −→� A2 and �; A2 −→� A1. The non-

emptiness requirement for � avoids a singularity. It is easily shown that ≡ is indeed an equivalence relation. It is also

relatively straightforward to show that it is actually a congruence by application of the cut rule (although we will not need

to rely on this property). Finally, replacing a formula in the goal or linear context of a derivable sequent with a logically

equivalent formula retains derivability. In symbols,

• if C1 ≡ C2 and �; � −→� C1 is derivable, so is �; � −→� C2,• if A1 ≡ A2 and �; �, A1 −→� C is derivable, so is �; �, A2 −→� C.

Both are easily obtained using the cut rule.

2.2. Observations in the tensorial fragment

In this section and in the next, we will focus our attention on a derivational system based on the syntax of intuitionistic

linear logic and defined by restricting the applicability of the LV rules in Fig. 2. As it turns out, nearly all encodings of

concurrent languages in linear logic are based on this restricted system (or its dual), although this has rarely been made

explicit in the literature. In this section, we begin by recalling the well-known relationship between linear contexts and

tensorial formulas, which underlies the interpretation of all propositional concurrent languages (possibly modulo duality).

We then leverage it to obtain a first restricted variant of LV.

In Section 2.1, we defined the linear context � of an LV sequent as a commutative monoid with operation “,” and unit “·”.
As already observed in [37], the notion of derivability also endows an Abelian monoidal structure on the set of linear logic

formulas with respect to the tensor (⊗) as the operation and 1 as its unit. We call the members of this set tensorial formulas.

This is captured in the following straightforward lemma:

Lemma 2.1. For any formulas A, B and C, the following logical equivalences hold in LV:
• Associativity : A ⊗ (B ⊗ C) ≡ (A ⊗ B) ⊗ C

• Identity : A ⊗ 1 ≡ A

• Commutativity : A ⊗ B ≡ B ⊗ A

Proof. The derivations for each direction of the definition of logical equivalence in Section 2.1 are obtained by simple

applications of rules ⊗l, 1l, ⊗r , 1r and id, with all the left rules applied before any right rule. �

Wewrite ≡⊗ for the equivalence relation based on these three properties. Clearly ≡⊗ ⊆ ≡. Note that it is not a congruence

as there is no provision for it to apply within subformulas of any other operator but ⊗.

The fact that linear contexts and tensorial formulas share the same algebraic structurewill allow us to blur the distinction

between these two notions. At the top level, this idea is familiar from categorical interpretations of logic, where a linear

context � is interpreted as the formula
⊗

� obtained by tensoring together all its constituent formulas. This is the essence

of the symmetric monoidal (closed) structure that underlies most categorical models of linear logic [11,75]. Formally, given

a linear context �, we define
⊗

� as{⊗
(·) = 1⊗
(A,�) = A ⊗ ⊗

�

By Lemma 2.1, this notion is well defined since the tensor ⊗ is a monoidal operator with unit 1, which matches the fact that

linear contexts are understood as monoids with operator “,” and unit “·”. Both are commutative.

The proof-theoretic underpinning of the categorical identification of linear contexts and tensorial formulas [11,75] relies

on two properties. The first establishes that
⊗

� is always derivable from �, as expressed by the following lemma.

Lemma 2.2. For any legal signature � and any contexts � and �, there is a derivation of the sequent

�; � −→�

⊗
�
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Proof. The desired derivation is obtained inductively on any construction of � by iterated applications of rule ⊗r capped by

rule 1r . Lemma 2.1 ensures that the particular construction does not matter. �
This lemma maps a linear context on the left-hand side of an LV sequent to a tensorial goal in its right-hand side. It

effectively bridges the two sides of a sequent. More importantly for our purposes, it shows that it is always possible to collect

the contents of the linear context into a goal formula with the same algebraic structure. If we understand the linear context

as a “state” (as we will partially do in the rest of this paper), this lemma says that we can always take a snapshot of this state

and report it as a goal formula. We will interpret this formula as an observation of that state.

The second property states that replacing a context � with the single formula
⊗

� does not impact derivability.

Property 2.3. For any legal signature �, any contexts � and �, and for any formula C,

�; � −→� C iff �; ⊗
� −→� C

Proof. A proof of the forward direction of this property extends the given derivation of �; � −→� C downward with uses

of ⊗l and possibly of 1l. The reverse direction relies on cut applied to the sequent �; � −→�

⊗
�, which is derivable by

Lemma 2.2. �
This result allows us to effectively treat the linear context � of an LV sequent as if it were the tensorial formula

⊗
�.

Indeed, applying this transformation on any of the rules in Fig. 2 yields an admissible rule relative to LV. Moreover, applying

this transformation to all rules in this figure and taking the equivalences in Lemma2.1 asprimitivewouldproduce a formalism

that is equivalent to LV in terms of derivability. More on this in Section 5.

All results presented so far hold in LV. In the rest of this section, we will focus on a semantically restricted fragment of

this logic which we call LV1⊗ (and which we will further develop in Section 2.3 — see Fig. 1). The syntax of LV1⊗ is the

same as LV’s and is displayed in Section 2.1. Its notion of derivability differs from LV’s semantics by leaving out all right rules

except for 1r and ⊗r .
4 Therefore, the semantics of LV1⊗ is given by the rules in segments S, C, L of Fig. 2 as well as rules

1r and ⊗r . Because most right rules have been omitted, LV1⊗ is a strict fragment of LV with respect to derivability: every

derivable LV1⊗ sequent is derivable in LV, but not vice versa. For example, linear implication is not transitive in LV1⊗ since

the sequent “◦ ; A −◦ B, B −◦ C −→� A −◦ C” is not derivable in this formalism, nor is it any more the left adjunct of ⊗ as

“◦ ; A −◦ B −◦ C −→� B −◦ A −◦ C” is not derivable either in LV1⊗. This restriction is useful when modeling concurrent

systems, especially process algebras, as we will see in Section 4.

As noted above, Lemma 2.2 (which holds in LV1⊗) allows collecting the contents of the linear context into a goal formula.

This can be done at any point during the bottom-up process of building a derivation. It is therefore natural to view it as a

form of observation. The semantics of LV1⊗ is such that whenever the sequent �; � −→� C is derivable, the goal formula

C can be construed as such an observation of some linear context appearing in some derivation.

To demonstrate this fact, we will consider another language, which we call LVobs
1⊗ , which differs from LV1⊗ by the fact that

it discards rules id, ⊗r and 1r in favor of the following rule, distilled from Lemma 2.2,

obs′
�; � −→�

⊗
�

which will be generalized in Section 2.3. Therefore, LVobs
1⊗ does not feature any of the right rules of LV. Notice also that rule

obs′ subsumes id as a special case. Clearly, all LVobs
1⊗ can do is make observations of the contents of the linear context in some

sequent in a derivation and report them as goal formulas.

The following theorem states that LV1⊗ and LVobs
1⊗ are equivalent in the sense that their sequents are equi-derivable, as

also indicated in Fig. 1.

Theorem 2.4. The sequent �; � −→� C has a derivation D in LV1⊗ iff it has a derivation E in LVobs
1⊗.

Proof. The reversedirectionof thisproof is easily obtainedby replacingeveryuseof ruleobs′ inE with theprooflet guaranteed

by Lemma 2.2 (which, again, holds in LV1⊗). Therefore, D is structurally identical to E except for the fact that all occurrences

of obs′ have been expanded in place into subderivations that use only rule 1r , ⊗r and id (in particular, no C, L or clone rules).

The forward direction of this proof is slightly more involved as rule ⊗r can occur in any position in the derivation D,

not just near the leaves, where Lemma 2.2 can factor out occurrences into rule obs′. In particular, C- and R-rules, as well

as clone, can appear above rule ⊗r . The intuition behind the proof is to permute uses of rule ⊗r upward until they are

only preceded by occurrences of 1r , id or other occurrences of ⊗r . This technique is justified by early permutability results

systematically studied byGalmiche and Perrier [36,66] and independently applied by other authors [40,42,60]. It is also fairly

straightforward to give a direct proof by showing that if two sequents �; �1 −→� C1 and �; �2 −→� C2 are derivable

in LVobs
1⊗ , then the sequent �; �1,�2 −→� C1 ⊗ C2 is also derivable in LVobs

1⊗ . �

4 We could actually limit the discussion in this section to the propositional fragment of LV, but allowing the quantifiers has no impact as long as their

right rules are left out.
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This theorem states that, just like LVobs
1⊗ , the deductive power of LV1⊗ is also limited to reporting observations of the

contents of some linear context.

2.3. Observations in the tensorial-existential fragment

We will now repeat the exercise just performed in Section 2.2 but this time consider not only the interplay between

tensors and linear contexts, but also the relationship between signatures and an appropriate notion of existentially quantified

formulas. The outcomewill be similar: wewill be able to reify the operation of extending a signature as a limited form of the

existential quantifier, which will be the basis for defining a restricted variant of LV centered around a notion of observation.

We shall begin by significantly restricting the semantics of existential quantification: wewill leave the left rule (∃l) intact

but we will limit the applicability of the right rule ∃r in Fig. 2 to the cases where the substitution term t chosen for the

variable x in ∃x. C is x itself. Therefore, the right rule we will consider for the existential quantifier is

� � x �; � −→� C
∃n
r

�; � −→� ∃x. C or more compactly
�; � −→�,x C

∃n
r

�; � −→�,x ∃x. C
We call this restricted form of existential quantification nominal and write LVn for the formalism that differs from LV by

relying on ∃n
r as the right rule for ∃ as opposed to ∃r . The remaining rules are as in Fig. 2. LVn admits cut-elimination, which

is shown by a simple adaptation of the proofs in [69] or [62].

Notice that rule ∃n
r is almost dual to ∃l, with the important difference that the variable x is not treated as an eigenvariable:

x appears in the signature of ∃n
r ’s conclusion while implicit α-renaming strictly forbids this in ∃l. This entails that whenever

an application of ∃n
r to a variable x occurs in a derivation of a sequent �; � −→� C, then either x appears already in �, or

it is introduced by rule ∃l prior to this application of ∃n
r . Observe also that rule ∃n

r does not perform any kind of substitution,

not even a renaming. Therefore, not only is the sequent “◦ ; ∃x. x = x −→+,3,5 3 + 5 = 3 + 5” not derivable in LVn, but

neither is the sequent “◦ ; ∃x. x = x −→� ∃x1. ∃x2. x1 = x2”. Indeed, all that ∃n
r does is to look for all the occurrences of a

variable in the goal that share a common name (say “x”) and to bind them together using the existential quantifier: it reifies

the sequent-level fact that a symbol appears in the signature into a formula-level operator in the goal of the sequent.

Quantifiers in the vain of the restricted semantics for existentials stemming from rule ∃n
r have been studied by several

authors in recent years. One of the first proposals was Gabbay and Pitts’s N-quantification aimed at investigating the meta-

theory of formalisms featuring binders [35], and was later developed into the programming language FreshML [71,76].

Cardelli and Gordon devised two complementary constructs, “revelation” and “hiding”, to study the logical properties of

name operators in the π-calculus [17]. More recently, Miller and Tiu introduced the ∇ quantifier to capture the behavior of

both ∀ and ∃ in managing names through eigenvariables but away from their handling of substitution [62].

Aswewill see starting from Section 3, eigenvariables introduced through quantifiers are a natural device tomodel objects

generated during the execution of a first- or higher-order concurrent language, or to study its meta-theory. Authors such

as [14,20,23,56], who have remained within the traditional boundaries of logic (as opposed to those who have explored

the above constructs, e.g. [17,62,35]), have relied on either existential or universal quantification (depending on which side

of duality they stood) to model this phenomenon. In all cases, they implicitly assigned a nominal behavior to the chosen

quantifier, along the lines of what we are doing with rule ∃n
r . Indeed, all encodings we review in this paper will rely on such

a behavior, and would forsake completeness if they adopted rule ∃r in its full generality.

Similarly to the case of the tensor product, we begin our scrutiny of the existential quantifier by listing a few logical

equivalences. They hold both in LV and in LVn. We give them names analogous to similar tensorial relations, although the

correspondence is not perfect.

Lemma 2.5. For any formulas A and B and term variables x and y, the following logical equivalences hold:

• Nominal Associativity : ∃x. (A ⊗ B) ≡ (∃x. A) ⊗ B if x �∈ FV(B)
• Nominal Identity : ∃x. 1 ≡ 1

• Nominal Commutativity : ∃x. ∃y. A ≡ ∃y. ∃x. A
Proof. This proof follows the pattern already seen in Lemma 2.1. Each of the two derivations underlying the definition of

logical equivalence are obtained by applying rules ∃l, ⊗l and 1l, followed by rules ∃r (in the restricted form of rule ∃n
r ), ⊗r , 1r

and id. Once more, all the left rules are applied before any right rule in the bottom up construction of each derivation. �

The last two equivalences in Lemma 2.5 have clear relations with standard properties of signatures. Nominal identity

ultimately corresponds to a form of weakening on signature symbols: if �; � −→�,x C is derivable but x �∈ FV(�,�, C),
then�; � −→� C is also derivable. Nominal commutativity is related to the fact that signatures are commutativemonoids.

We indicate the equivalence relation on logical formulas based on the three properties in Lemma 2.5 as≡∃. Furthermore,

we write ≡⊗∃ for the equivalence relation based on them and the properties specified in Lemma 2.1. Both are subrelations

of ≡ and neither is a congruence since they operate only at the top level.
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In preparation to extending the notion of observation introduced in Section 2.1, we define the existential closure of a

formula C with respect to a signature �, written ∃�. C, as the formula obtained by existentially prefixing C with each

element in �. Formally,{∃(··). C = C

∃(x,,�). C = ∃x. ∃�. C

Nominal commutativity (Lemma 2.5) ensures that existential closures started from different orderings of the same signature

� are logically equivalent. If C is the tensorial formula
⊗

� obtained from a linear context �, we abbreviate ∃�.
⊗

� as

∃�. �. We shall observe that this type of formulas can be taken as a canonical form relative to the equivalence relation ≡⊗∃.
Indeed, whenever A ≡⊗∃ B, then A ≡⊗∃ ∃�. � ≡⊗∃ B, for some � and �, as stated by the following lemma.

Lemma 2.6. For any formulas A and B such that A ≡⊗∃ B, there exist a signature � and a context � such that A ≡⊗∃ ∃�. � and

B ≡⊗∃ ∃�. �.

Proof. By iterated applications of nominal associativity from right to left, it is possible to transform A into an≡⊗∃-equivalent
formula of the form ∃�A. �A, and similarly for B. Now, it must be the case that

⊗
�A ≡⊗∃

⊗
�B modulo α-conversion.

Freezing such an α-conversion, take � to be �A for example and take � to be any signature that contains all the common

elements of �A and �B. �

Ifwe thinkof thementionofavariablex in thesignature� ofa sequent�; � −→� C asameta-logicalbindingoccurrence

for this variable relative to the whole sequent, then rule ∃n
r defines the existential quantifiers as the corresponding syntactic

binder for x in the goal C. We will shortly extend this interpretation to some situations involving the left-hand side. Its

generalization to the entire sequent essentially amounts to defining a notion akin to the “telescopes” of the AUTOMATH

languages [80], which is also featured in recent work on concurrent constraint programming [30]. The existential quantifier

is then the formula-level reification of what can be interpreted as a sequent-level binder. Note that the main difference

between rule ∃r and ∃n
r is that the latter forces this narrow interpretation of existential quantification, while the former also

provides support for arbitrary substitutions.

The presence of the existential quantifier in our language allows extending the statement of Lemma 2.2 to reify more

of the sequent structure into a derivable goal formula. Indeed, not only is the formula
⊗

� always derivable from a linear

context �, but so is its existential closure with any fragment of a legal signature for this sequent. Lemma 2.2 is upgraded as

follows and is provable both in LV and in LVn:

Lemma 2.7. For any contexts � and � and legal disjoint signatures � and �′ (i.e., such that FV(�,�) ⊆ (�,,�′)), there is a

derivation of the sequent

�; � −→�,,�′ ∃�′. �

Proof. By Lemma 2.2, there is a derivation of the sequent �; � −→�,,�′
⊗

�. This derivation is then extended downward

by successive applications of rule ∃r (actually ∃n
r ) on each item in �′. By nominal commutativity in Lemma 2.5, the actual

order of �′ is irrelevant. �

A careful scrutiny of this proof reveals that rule ∃r is always used in the restricted form given by ∃n
r . Note that Lemma 2.2 is

the special case of Lemma 2.7 where �′ = ··.
If we interpret the “state” of a sequent to consist not only of its linear context, as in Section 2.2, but also of the symbols

defined in its signature, this result allows us to construct derivable goals that observe this form of state. Indeed, Lemma 2.7

entails that the sequent�; � −→� ∃�. � is always derivable.Wewill generally be interested in reifyingnot all the symbols

appearing in a derivation, but only those introduced after a certain point in its construction. Hence the more general form

given as Lemma 2.7.

Given this intuition,we define the observation of a signature� and a linear context� as the formula∃�. � or any formula

that is equivalent to it via the relations in Lemmas 2.1 and 2.5. Note that, in the spirit of Lemma 2.7, this definition does not

require � to be a legal signature for �: it may not list all the free symbols in this context. Clearly, this definition subsumes

the notion of observation given in Section 2.2 as the special case where � is empty. We will discuss further generalizations

in Section 2.6.

Similarly to Property 2.3, the linear context and a fragment of the signature can be reified into a single existential-tensorial

formula on the left-hand side of an LV sequent. As we do so, we must make sure that such quantification does not apply to

any variable free in the unrestricted context or in the goal formula. Property 2.3 is upgraded as follows:

Property 2.8. For any contexts � and �, any formula C and for any legal signatures � and �′ such that �′ is disjoint from
FV(�, C),

�; � −→�,�′ C iff �; ∃�′. � −→� C
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Proof. The forward direction of this proof leverages the construction in the forward direction of Property 2.3, obtaining a

derivation of �; ⊗
� −→�,�′ C and then extends it downward by means of rule ∃l. The backward direction relies on cut

and Lemma 2.7. �
This result extends the interpretation of Property 2.3 by allowing us to treat the linear context� of an LV sequent together

with a portion�′ of its signature as a tensorial formula prefixed by a string of existential quantifiers over the variables in �′.
The restriction to �′ not to mention any variable free in the goal C is easily circumvented by first abstracting such variable

awayusing rule∃n
r . Lifting the restriction on theunrestricted context� requires a generalization of this result that is discussed

in Section 2.6. Observe that Property 2.3 is the special instance of this result in which �′ = ··.
Similarly to what we did for the tensorial language in Section 2.2, we will now carve out a sublanguage of LV (or more

precisely LVn) whose only derivable goal formulas are observations in the extended sense just introduced, modulo the

equivalence≡⊗∃ introduced with Lemma 2.5. This fragment, which we call LV1⊗∃, simply extends LV1⊗ with rule ∃n
r , so that

its right rules are just 1r , ⊗r and ∃n
r and its remaining rules are given by segments S, C and L in Fig. 2. Note that once more

LV1⊗∃ leaves out all the right rules in block X . See Fig. 1 for how these various languages are related.

To prove that only observations are derivable, we define another languagewhere this is obviously the case. The semantics

of this language, which we call LVobs
1⊗∃, consists of the left rules of LV (segment L in Fig. 2), its cut rules (segment C), rule clone

and the following rule obs, engineered from the statement of Lemma 2.7:

obs

�; � −→�,�′ ∃�′. �
In particular LVobs

1⊗∃ does not contain anyof the right rules of LV.Note that rule obs subsumes rule obs′ introduced in Section2.2

for a similar purpose, and also embeds rule id as a special case.

LanguagesLV1⊗∃ andLVobs
1⊗∃ have the samederivationalpowermodulo≡⊗∃ (actually just≡∃): this equivalence isneeded to

normalize the derivable goal formulas of the former language, whichmay interleave ∃ and⊗ and contain vacuous existential

quantifications, into the orderly goals supported by rule obs. Other than this remark, the following result tracks Theorem 2.4

in Section 2.2.

Theorem 2.9. Given a signature �, context � and � and a formula C,

1. If the sequent �; � −→� C has a derivation D in LV1⊗∃, then there exists a signature �′ and a context �′ such that

C ≡⊗∃ ∃�′. �′ and �; � −→� ∃�′. �′ has a derivation E in LVobs
1⊗∃.

2. If the sequent �; � −→� C has a derivation E in LVobs
1⊗∃, then it also has a derivation D in LV1⊗∃.

Proof. Similarly to Theorem 2.4, the forward direction (1) of this proof relies on rule permutation results such as [36,66] to

push rules 1r ,⊗r and ∃n
r upward inD, where they can be factored out into constructions for rule obs as specified by Lemma2.7.

A direct proof of the admissibility of obs is more complicated than in Theorem 2.4 because more linear logic operators are

involved.

The proof in the reverse direction (2) simply amounts to expanding every use of rule obs into the proof fragment

constructed by Lemma 2.5. �
The review portion of this paper (Sections 3 and 4) will rely on LV1⊗∃ to recall the traditional translations of various

concurrent languages into linear logic (actually LV1⊗ for propositional languages). Because it is a strict subset of LV, this will

not alter the encodings found in the literature, just focus thembyobserving that theydonotmake full use of the constructions

of linear logic.

The research part of this paper, in Sections 5–8, will build on the characterization of LV1⊗∃ as the equivalent system

LVobs
1⊗∃, which we just introduced. We will spend the next two subsections massaging it for this purpose. Readers who are

only interested in the review part of this paper may skip to Section 3.

2.4. Rewriting implication

Our first observation will be that, because LVobs
1⊗∃ is so much weaker than LV, the left rule for implication, −◦l, can be

advantageously simplified without altering derivability. Its replacement will be the following rule:

�; �2, B −→�,,�′ C
−◦′

l

�; �1,�2, (∃�′. �1) −◦ B −→�,,�′ C

which essentially requires that the antecedent A of the implication in rule −◦l in Fig. 2 be the existential-tensorial formula

∃�′. �1 corresponding to the context fragment �1 and existentially quantified over some subset �′ of the sequent’s

signature. Notice that this formula matches exactly the goal structure in rule obs. Note that −◦′
l is a derivable rule in LV:

it is emulated by simply using the sequent �; �1 −→�,,�′ ∃�′. �1, which has a derivation by Lemma 2.2, as the minor

premise of −◦l. One critical property of −◦′
l, actually the main reason for preferring it to −◦l, is that it does not have a minor

premise. We will make use of this property in Section 5.
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Fig. 3. The LVobs sequent rules for intuitionistic linear logic.

We call LVobs the language that differs from LVobs
1⊗∃ by replacing −◦l with −◦′

l. The semantics of LVobs is given by all the

rules displayed in Fig. 3, which embeds all the changes made to LV since Fig. 2 (we have renamed some of the entities in rule

−◦′
l for uniformity). See also Fig. 1 for how it relates to the other languages introduced in this section. We will gray out the

cut rules in Section 2.5.

Wewill nowprove that LVobs
1⊗∃ and LVobs allow deriving the same sequents. In order to do so, we need the following lemma

which essentially states that −◦l is an admissible rule in LVobs.

Lemma 2.10. For any legal signature�, contexts�,�1 and�2, and formulas A, B and C , if �; �1 −→� A and �; �2, B −→�

C are both derivable in LVobs, then �; �1,�2, A −◦ B −→� C has a derivation in LVobs.

Proof. The proof proceeds by an easy induction on the given LVobs derivation of �; �1 −→� A. �

At this point, the equivalence of LVobs
1⊗∃ and LVobs is easily assessed in the following corollary.

Corollary 2.11. The sequent �; � −→� C has a derivation D in LVobs
1⊗∃ iff it has a derivation E in LVobs.

Proof. The forward direction proceeds by induction on D, relying on Lemma 2.10 whenever encountering rule −◦l. The

backward direction proceeds by induction on E and expands occurrences of −◦′
l into an application of −◦l with obs as its

minor premise. �

The result we just obtained also holds of sublanguages of LVobs
1⊗∃. In particular, −◦l can be replaced with −◦′

l without

consequences for derivability in LVobs
1⊗ .

2.5. Cut-elimination

Another interesting property of LVobs (as well as LVobs
1⊗) is that the two cut rules it inherited from LV are admissible: any

derivation can be transformed into an equivalent cut-free derivation that does not make use of them.Wewill now prove this

property.

The first proof-theoretic proof of cut-elimination for linear logic was given in [69], and it is indeed for this purpose that LV

was designed. As in traditional logic, it implements a normalization procedure that highlights the computational contents of

the logic. The proof of cut-elimination for LVobs will follow the lines of [69], but itwill not be as involved because LVobs ismuch

simpler than LV. In particular, it has no right rules, which means that the normally quadratic number of cases to consider

is now linear in the number of rules. This also implies that there are no cross-cuts, which give the computational meaning

to the functional notion of reduction. Cut-elimination in LVobs is nonetheless important from a computational point of view
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because it removes the last rules featuring a minor premise, which will open the door to giving it a rewriting interpretation

in Section 5.

Webeginwith the followingauxiliary lemma,whichdescribes someof the consequencesof addingan item in the signature

or contexts of a derivable LVobs sequent. The cases for the signature and the unrestricted context are just standardweakening

properties.

Lemma 2.12. Given any legal signature �, contexts �, and �, variable x and formulas A and C, if �; � −→� C is derivable in

LVobs, then

1. (Signature Extension) �; � −→�,,x C is derivable in LVobs;
2. (Linear Extension) �; �, A −→� C ⊗ A is derivable in LVobs;
3. (Unrestricted Extension) �, A; � −→� C is derivable in LVobs.

Proof. Each statement is proved by an independent induction on the given derivation for �; � −→� C. �

At this point, we are ready to prove the admissibility of the cut rule. Notice in particular that, differently from LV [69], it

does not need to be proved simultaneously with the admissibility of cut!. This is another instance of the greater simplicity

of LVobs, resulting from being a much weaker language.

Lemma 2.13 (Admissibility of cut). For any legal signature �, contexts �, �1 and �2, and formulas A and C , for every cut-free

LVobs derivations of �; �1 −→� A and �; �2, A −→� C, there is a cut-free LVobs derivation of �; �1,�2 −→� C.

Proof. Thisproofproceedsby inductionon the structureof thegivenderivation for�; �1 −→� A. It reliesonLemma2.12(2)

in the case of rule obs, on Lemma 2.12(3) in the case of rule !l, and on Lemma 2.12(1) in the case of rule ∃l. �

Intuitively, the proof simply stacks the derivation of �; �2, A −→� C on top of that of �; �1 −→� A, with minor

bookkeeping to contexts and signature.

Next, we prove that rule cut! is also admissible. Note that this proof does depend on the admissibility cut in the previous

lemma.

Lemma 2.14 (Admissibility of cut!). For any legal signature �, contexts � and �, and formulas A and C , for every cut-free LVobs

derivations �; · −→� A and � A; � −→� C, there is a cut-free LVobs derivation �; � −→� C.

Proof. Differently fromLemma2.13, this proof proceeds by induction on the structure of the given derivation for�; � −→�

C. It uses Lemma 2.12(3) in the case of rule !l, and Lemma 2.12(1) in the case of rule ∃l. The subcase of rule clone where the

principal formula is precisely A is handled by an invocation to Lemma 2.13. �

Here, the construction is slightly more complex as the derivation of �; · −→� A can be sandwiched between that of

� A; � −→� C and an auxiliary reduction.

With both rules being admissible, cut-elimination is a standard corollary of the above lemmas.

Theorem 2.15 (Cut elimination). Every derivable LVobs sequent �; � −→� C has a cut-free derivation in LVobs.

Proof. As usual, this proof proceeds by induction on the structure of the given derivation of �; � −→� C. It relies on

Lemmas 2.13 and 2.14 when encountering rules cut and cut!, respectively. �

In the sequel, we will generally write LVobs to refer to the cut-free presentation of the language in Fig. 3, although we

may occasionally take advantage of the (admissible) cut rules. Notice again that without cut and cut!, all rules in LVobs have

exactly one premise (with the obvious exception of obs). Therefore, an LVobs derivation has a very simple structure: a tower

of left rules (or clone) capped by one instance of rule obs. There is no branching. This property and the way we engineered

rule obs will be the foundation for the rewriting language we will extract from LVobs in Section 5.

2.6. Discussion

Following the trajectory initiated in Sections 2.2 and 2.3, it is natural to wonder whether it is possible to reify within the

language of formulas not just the linear context � and the signature � of an LV sequent, but also its unrestricted context �.

We will now briefly show that this is indeed feasible and that some of the key properties we encountered in those sections

are naturally generalized. The resulting observational language is, however, rather weak and does not permit eliminating

rule cut!, which we attribute to the specific presentation of linear logic we started from, LV.

Given an unrestricted context �, we write !� for the linear context obtained by prefixing every formula in � with !.
Then, given also a linear context � and a signature �, the observation of the triple (�,�,�) is defined as the formula
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∃�.
⊗!� ⊗ ⊗

�, whichweabbreviate as∃�. (!�,�). Note that the relations in Lemmas2.1 and2.5 canbeused to rearrange

various parts of this formula. This augmented notion of observation reifies even more of the sequent structure. Indeed, it

supports the expected extension of Lemma 2.7:

For any contexts �, �′ and �, and legal disjoint signatures � and �′, there is a derivation of the sequent

�,�′; � −→�,,�′ ∃�′. (!�′,�)

and is proved in essentially the same way. Note that this allows us to take observations the whole “state” since the sequent

�; � −→� ∃�. (!�,�) is derivable. It also supports partial observations.

This very same formula can also be used to replace the entire left-hand side of a derivable LV sequent, and still maintain

derivability. The following strong generalization of Property 2.8 is indeed provable by means of a simple extension of the

technique used then.

For any contexts � and �, any formula C and any legal signature �,

�; � −→� C iff ◦ ; ∃�. (!�,�) −→·· ∃�. C

This result reifies the entire left-hand side of a sequent (including the signature) into a logical formula. This technique is

reminiscent of the notion of “telescope” in the AUTOMATH languages [80]. It also appears in recent work on concurrent

constraint programming [30]. Notice also that it is not subject to the scope limitations of Property 2.8, which it extends.

As done in Sections 2.2 and 2.3, we can define a language, LVobs
1⊗∃!, whose only provable goals are observations in the sense

just defined. It consists of the left rules of LV, its cut rules, clone and an observation rule of the form

�,�′; � −→�,�′ ∃�′. (!�′,�)

This language is, however, weaker than the extension of LV1⊗∃ with rule !r , call it LV1⊗∃!. For example, the sequent a; · −→�

!!a is derivable in LV1⊗∃! but not in LVobs
1⊗∃!. Furthermore, cut elimination does not hold in the observational language (but it

does in LV1⊗∃!). More precisely, rule cut is admissible, like in LVobs, but cut! is not. For example, a; · −→� !!a is derivable

using this rule because a; · −→� !a and a, !a; · −→� !!a are derivable in this language. However, the former sequent has

no cut-free derivation in LV1⊗∃!.
The results obtained in this sectionwill act as a foundation for the developments in the rest of the paper. A dual foundation

is possible, however, and some authors have explored it, as we will see. Specifically, our uses of multiplicative conjunction

(⊗) and unit (1) on the left-hand side of an LV sequent can be transformed into uses of multiplicative disjunction ( ) and its

unit, multiplicative falsehood,⊥, on the right of amultiple conclusion sequent of the form�; � −→� � [15,37]. The right-

hand side, �, becomes where the bulk of the action takes place, and it gets reified into the formula �. In this setting, the

quantifiers are dualized as well, with ∃ responsible for substitution and a nominal restriction of ∀ managing eigenvariables.

Occasionally, the unrestricted context is moved to the right as well, and every formula A in it is understood as being prefixed

by the ? modality, which is dual to ! [37].
3. Traditional interpretation of state-transition languages

A large number of languages for parallel and distributed programming are based on the state transition paradigm, in

which concurrent computation takes place on a global state shared by all participating agents. Each agent has at its dis-

posal transitions which allow it to make changes to the current state, possibly enabling other agents to perform steps.

Transitions operating on disjoint portions of the state can be applied in any order, possibly concurrently. Pratt [72,73] has

recently generalized this idea to account for transitions in progress and canceled transitions, hence obtaining a very detailed,

categorically-motivated, model of concurrency.

This paradigm was first described in abstract form by Petri [67,68] in a class of graphical models altogether known as

Petri nets. One particular model, place-transition Petri nets, has become de facto canonical. Colored Petri Nets, an industrial

“graphical oriented language for design, specification, simulation and verification of systems” [43] directly builds on this

approach. Nowadays, more often than not, the state transition paradigm takes the form of a term rewriting system, with

transitions expressed as rewrite rules. Several specification and programming languages endorse this view, for example

the conditional concurrent rewriting framework Maude [24,55], the programming language GAMMA [48], and the security

protocol specification language MSR [19,21]. Most model checkers also embrace this view of concurrency, for example [54]

in the sphere of security. Down under, all these languages are extensions of propositional multiset rewriting, which we see

as a fundamental model of the state transition paradigm. Place-transition Petri nets and propositional multiset rewriting are

indeed syntactic variants of each other.

Using the vocabulary of multiset rewriting, we identify a state with a multiset s̃ of atomic symbols. Wemodel transitions

as rewrite rules of the form ã b̃, where ã and b̃ are multisets: ã b̃ is applicable in state s̃ if ã is contained within s̃;

moreover, applying this rule has the effect of removing ã from s̃ and replacing it with b̃. Iterating the application of rules will

produce a succession of states. This leads to the natural notion of reachability of a state s̃′ from s̃, which we denote s̃ �∗
R s̃′

where R is the set of all the rules available to the agents.
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The interpretation of the state transition model of concurrency into linear logic relies on two observation: first, this

formalism embeds connectives that have the samemonoidal algebraic structure as multisets; second, linear logic provides a

mechanism to consume some assumptions and create newones,which is exactlywhat is needed to simulate rule application.

Specifically, a multiset s̃ can be represented as the tensor product ⊗s̃ of its elements so that the translation of a rule ã b̃

as the linear implication ⊗ã −◦ ⊗b̃ allows simulating multiset reachability by derivability in linear logic:

if s̃ �∗
R s̃′, then �R�; ⊗s̃ −→ ⊗s̃′

where�R� denotes the translation of all rules in R as outlined above. The reverse statement holds for a syntactically restricted

fragment of linear logic whose formulas directly correspond to the encoding of rules andmultisets. This basic interpretation

has been extended to more expressive languages based on the state transition model. In particular, we have enriched it

in [20] to support a first-order notion of multiset rewriting, which is at the basis of most practical languages based on the

state transition paradigm.

We formally define propositional multiset rewriting and the above intuitive interpretation in linear logic in Section 3.1.

We then extend this relationship to a form of first-order multiset rewriting in Section 3.2, and comment on alternative

translations in Section 3.3.

3.1. Propositional multiset rewriting

We start with themost basic form ofmultiset rewriting, which can be seen as a notational variant of place/transition Petri

nets. The language of propositional multiset rewriting (MSR0 hereafter) is given by the following grammar:

Multisets s̃, ã, b̃, c̃ ::= .̃ | s̃ ,̃ s

Multiset rewrite rules r ::= ã b̃

Rule sets R ::= .̂ | R ,̂ r

where s refers to an element of the support set S. Multisets s̃ are elements of themonoid freely generated from S, themultiset

union operator “ ,̃” and the empty multiset “.̃”. A rule set R is simply a set of rewrite rules: we write .̂ and ,̂ for the empty

set and the extension of a set (R) with an element (r).

A rule r = ã b̃ is applicable in a state s̃, if s̃ contains r’s antecedent ã (i.e., s̃ = c̃ ,̃ ã for some c̃). In these circumstances,

the application of r to s̃ yields the state s̃′ obtained by replacing ãwith r’s consequent b̃ in s̃ (i.e., s̃′ = c̃ ,̃ b̃). This is expressed

by the basic multiset rewriting judgment s̃ �R s̃′, which is formally defined by the following transition pattern:

msr0 : (c̃ ,̃ ã) �
R ,̂

(
ã b̃

) (
c̃ ,̃ b̃

)

We write _ �∗
_ _ for its reflexive and transitive closure.

The close affinity between multiset rewriting and simple fragments of linear logic has been known for a long time [7,

16,18,27,38,46,52]. Indeed tensorial formulas obey the same monoidal laws as contexts, and the semantic rule msr0 can be

emulated using −◦l and a few auxiliary rules. We construct a homomorphic mapping by interpreting “.̃”, “ ,̃”, , “.̂” and
“ ,̂” as “1”, “⊗”, −◦, ◦ and , respectively. We naturally extend this mapping to the relative syntactic categories, and write

�X� for the linear logic formula corresponding to entity X . More formally:

�.̃� = 1

�s̃ ,̃ s� = �s̃� ⊗ s

�ã b̃� = �ã� −◦ �b̃�
�.̂� = ◦

�R ,̂ r� = �R� �r�
Note that rule sets are mapped to unrestricted contexts, which share the same algebraic structure as sets.

The soundness of this encoding, which states that reachability between two states can be simulated by the derivability

of their representations, is formally given by the following simple property:

Property 3.1. For every pair of states s̃, s̃′ and every rule set R, if s̃ �∗
R s̃′, then the sequent �R�; �s̃� −→S �s̃′� is derivable in

LVn.

Proof. Theproof proceedsby inductionon the lengthof the transition chain. Thebase case is a trivial applicationof rule id. The

proof of the step case requires showing that for every single-rule application s̃ �R ,̂r s̃′ the sequent �R ,̂ r�; �s̃� −→S �s̃′� is

derivable. Such a derivation is constructed by using rule clone to bring the encoding of the rule r in R into the linear context,

then rule −◦l is used to isolate the part of the context corresponding to the antecedent of r and add its consequent to the rest

of the context. Applications of rules ⊗l, 1l, ⊗r , 1r and cutmediate between tensorial formulas and objects in the context. �
It should be noted that the derivation �R�; �s̃� −→S �s̃′� constructed in this proof is actually valid in LV1⊗ since it does

not use any right rule besides 1r and ⊗r . In fact, the interpretation of MSR0 into linear logic makes a very limited use of the

expressive power of LVn.
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The family of mappings �_� identifies a syntactic fragment LLMSR0 of intuitionistic linear logic, that is the linear logic

formulas that are in the image of �_�. Clearly, �_� is a bijection over LLMSR0 (modulo the monoidal laws of each formalism),

and indeed the inverse of the above property holds with respect to LLMSR0 :

Property 3.2. For every pair of states s̃, s̃′ and every rule set R, if �R�; �s̃� −→S �s̃′� is derivable, then s̃ �∗
R s̃′.

Proof. This proof is much more involved than that of Property 3.1 as a generic derivation of �R�; �s̃� −→S �s̃′� may not

neatly factor into segments that correspond to individual rewrite rule applications, and even when a single rewrite step is

applied the interleaving of logical inferences may be quite wild. For this reason, the bulk of the proof consists in the rather

tedious task of disentangling a generic derivation of that sequent into an orderly sequence of linear inferences that essentially

mimics the construction in theproof of Property 3.1. This derivation transformation is formally basedonpermutability results

among linear inference rules [36,40,42,60,66]. Some additional details can be found in [20]. �
Again, this proof lies fully in the LV1⊗ semantic sublanguage of LVn. Since LV1⊗ is equivalent to LVobs

1⊗ , which is a sublanguage

of LVobs, the last two properties imply that reachability in propositional multiset rewriting is mapped to derivability in this

fragment of linear logic.

3.2. First-order multiset rewriting

We now extend the above results to a richer form of multiset rewriting. We consider multiset elements that can carry

structured values, and are manipulated by parametric rewrite rules. Banâtre and Le Métayer have developed this basic idea

into the programming language GAMMA [8], while Jensen has turned it into the flexible formalism of Colored Petri Nets [43].

Maude [24,55] extends this concept by supporting the concurrent rewriting of generic terms, not just multisets. This finer

model has recently been extended with the possibility of creating fresh data in the security specification languageMSR [21].

We take this as the language of first-order multiset rewriting (MSR1 hereafter).

Abstractly, we take the support set S to consist of first-order atomic formulas over some initial signature�0. Rules assume

the form

Multiset rewrite rules r ::= ∀�x.ã ∃�n.b̃
where �y denotes a sequence of variables (y1, . . . , yn) for some n. The scope of the universal variables �x ranges over the whole

rule, while the existential variables �n can appear only in its consequent. We assume implicit α-renaming for both sorts of

bound variables. We write � � t to indicate that t is a valid term over signature �, and � � �t for the natural extension

of this notion to sequences of terms �t. We write [�t/�x]ã for the simultaneous substitution of terms �t = (t1, . . . , tn) for the

variable �x = (x1, . . . , xn) in multiset ã.

The basic judgment ofMSR1 has the form�; s̃ �R �′; s̃′, where both the initial and final states consist of a signature and a

multiset. A rule r = ∀�x.ã ∃�n.b̃ in R is applicable in�; s̃ if its universal variables �x can be instantiated to�-valid terms�t so
that the antecedent matches s̃ (i.e., s̃ = c̃ ,̃ [�t/�x]ã for some c̃). In this case, applying r results in a state �′; s̃′ whose signature

is obtained by extending � with �n (modulo α-renaming), and s̃′ is given by replacing the discovered instance of ã with the

corresponding instance of b̃ (i.e., s̃′ = c̃ ,̃ [�t/�x]b̃). This is summarized by the following schematic transition:

msr1 : �;
(
c̃ ,̃

[�t/�x] ã) �
R ,̂(∀�x.ã ∃�n.b̃) (�, �n);

(
c̃ ,̃

[�t/�x] b̃)
if � � �t.

Again, we write _ �∗
_ _ for the finite iteration of _ �_ _.

The propositional embedding in Section 3.2 is easily extended to account for the first-order infrastructure just discussed:

we shall simply map the rule binders ∀ and ∃ to the homonymous quantifiers ∀ and ∃ of linear logic. Then the semantic rule

msr1 compounds a derivation sequence consisting of rule clone, zero or more uses of ∀l, one application of −◦l, and zero or

more of ∃l. Formally, this mapping, which we still call �_�, is defined as in the propositional case, except for the translation

of rewrite rules:

�∀�x.ã ∃�n.b̃� = ∀�x.�ã� −◦ ∃�n.�b̃�
Thismapping identifiesanother syntactic fragmentLLMSR1 of linear logic, and isagainbijectiveover this fragmentaccording

to the nominal semantics of the existential quantifier discussed in Section 2.3. The formal correspondence between MSR1

and LLMSR1 enjoys the following soundness property [20]:

Property 3.3. For every signatures �, �′, states s̃, s̃′, and rule set R, we have that if �; s̃ �∗
R (�,�′); s̃′, then the sequent

�R�; �s̃� −→� ∃�′. �s̃′� is derivable in LVn (and LV).

Proof. This proof proceeds as in the propositional case, with the minor complication of handling the quantifiers. The one

aspect worth noting is that every application of rule ∃r comes in the form of its nominal variant ∃n
r : the existential quantifier

in the conclusion’s goal formula is introduced exclusively as a syntactic binder for all occurrences of a free variable in the

premise’s goal — no substitution is performed. �
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A close inspection of the construction performed in this proof reveals that the sequent �R�; �s̃� −→� ∃�′. �s̃′� is derived

in the sublanguage LV1⊗∃ of LVn (and LV), which was introduced in Section 2.3. An even closer inspection shows that the

goal formulas in the conclusion of this property has the structure, ∃�′. �′, prescribed by rule obs, which entails that this

construction actually lies result holds within LVobs.

As noted in [56], the reverse completeness argument does not hold if we allow rule ∃r to be used in its full generality. In

fact, the possibility of substituting arbitrary terms�t yields derivations that may not correspond to any rewrite sequence. For

example, given a signature� containing the constants+, 3 and 5, a general use of rule ∃r allowsus to build a derivation for the

linear logic sequent a −◦ b(3 + 4); a −→� ∃x. b(x). However, there is no rewrite sequence for translation of this sequent

according to �_�, i.e., for the the judgment �; a �∗
a b(3+5)

(�, x); b(x). For this reason, we must restrict our attention to

derivations that make use of rule ∃n
r rather than the more general ∃r . Therefore the following property is only valid in LVn,

and not LV.

Property 3.4. For every signatures �, �′, states s̃, s̃′, and rule set R, whenever the sequent �R�; �s̃� −→� ∃�′. �s̃′� has a

derivation in LVn, then �; s̃ �∗
R (�,�′); s̃′.

Proof. Thisproof relieson thederivation-transformation techniqueoutlined in thepropositional setting. Theneed toconsider

the quantifier rules nearly doubles the number of permutation that shall be considered. �

This proof too is in the LV1⊗∃ sublanguage of LVn, and therefore in LVobs.

Thegeneral analysis justperformedclearlyapplies tofirst-ordermultiset rewritingsystemswhichdonotmakeuseof∃, i.e.,
whose rules have the form ∀�x.ã b̃. Such systems are at the basis of formalisms such as GAMMA [8], colored Petri nets [43],

and in a sense Maude [24,55]. For this subclass, the logical construction just discussed specializes to multi-conclusion linear

Horn clauses, which Kanovich has extensively mined for complexity results [44,45].

3.3. Discussion

The representation of multiset rewriting in linear logic illustrated above is known as the conjunctive encoding because

it maps the monoidal structure of multisets to multiplicative conjunction (⊗) and its unit (1). Several authors, for exam-

ple [58], use the alternative disjunctive encoding, which relies on the observation that linear logic endows also multiplicative

disjunction and its unit ⊥ with the algebraic structure of a commutative monoid. Then s̃ is interpreted as s̃ and the

rule ã b̃ as the implication ã −◦ b̃. Some authors [58] also dualize the use of the quantifiers ∀ and ∃, which yields the

reverse implication b̃ −◦ ã as an encoding of the rule ã b̃. In these cases, it is ∀which is given a nominal semantics via

a restriction of rule ∀l similar to ∃n
r .

These two sets of connectives are dual to each other and therefore whenever a sequent is provable, the sequent obtained

by exchanging ⊗ and , and 1 and ⊥ is also derivable. Thus, the results obtained by these authors are essentially syntactic

variants of the properties reported above. The inference rules for and⊥ are given in terms ofmultiple conclusion sequents,

of the form �; � −→� �, where � is a multiset of formulas rather than a single formula. For this reason, they make use

of the derivation structure of classical linear logic [37], or at least full intuitionistic linear logic [15].

4. Some logical interpretations of process-based languages

The process-based paradigm is a more recent, alternative, model of concurrency which has attracted a lot of attention,

especially because it supports refinedmathematical concepts closely related to concrete analysis problems. See [34,41,63,74]

for an overview. This paradigm identifies each agent with a process and communications between agents replace the global

state as the vehicle of computation. Beyond this common characterization, languages vary greatly in the primitives they

provide, which often translates in subtle semantic differences. Differently from the transition-based paradigm, there is no

abstract language, or even a set of feature, that is universally accepted as the archetypal process algebra. Within the scope of

this paper, this necessarily leads to fragmented interpretations into linear logic, which cannot always be readily reconciled.

For this reason, the focus of this section will be on a specific language, the asynchronous π-calculus [74] which we interpret

in linear logic in Section 4.2. For presentation purposes, we first consider a propositional variant in Section 4.1. Other process-

based languages and translations are summarily discussed in Section 4.3. We will later provide a detailed encoding of one

of them, the join calculus [34], in Section 7.3.

4.1. Propositional process algebra

Webegin by studying the translation in linear logic of aminimally expressive variant of theπ-calculus [74], an instructive

exercise before examining the more general case in Section 4.2. Processes in this calculus can synchronize on actions, but

without exchanging any value. They can also be replicated and composed in parallel. It is defined by the following grammar:

Processes P,Q , R ::= 0 | P ‖ Q | !P | xP | x
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where x and x are a name and the corresponding co-name, respectively. Furthermore, P ‖ Q is the parallel composition of P

andQ , and !P is process replication. In anticipation of our study of the asynchronousπ-calculus in Section 4.2,wedonot allow

a co-name to be followed by further activities. In Section 4.3, we will comment on the complications of allowing a process

continuation, which leads to the synchronous version of the π-calculus. We call the present language the propositional

asynchronous π-calculus and refer to it as aπ0.

Processes are endowed with a notion of structural equivalence, written P
π≡ Q , given as follows:

P ‖ Q
π≡ Q ‖ P P ‖ 0

π≡ P P ‖ (Q ‖ R)
π≡ (P ‖ Q) ‖ R

It makes parallel composition (‖) a monoidal operator with the null process 0 its unit. Traditionally, many authors have con-

sidered an additional structural equivalence, !P π≡ P ‖ !P, which interprets process replication as the parallel composition

of arbitrarily many copies of a process. Following a number of authors, e.g., [23,28,56,70], we will turn it into a one-sided

reduction. A detailed discussion of this issue can be found in Section 4.3.

Processes evolve through synchronization. In its basic form, such computation is modeled by the judgment P Q , and

defined by the following inference patterns:

red_i/o
x ‖ xP P

P P′
red‖

P ‖ Q P′ ‖ Q
red!!P !P ‖ P

The first rule formalizes synchronization with respect to action x. The second entails that parallel composition is permeable

to synchronization, but that replication and names block it. The third extracts a copy from a replicated process. The structural

equivalence
π≡ can implicitly massage processes before and after synchronization.5 Let _ ∗ _ be the reflexive and transitive

closure of _ _.

We define an encoding �_� of this propositional process algebra into linear logic by homomorphically mapping 0, ‖, and
! to 1⊗, and !, respectively. Actions are represented as the corresponding name, with xP mapped as a linear implicationwith

antecedent x and consequent the encoding of P. More formally, �_� is defined as follows:

�0� = 1

�P ‖ Q� = �P� ⊗ �Q�
�!P� = !�P�

�xP� = x −◦ �P�
�x� = x

This encoding identifies a syntactically restricted fragment of propositional linear logic which we call LLaπ0 .

The formal correspondence between this process algebra and linear logic is more involved than in the case of multiset

rewriting as we must take into consideration structural equivalence (
π≡) in addition to computation ( ∗ ). We first examine

the former as it is defined independently from computation: intuitively,
π≡ and ≡⊗ are homomorphic modulo the encoding

�_�. Indeed, the following soundness result states that structural equivalence maps to tensorial equivalence.

Property 4.1. Given processes P and Q , if P
π≡ Q , then �P� ≡⊗ �Q�.

Proof. The proof proceeds by structural induction on a construction of P
π≡ Q . �

Since ≡⊗ ⊆ ≡, this property entails that �P� and �Q� are logically equivalent in LVn.

The corresponding completeness result holds also, for the formulas constructed as encoding of well-formed processes:

Property 4.2. Given processes P and Q , if �P� ≡⊗ �Q�, then P
π≡ Q .

Proof. Because �_� is an isomorphism over LLaπ0 with respect to the two equivalence relations, the proof proceeds by a

simple induction on the construction of �P� ≡⊗ �Q�. �

Clearly this property does not hold if wewere to replace tensorial equivalence≡⊗ with logical equivalence≡ since the latter

relation is much larger, even relative to LLaπ0 : for example �!x� ≡ �!!x�, but !x � π≡ !!x (and also �!x� �≡⊗ �!!x�).
Given Lemma 4.1, process reduction is directly captured by derivability of its linear logic representation. This establishes

the soundness of the encoding.

5 Alternatively, we could make the dependency of on
π≡ explicit by introducing the following rule:

P
π≡ P′ P′ Q ′ Q ′ π≡ Q

red
π≡

P Q
.
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Property 4.3. Given processes P and Q , let �P be the set of all names in P. If P ∗ Q , then ◦ ; �P� −→�P
�Q� is derivable

in LVn.

Proof. This proof is again a straightforward induction. �

Note that this property holds in LVn, but not in the weaker systems discussed in Section 5. The issue is that they do not

allow observing formulas stored in the unrestricted context, so that for example !x ∗ !x ‖ x holds in aπ0 but ◦ ; �!x� −→x

�!x ‖ x� has no derivation in LVobs
1⊗ (although it has one in LVn). To recover soundness, this property needs to be weakened

as follows:

Property 4.4. Given processes P and Q , let �P be the set of all names in P. If P ∗ Q , then there exist contexts � and � and a

process Q ′ such that ◦ ; �P� −→�P

⊗
� is derivable in LVobs

1⊗ where �Q ′� = ⊗
(!�,�) and Q

π≡ Q ′. Moreover, each formula

!A in !� is a subformula of �P�.

Proof. This proof is again a straightforward induction on P ∗ Q , simulating each reduction with the sequence of rule

applications as dictated by the encoding. Then � is simply the unrestricted context appearing in the last sequent prior to

making the final observation. �

Completeness is a much more complicated affair, even in LVn. The reverse of Property 4.3 does not hold: for example,
◦ ; �!x� −→x �x� is derivable in every linear language examined in Section 2, but there is no sequence of reductions that

yields !x ∗ x in aπ0. Here, the logical derivation has discarded the representation of the replicated process !x on the right-

hand side, which is allowed since it is stored as a formula (x) in the unrestricted context: the process we would expect is

x ‖ !x. This suggests complementing the right-hand side of the sequent with some appropriate process, as in Property 4.4.

This again does not work: ◦ ; �!x� −→x !!x is derivable in LVn, but the semantics of aπ0 is unable to extract the doubly

replicated process !!x out of !x. However, deriving !!A from !A is not possible in any of our observational languages either.

This suggests using for example LVobs
1⊗ instead of LVn, which leads to the following weak completeness result:

Property 4.5. Let P be a process, �P be the set of all names in P, and � be a context. If ◦ ; �P� −→�P

⊗
� is derivable in

LVobs
1⊗ , then there is an unrestricted context � such that �Q� = ⊗

(!�,�) and P ∗ Q . Moreover, each formula !A in !� is a

subformula of �P�.

Proof. This proof proceeds in the now usual fashion: inferences need to be reordered according to correspond to the

permutability laws to parallel process inferences. The context � is constructed as follows: whenever rule obs′ is used on a

sequentof the form�′; � −→�P

⊗
�weextend thederivation so that it yields�′; � −→�P

⊗!�′ ⊗ ⊗
�, andwhenever

combining subderivations of this form, we trim common banged formulas using the cut rule and rule !l. �

This result pigeonholes the interpretation of this particular process algebra in an observational language, here LVobs
1⊗ since

aπ0 is propositional, rather than in the larger space of (propositional) linear logic derivability. The fact that we need to

reconstruct an unrestricted context� to achieve completeness suggests that a stronger notion of observation, along the lines

of the language LVobs
1⊗∃! briefly discussed in Section 3.3, would be an even better target than LVobs

1⊗ . As we observed, a logically

well-behaved language with these characteristics has not yet been isolated.

4.2. First-order process algebra: the asynchronous π-calculus

We now extend the propositional language defined above by allowing actions to carry arguments, so that a co-name

process, now of the form x〈y〉, implements the output of y over the channel x, and a name-prefixed process, now x(y)P, dually
inputs a value from channel x, binds it to the variable y, and then passes it to process P. We additionally introduce the hiding

operator, νx.P, which creates a new channel or variable name. Because an output process does not have a continuation, the

resulting language corresponds to aminimal form of the (first-order) asynchronousπ-calculus (hereafter aπ1). It is formally

defined by the following grammar [74]:

Processes P,Q , R ::= 0 | P ‖ Q | !P | νx.P | x(y)P | x〈y〉
where x and y are names (or channels). Hiding (νx.P) and input over a channel x (x(y)P) bind the names x and y, respectively,

up to α-renaming. We write FN(P) for the set of names free in process P and [x/y]P for the substitution (renaming) of x for

y in P. Input and output (x〈y〉) are monadic, and the latter can only be the last action of a process (together with 0), which

makes communication asynchronous. This core calculus can easily be generalized to support polyadic channels, complex

terms, and pattern matching [74].

We generalize the notion of structural equivalence, still written P
π≡ Q , to partially allow hiding to commutewith parallel

composition and other hiding operators. The overall definition of this relation is reported in the following table, where the

right side has been added to the clauses in the previous section:
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P ‖ Q
π≡ Q ‖ P νx.νy.P

π≡ νy.νx.P

P ‖ 0
π≡ P νx.0

π≡ 0

P ‖ (Q ‖ R)
π≡ (P ‖ Q) ‖ R νx.(P ‖ Q)

π≡ (νx.P) ‖ Q if x �∈ FN(Q)

The computation semantics extends the rules seen in the propositional case to account for the argument of input and

output actions, and for hiding. Altogether, they take the following form:

red_i/o
x〈y〉 ‖ x(z)P [y/z]P

P P′
red‖

P ‖ Q P′ ‖ Q

P P′
redν

νx.P νx.P′ red!!P !P ‖ P

The first rule formalizes the transmission of a name y over a channel x (reaction). The remaining three entail that parallel

compositionandhidingarepermeable to communication, but that replicationand inputblock it. Again, structural equivalence
π≡ can implicitly act on processes during computation.

The encoding of aπ1 in linear logic extends the propositional representation given in Section 4.1 with a case for the

hiding operator (modeled as a nominal existential quantifier) and revised definitions for input and output. We reserve a

binary predicate symbol c and use it as a universal channel when representing input and output: �x〈y〉� = c(x, y) and

�x(y)P� = ∀y. c(x, y) −◦ �P�, where �P� is the encoding of the embedded process P. The resulting mapping is therefore as

follows:

�0� = 1

�P ‖ Q� = �P� ⊗ �Q�
�!P� = !�P�

�νx.P� = ∃x. �P�
�x(y)P� = ∀y. c(x, y) −◦ �P�
�x〈y〉� = c(x, y)

Let LLaπ1 be the syntactic fragment of linear logic in the image of this encoding. Note that≡⊗∃ and
π≡ are homomorphic over

LLaπ1 .

The soundness and completeness results reported in Section 4.1 for the propositional variant of this calculus extend

naturally to the first-order setting. The structural equivalence of aπ1 maps to the tensorial-existential equivalence ≡⊗∃ of

LVobs over LLaπ1 :

Property 4.6. For any processes P and Q , P
π≡ Q iff �P� ≡⊗∃ �Q�.

Proof. This proof is similar to the propositional versions seen in Section 4.1. For both directions, we proceed by induction

on the construction of the appropriate equivalence. �

As in the propositional case, since ≡⊗∃ ⊆ ≡, the forward direction can be further strengthened: if P
π≡ Q , then �P� ≡ �Q�

in LVn. However, no similar generalization applies for the reverse direction.

Reduction chains correspond to derivability in LVobs, but as for aπ0, we shall be very careful (and rather verbose) about

how to state the correctness of the encoding. The soundness and completeness results are summarized in the following

property.

Property 4.7. Let P be a process and �P = c,, FN(P).

1. For any process Q , if P ∗ Q , then there exist a signature �, contexts � and �, and a process Q ′ such that ◦ ; �P� −→�P

∃�. � is derivable in LVobs where Q
π≡ Q ′ and �Q ′� = ∃�. !�,�. Moreover, each formula !A in !� is a subformula of �P�.

2. For any signature � and context �, if ◦ ; �P� −→�P
∃�. � has a derivation in LVobs, then there are an unrestricted context

� and a process Q such that �Q� = ∃�. (!�,�) and P ∗ Q . Moreover, each formula !A in !� is a subformula of �P�.

Proof. This proof extends the techniques used in Section 4.1 to handle the propositional infrastructurewith the treatment of

quantifiers, especially (nominal) existential quantification, discussed in Section 3.2. The proof of the first statement proceeds

by induction over the given reduction chain, eventually picking� as the unrestricted context discarded by rule obs. The proof

of the second part is similar to that of Property 4.4. Here, � represents the signature symbols added to �P by rule ∃l, which

we collect by means of rule obs and make explicit in the goal formula. �
The second part of this property (completeness) admits a stronger statement in LVn, namely, if P ∗ Q , then ◦ ; �P� −→�P

�Q� is derivable in LVn. As in the propositional case, no such strengthened soundness property (part 1) holds in LVn.
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Similarly to the propositional case, this result forces the interpretation of the first-order asynchronous π-calculus in

the observational language LVobs rather than in the more general LVn. The fact that we need to reconstruct lost replicated

processes indicates that this language is not a perfect target, but as indicated earlier, the quest for such a perfect target is still

on-going.

4.3. Discussion

The calculi we examined in the previous two sections are very simple, and so is their interpretation in linear logic, yet it

identifies points of friction between the two formalisms, notably about the distinctmeanings of “reuse” in linear logic (where

! is idempotent, so that !A ≡ !!A) in contrast to “replication” in process algebra (which is not idempotent, so that !P � π≡ !!P),
and their role with respect to the notion of structural equivalence (further discussed below). It should also be noted that the

semantics we captured is purely operational as it models the evolution of a system as its processes communicate with each

other. This is the very simplest, and least interesting, notion of behavior. Wewill now briefly discuss alternative translations,

competing process algebras, and other semantics.

As in the case of multiset rewriting, we used a conjunctive encoding. The dual disjunctive representation, which relies on

and ⊥ where we used ⊗ and 1, is an equally valid option that several authors have explored (e.g. [56]).

As noted earlier, process-based languages come inmany variants which have not yet been reduced to a common denomi-

nator. The synchronousπ-calculus [74] differs from the formalism studied in Section 4.2 by allowing outputs processes of the

form x〈y〉P: this process is blocked until some other process synchronizes with it by performing an input on channel x. Such

synchronization on output complicates the translation in linear logic, as indirectly pointed out in [14] and [20], because we

need to simulate the blocking/unblocking of computation with dedicated tokens: the simple-minded translation of x〈y〉P
as c(x, y) ⊗ �P� does not work and shall instead be replaced by wx −◦ (c(x, y) ⊗ �P�) where the constant wx needs to be

consumed before c(x, y) can be released — a process available to execute an input on x will provide wx . The synchronous

π-calculus often provides a non-deterministic choice operator, P + Q , which allows synchronization with either P or Q .

While it is tempting to interpret + as the linear connective , whose left rule non-deterministically chooses one of the

disjuncts to continue the computation, this mapping is inadequate as it ignore the synchronization requirement [23,73].

While we are unaware of a general solution within linear logic, a correct encoding has been given in the closely related

CLF logical framework [23]. Further behavioral variations of the process algebras have been proposed in the literature, see

for example [74] for additional variants of the π-calculus. We are not aware of a systematic attempt at interpreting them

in linear logic, although we believe such a translation could be beneficial. We will examine the join calculus [34] in a later

section of this paper.

Many traditional accounts of theπ-calculus, startingwith [63], replace the one-way reduction !P !P ‖ P, implemented

as rule red!above,with the two-waystructural equivalence !P π≡ !P ‖ P. Itwouldbenatural tomap it to the logical equivalence

!A ≡ !A ⊗ A, except that this is not an equivalence at all in LV (or in any presentation of linear logic): the sequent ◦ ; A ⊗
!A −→� !A is not derivable (although the reverse entailment does hold). Siding with several other authors (e.g., [23,28,56,

70]),we opt instead for themore computational interpretation givenby rule red!. Alternatively,we could have accommodated

!P π≡ !P ‖ P as a structural equivalence by adopting !A ≡ !A ⊗ A as an extra-logical axiom in the completeness results in this

section, so that each of them would postulate the existence of a linear logic derivation modulo !A ≡ !A ⊗ A.

The translations given in this section have focused on the operational semantics of process algebras as reduction calculi,

which may be used in a programming language [70] or for model checking purposes. Other semantic notions, such as may-

and must-testing, or bisimulation, are particularly useful for verification purposes as they can scrutinize fine properties of

process expressions. Limited work, mostly relative to the process-as-term interpretation, has aimed at reinterpreting these

notions in linear logic, with [56,58] providing an interesting perspective on this little investigated problem. The treatment

of these notions, although extremely interesting, is outside the scope of the present paper.

Anumberofother interpretationsofprocessalgebras in linear logichavebeenproposed.Abramsky’s “proofs-as-processes”

relates classical linear logic with the synchronous π-calculus [2,3,10]. Here concurrent computation corresponds to proof

normalization (cut elimination), giving the system a functional flavor, with [3] stressing the notion of realizability. Proofs

are expressed as proof nets rather than derivations, as done here. Closer to the encodings in this paper are approaches

in which logical formulas are identified with processes and proofs with concurrent computations. For example, Miller

outlines a translation from the π-calculus into linear logic: processes become formulas and π-calculus reduction becomes

entailment [56]. These ideas are generalized and reformulated as a logical framework inMiller’s proposal for the specification

logic Forum [57].

5. A rewriting view of linear logic

In Section 2, we started from a traditional presentation of intuitionistic linear logic, Pfenning’s LV [69], and isolated

a semantic fragment that we massaged into the deductive system LVobs. In the last two sections, we showed that the

mainstream interpretations of various models of concurrency into linear logic target derivational behaviors that fit squarely

within LVobs.
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Fig. 4. A rewriting interpretation of LVobs.

In this section, we propose an alternative reading of LVobs as a rewrite system. In a way, we have done all the work in

Section 2 already: with the exception of obs, all rules in LVobs’s cut-free semantics in Fig. 3 have a single premise, which

permits viewing them as a description of how to rewrite their conclusion into this one premise (the judgment � � t in

rule ∀l is a simple side-condition, not a second premise). This process is guided by focusing on a single context formula

(generally in the linear context, except for clone). The goal formula never changes: it is instantiated by rule obs, which is

always applicable. If we take the signature and the two contexts to be the “state” that is rewritten by applying the rules of

LVobs upward, then obs allows observing any state reachable during the rewrite process.

Reading the rules of LVobs in this way forces us to reflect on two strongly ingrained tenets of computational logic: the

finiteness of derivations and the importance of the goal formula. By definition, a derivation is a finite object and the chaining

of rules during proof search has the objective of finding such a finite derivation. In LVobs, a derivation stump can almost

always be grown indefinitely (the only exceptions involve purely additive–multiplicative theories [50], whose derivations

are necessarily finite) and rule obs can stop this process at any point to observe what is being achieved. This endorses a

view of derivations as infinite objects which can be approximated by a series of finite observations (the derivations in the

traditional sense). This view is a perfect fit for concurrent systems, which are generally intended tomodel infinite behaviors.

In the computational view of the logical scaffolding, a sequent’s goal is often interpreted as something we are interested

in proving and the contents of the context as assumptions to be used during the derivation. The notion of goal-oriented

proof search [60] strongly embraces this idea. The rewriting reading of LVobs reverses the focus of proof-building as it is the

contexts that drive the construction of the derivation while the goal is used to make observations. Indeed, the goal is often

just an output variable.

This reading of LVobs provides the foundations for a powerful form of rewriting, which we refer to as ω. We will show in

Section 6 that a tiny syntactic fragment of ω corresponds exactly to traditional multiset rewriting (or place/transition Petri

nets). In Section 7, we similarly demonstrate that a small subset of ω naturally captures the operational semantic of various

process algebras, and it does so in a simpler way than our logical interpretation in Section 4.

Taken in its entirety,ω can be viewed as an extreme form of multiset rewriting: it drops the distinction betweenmultiset

elements and rewrite rules, and considerably enriches the expressive power of standard multiset rewriting with embedded

rules, parametricity, choice, replication and more. It can also be viewed as a sophisticated process algebra which supports

the atomic execution of complex communication patterns, a rich set of process operators and a primitive notion of state.

Furthermore, ω has deep logical roots since its semantics was obtained rather directly from the rules of intuitionistic linear

logic. Of course,ω is muchweaker than logic since it discards nearly all right rules of the LV sequent presentation, yet what is

retained constitutes a powerful form of rewriting, as we will see. This development is indeed reminiscent of (and somewhat

dual to) the synthesis of abstract logic programming from the proof-theory of intuitionistic logic [60].

With relations to the two major paradigms for distributed and concurrent computing, ω is a promising middle ground

where both state-based and process-based specifications can coexist. We test this proposition in Section 8 in the arena of

cryptographic protocol specification, in which both approaches are prominently used, and only ad-hoc mappings exist to

bridge them. There, we hint at the development of ω into the protocol specification language MSR 3 and scrutinize various

ways of expressing a protocol in it.

The present section is organized as follows. In Section 5.1, we formalize the reading of the rules of LVobs as a rewrite

system. We streamline it in Section 5.2 into ω and highlight some of its properties in Section 5.3. Additional considerations

are found in Section 5.4.

5.1. Interpreting observational sequent rules to rewrite rules

With the exception of obs (and the cut rules, which we have proved admissible in LVobs), each rule in Fig. 3 can be

interpreted as a transformation of the sequent in its conclusion to the sequent in its premise, possibly subject to side-

conditions. We formalize this observation as a rewrite system whose states are triples (�; �; �) consisting of the signature

� and the two contexts, � and �, of an LV sequent. These entities continue to have the algebraic structure assigned to them

in Section 2.1: � is a commutative monoid without duplicate elements, � is a set, and � is a commutative monoid. Recall
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that we write “,,”, “ ” and “,” for their respective operations, and “··”, “◦” and “·” for the corresponding units. We deliberately

omit the goal formula (C) for two reasons: technically, it never changes going from the conclusion to the premise of a rule;

additionally, we embrace this as an opportunity to explore logical derivations as open-ended processes rather than finite

justifications of the provability of a goal given a priori. We denote this form of upward step in a derivation by means of the

rewrite judgment

�; �; � ⇒ω̄ �′; �′; �′

reserving the form _ ⇒∗
ω̄ _ for its reflexive and transitive closure. The mapping from the left-rules in Fig. 3 to the single-step

rewrite judgment on the one hand, and from open derivations to the multi-step judgment on the other are schematically

described as follows:

�′; �′ −→�′ C

�; � −→� C
� �; �; � ⇒ω̄ �′; �′; �′

�′′; �′′ −→�′′ C

...

�; � −→� C

� �; �; � ⇒∗
ω̄ �′′; �′′; �′′

The resulting single-step rewrite rules are displayed in Fig. 4 — we retained the name of the corresponding inference rule

from Fig. 3. The judgment � � t in rule ∀l is a simple side-condition. We call this system ω̄. It is an intermediate step in the

definition ofω, indeed rules 1l and⊗l have been grayed out becausewewill dispensewith them in Section 5.2 by identifying

linear contexts and tensored formulas.

Before we further massage the rewrite system just obtained into ω in the next section, we will formally prove that ω̄
is sound and complete with respect to LVobs. Intuitively, this holds because they are just two different presentations of the

same formal system. Before doing so, the following lemma will come handy: it essentially states that the signature and the

unrestricted context grow monotonically as the rewrite process unfolds.

Lemma 5.1. For any signatures � and �′′ and contexts �, �′′, � and �′, whenever �; �; � ⇒∗
ω̄ �′′; �′′; �′, there exist a

signature �′ and a context �′ such that �′′ = �,,�′ and �′′ = � �′.

Proof. A simple inspection of the rules in Fig. 4 shows that the signature and the unrestricted context grow monotonically.

This is formalized by an easy induction. �

This lemma allows displaying any rewrite chain as �; �; � ⇒∗
ω̄ (�,,�′); (� �′); �′ without loss of generality.

We next turn to the completeness result: any cut-free derivation in LVobs can be read as a rewriting sequence in ω̄.

Property 5.2. For any signature �, contexts � and �, and formula C, if �; � −→� C is derivable in LVobs, then there exist a

signature �′ and contexts �′ and �′ such that �; �; � ⇒∗
ω̄ (�,,�′); (� �′); �′ and C = ∃�′. �′.

Proof. By construction, every rule in Fig. 4 is obtained from one of the left rules of LVobs. By rule obs, the formula C has the

prescribed shape. Formally, the proof proceeds by induction on the given derivation of �; � −→� C. �

The converse soundness result states that any rewrite sequence built in ω̄ corresponds to a derivation in LVobs. This is

expressed by the following property.

Property 5.3. For any signatures � and �′ and any contexts �, �′, � and �′, if �; �; � ⇒∗
ω̄ (�,,�′); (� �′); �′, then

there is an LVobs derivation D of �; � −→� ∃�′. �′.

Proof. This proof is essentially the reverse of the proof of Property 5.2. �

By virtue of the discussion outlined in Section 2.6, this result can be strengthened to mention the unrestricted context

extension in the goal formula. Of course, this forces us to step outside of LVobs. Indeed, the following result holds in LVn,

although it could be specialized to the language that we tentatively called LVobs
1⊗∃! in Section 2.6.

Lemma 5.4. For any signatures� and�′ and any contexts�,�′,� and�′, if �; �; � ⇒∗
ω̄ (�,,�′); (� �′); �′, then there

is an LVn derivation D of �; � −→� ∃�′. (!�′,�′).
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Fig. 5. The rules of ω-rewriting.

Proof. As indicated in Section 2.6, this proof makes use of the fact that for any signatures � and �′ and any contexts �, �′
and �, the sequent � �′; � −→�,,�′ ∃�′. (!�′,�) is always derivable in LVn. �

Beforewemove on to definingω, we shall briefly reflect on the impact that altering LVobs
1⊗∃ into LVobs had in preparation to

extracting the rewrite system shown in Fig. 4. See Sections 2.3–2.5 for details. LVobs
1⊗∃ features three rules with two premises

(−◦l, cut and cut!): one of them is a major premise that carries over the goal formula in the conclusion, the other is a minor

premise that mentions a totally different goal formula. Directly giving LVobs
1⊗∃ a rewriting interpretation would have yielded

an unusual rewrite system. Indeed, we would have been forced to regard the minor premise in rules cut, cut! and −◦l as

prescribing the existence of an auxiliary finite rewriting chain that enables the step corresponding to the major premise to

each of these rules. This auxiliary chain must be finite, and therefore capped by rule obs. This would make the single step

relation ⇒ω̄ dependent on themulti-step observation relation ⇒∗
ω̄ in these rules. Replacing rule−◦l with the single premise

rule −◦′
l essentially amounts to in-lining the auxiliary rewriting chain corresponding to the minor premise. The elimination

of rules cut and cut! achieves the same effect, although in a slightly more complicated way. See Section 2.5 for details.

5.2. The rewriting system ω

Wewill now define ω by simply identifying contexts and formulas in ω̄, an idea familiar from categorical interpretations

of logic [11,75], just like we did at the logical level in Section 2.2. More precisely, we identify the tensor⊗ and its unit 1with

the union “,” and unit “·” constructors of linear contexts, respectively. Since rule ⊗l in Fig. 4 states that ⊗ reduces to “,” we

will simply take the later as a primitive. Rule 1l similarly reduces 1 to the empty multiset. Our language of formulas is then

updated as follows:

ω-Multisets A, B, C,� ::= a | · | A, B | A −◦ B | !A
| � | A B | ∀x. A | ∃x. A

With respect to the original grammar of linear logic in Section 2.1, we have simply replaced 1 with “·” and ⊗ with “,’. We

will refer to formulas of this form as ω-multisets. Note that this definition also states that a linear context � is now just an

ω-multiset. But an unrestricted context is not an ω-multiset.

This mild redefinition of formulas allows us to streamline the rewrite machinery developed in Section 5.1 for LVobs. The

structure of states remains unchanged: triples of the form (�; �; �) for a signature�, an unrestricted context� and a linear

context/ω-multiset �. We write

�; �; � ⇒ω �′; �′; �′ and �; �; � ⇒∗
ω �′; �′; �′

for the single-step and multi-step rewrite judgments, respectively. The semantics of the former simply omits the rules for 1

and ⊗ from Fig. 4 while the latter is defined as its reflexive and transitive closure. For future reference, we report the rules

of _ ⇒ω _ in Fig. 5.

Having definedω, wewill dedicate the rest of this section to showing that it is equivalent to ω̄, the rewrite systemobtained

in the last section from LVobs, and then to porting some of its properties to ω. We shall begin by defining a transformation

(_)�⊗ on LV formulas that replaces each occurrence of the tensor or its unit with “,” or “·”, respectively. Therefore, it maps

any linear logic formula A into the corresponding ω-multiset (A)�⊗ according to the grammar shown at the beginning of

this section. We omit the straightforward inductive definition. We extend this transformation to the linear and intuitionistic

contexts of LV by applying (_)�⊗ to each of their constituent formulas: given � and �, we obtain (�)�⊗ and (�)�⊗. Recall that
the linear context� of a state inω is itself anω-multiset (but of course this is not true of its unrestricted context� —avoiding

the confusion was indeed our main reason for choosing different notations for their constructors).

Now, ω is sound with respect to ω̄: for every rewrite sequence in ω̄, a corresponding rewrite sequence exists in ω. This is

given by the following lemma.

Lemma 5.5. For any signatures � and �′ and contexts �, �′, � and �′, if �; �; � ⇒∗
ω̄ �′; �′; �′, then �; (�)�⊗; (�)�⊗ ⇒∗

ω

�′; (�′)�⊗; (�′)�⊗.
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Proof. The proof proceeds by induction on the given rewriting sequence of �; �; � ⇒∗
ω̄ �′; �′; �′. It essentially elides all

applications of rules 1l and ⊗l. In particular, the rewriting sequence in ω will typically be shorter. �
The converse completeness results holds also: given a rewrite sequence in ω, it is always possible to turn some “,” into ⊗

and “·” into 1 and insert appropriate applications of rules ⊗l and 1l to reconstruct a valid rewrite sequence in ω̄.

Lemma 5.6. For any signatures � and �′ and contexts �, �′, � and �′, if �; (�)�⊗; (�)�⊗ ⇒∗
ω �′; �′; �′, then there exists

contexts �′′ and �′′ such that �; �; � ⇒∗
ω̄ �′; �′′; �′′ where �′′ = (�′)�⊗ and �′′ = (�′)�⊗.

Proof. Through an induction on the construction of �; (�)�⊗; (�)�⊗ ⇒∗
ω �′; �′; �′, this proof essentially reinstates appli-

cations of rules 1l and ⊗l whenever needed to apply a subsequent (non-tensorial) rule. �
Having just shown that ω̄ and ω are equivalent, we will take some notational liberties from now on for the convenience

of the reader. First, we will omit the subscript ω from the rewrite judgments of ω, obtaining

�; �; � ⇒ �′; �′; �′ and �; �; � ⇒∗ �′; �′; �′

(we have already adopted this convention in Fig. 5). Second, we resurrect ⊗ and 1 as syntactic sugar: we will indeed use

⊗ and “,” interchangeably from now on (and similarly for 1 and “·”). For the ease of the reader, we will tend to prefer ⊗
and 1 within the scope of other logical operators and in observation states, while “,” and “·” will appear at the top level of a

regular state. We shall stress, however, that they are now only notational variants for the same concept. Third, we will keep

the transformation (_)�⊗ implicit.

All the properties we proved in Section 5.1 hold also in ω. In particular, the following results adapts Lemma 5.1 by stating

that as the rewriting unfolds, the signature and unrestricted context grow monotonically.

Lemma 5.7. For any signatures � and �′′ and contexts �, �′′, � and �′, whenever �; �; � ⇒∗ �′′; �′′; �′, there exist a

signature �′ and a context �′ such that �′′ = �,,�′ and �′′ = � �′.

Proof. This easy proof follows the steps used to prove Lemma 5.1. The equivalence of ω̄ and ω cannot be directly leveraged

here. �
Next, since ω̄’s rewriting semantics is sound and complete with respect to LVobs’s notion of derivability, so is ω. (Recall

that we are keeping (_)�⊗ implicit.)

Corollary 5.8

• For any signature �, contexts � and �, and formula C, if �; � −→� C is derivable in LVobs, then there exist a signature �′
and contexts �′ and �′ such that �; �; � ⇒∗ (�,,�′); (� �′); �′ and C = ∃�′. �.

• For any signatures � and �′ and any contexts �, �′ and �, if �; �; � ⇒∗ (�,,�′); (� �′); �′, then there is an LVobs

derivation D of �; � −→� ∃�′. �′.

Proof. By Properties 5.2 and 5.3, each results holds with respect to ω̄. Lemmas 5.5 and 5.6 map them to ω. �
Just like in the case of ω̄, a stronger soundness result that refers to LVn is obtainable for ω. We will not have a need for it in

this paper.

5.3. Some properties of ω

In this section, we will briefly examine some properties of ω that will be useful in the sequel. We start with the following

simple weakening lemma, which states that a rewrite sequence remains valid if we augment its starting and ending states

with the identical objects.

Lemma 5.9. For any signatures �, �′ and �′′ and contexts �, �′, �′′, �, �′ and �′′, if �; �; � ⇒∗ �′; �′; �′, then

(�,,�′′); (� �′′); (�,�′′) ⇒∗ (�′,,�′′); (�′ �′′); (�′,�′′).

Proof. By induction on �; �; � ⇒∗ �′; �′; �′. �
Next, if a variable does not appear in the context parts of the initial and final states of a rewrite sequence, then there is

an equivalent rewrite chain that does not make use of it at all.

Lemma 5.10. If (�,, x); �; � ⇒∗ (�′,, x); �′; �′ and x �∈ FV(�,�′,�,�′) and � contains at least one term-level object,

then �; �; � ⇒∗ �′; �′; �′.
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Proof. This proof proceeds by induction on the given rewrite sequence. Note that rule ∀l may draw on x for an intermediate

substitution. We then show that such uses of x can be replaced with any other term (which exists by assumption). �
Note that x must occur in the initial signature: if �; �; � ⇒∗ (�′,, x); �′; �′ and x �∈ FV(�′,�′), there may be no rewrite

sequence for �; �; � ⇒∗ �′; �′; �′. For example ··; ◦ ; ∃x. 1 ⇒∗ x; ◦; · but ··; ◦ ; ∃x. 1 ⇒∗ ··; ◦ ; · is not achievable.
We next turn to the equivalence ≡⊗∃ we derived from Lemmas 2.1 and 2.5 in Section 2. Whenever two formulas are

related through ≡⊗∃, the system ω will rewrite them to states that differ at most by the contents of their signature. In its

bare-bones form, this has the following statement.

Lemma 5.11. Let A and B be formulas such that A ≡⊗∃ B and let� = FV(A). Then there exist signatures�A and�B and a linear

context � such that �; ◦; A ⇒∗ �A; ◦; � and �; ◦; B ⇒∗ �B; ◦; �.

Proof. After observing that if A ≡⊗∃ B, then FV(A) = FV(B), the proof proceeds by induction on the evidence that A ≡⊗∃ B,

applying rule ∃l as needed to move existentially bound variables to the signature. �A and �B could be different because

processing the equivalence ∃x1 ≡⊗∃ 1 in this way introduces the variable x in one of the signatures but not in the other. �
It should be noted that the same result holds for ≡⊗ and ≡∃ since they are subrelations of ≡⊗∃. Moreover, if A ≡⊗ B, then A

and B are the same ω-multiset: more precisely, if A ≡⊗ B then (A)�⊗ = (B)�⊗.
Finally, swapping ≡⊗∃-equivalent terms in a rewrite sequence will eventually produce states that differ at most by their

signature.

Lemma 5.12. For any formulas A and B, signatures � and �′, and contexts �, �′, � and �′, if A ≡⊗∃ B and �; �; (�, A) ⇒∗
�′; �′; �′, then there exist signatures �′′

A and �′′
B , and context �′′ and �′′ such that �′; �′; �′ ⇒∗ �′′

A ; �′′; �′′ and

�; �; (�, B) ⇒∗ �′′
B ; �′′; �′′.

Proof. ByLemmas5.11and5.9, thereexist signatures�A and�B andacontext�
∗ such that�; �; (�, A) ⇒∗ �A; �; (�,�∗)

and �; �; (�, B) ⇒∗ �B; �; (�,�∗). The proof then proceeds by induction on the rewrite sequence �; �; (�, A) ⇒∗
�′; �′; �′: any time a rule applies to a formula that is not a subcomponent of A, then these rewrite sequences are extended

accordingly, while any application of a rule operating on A is already captured within �; �; (�, A) ⇒∗ �A; �; (�,�∗) and
�; �; (�, B) ⇒∗ �B; �; (�,�∗). �

5.4. Discussion

So far, we have extracted a rewriting system from a substantial fragment of linear logic. Before assessing the rewriting

merits of ω in sections to come, we shall conclude this part with reflections on our methodology and comparisons with

related ideas from the literature. Many of the issues raised below are challenges that will be interesting to explore in future

work.

Although our presentation of LV in Section 2 encompasses a majority of the constructs of linear logic, Girard’s original

formalism makes a few more operators available [37]. It is natural to wonder whether ω could be enriched with some of

them. The remaining operators of the minimal intuitionistic fragment of linear logic are ⊕ and its unit 0. An ω-style reading

of the left rule of ⊕,

�; �, A1 −→� C �; �, A2 −→� C
⊕l

�; �, A1 ⊕ A2 −→� C

seems to require that the two branches shall share a common observation, which is vaguely reminiscent of bisimulation

or may-testing. We do not understand this rule as a general rewriting operation at this stage. Its nullary form, 0l, suggests

instead a reading of 0 as a “mirage” operator, as anything can be observed in its presence. Moving to a multiple conclusion

sequent form in the style of FILL [15], the left rule for ,

�; �1, A1 −→� �1 �; �2, A2 −→� �2

l

�; �1,�2, A1 A2 −→� �1,�2

seems to endowmultiplicative disjunctionwith a rewriting semantics that splits the state and starts two totally independent

computations, each with its own observations. However, further research is required to validate this reading and extend the

current work to multiple conclusion sequents. We did not venture in the realm of classical linear logic.

Interestingly, the connectives currently comprising ω coincide with the fragment of linear logic at the core of the

type-theoretic logical framework for concurrency CLF [23,79] (and indeed, the semantics of ω is closely related to the

“synchronous” fragment of CLF). The fact that two independent investigations led to similar languages suggests that the

constructs comprising ω (and CLF) have some intrinsic “good” properties, although we do not fully understand them yet.

Although ω can be summarized fairly accurately as the result of giving a computational interpretation to the left sequent

rules of linear logic, this paper has shown that formalizing this intuition is a rather involved process, as attested by the
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numerous intermediate languages in Fig. 1 (admittedly, some of them had mainly expository value). This raises fascinating

questions about the relation between the starting point of an investigation such as this one (here intuitionistic linear logic

presented as LV sequents) and the ease of the formal development.

We started this investigation from LV because it elegantly captures the structural characteristics of linear logic, especially

as far as reusability is concerned. It also permitted relatively simple proofs of our various results. Our attempts at using other

expositions of linear logic were not as successful: the traditional single-context sequent rules for ! proved difficult to tame,

which is in contrast with the ability to segregate reusable assumptions in an algebraically confined unrestricted context.

Moreover, relying on two-sided sequents made the goal formula available to observe the state of the computation. The fact

that LV made this work possible raises the question of whether some other presentations of linear logic could have made it

even easier, and more broadly of the exact role of the structure of judgments in a meta-theoretic investigation.

Our starting point was also a specific fragment of linear logic. Linearity was clearly key to achieving a rewrite system

because it supports a view of context formulas as consumable resources which is in line with the destructive nature of

rewriting. It is, however, conceivable that a similar development can be carried out starting from other sub-structural logics,

and possibly even from specific presentations of, say, traditional intuitionistic logic.

The methodology proposed here places a strong emphasis on the left rules of (linear) logic, with the right rules reduced

to an observational rule. It is worth contrasting this characteristic with the tenets of logic programming as uniform provabil-

ity [60], which instead extracts the operational semantics of a logical operator from its right sequent rules. This approach

has robustly been extended to linear logic programming [6,42,57]. In a partial departure from this short tradition, Kobayashi

and Yonezawa’s ACL [47] derives its semantics from specialized versions of left rules of linear logic (when examined through

the lens of duality). This, together with its acceptance of open derivations and support for concurrency, makes ACL a close

relative to ω. Differently from our proposal, however, it considers a limited fragment of logic, and falls short of endowing it

with a rewriting interpretation. Lincoln and Saraswat hint at a similar interpretation for their Higher-order Linear Concurrent

Constraint language (HLcc) [49], interestingly stirring it in the direction of constraint programming (see also [30]). To the

extent of our knowledge, ACL and HLcc are the proposals closest to ω in the literature.

The semantics of a logic is generally given as a set of inference rules that can be composed to build derivations. Tradi-

tionally, derivations are used to support judgments such as the entailment of a formula from given assumptions. To this

end, a derivation shall be finite and closed, in the sense that the premises of every rule in it are themselves justified by

(sub-)derivations. Thedeductive systemLVobs in Section2.3 supports adifferent viewof rules, derivations, and ina sense logic.

It is primarily interested in the vertical process of extending open derivations upwards, with little concern for finiteness. The

horizontal process of closing a derivation (and proving something, in the traditional sense) assumes secondary importance,

essentially as a form of observation. This endowsω with a semantics based on transition-sequences, which is commonplace

in rewriting theory. In ω, it is a small conceptual step to distill minimal partial orders (traces) by forcing sequentiality

only when steps actually depend on each other. This observation can be transported back to the logical side by considering a

notion of derivation based not on trees but on partial orders of dependencies (essentially DAGs). Andreoli’s “desequentialized

proofs” [5] appear closely related to this idea.

6. Multiset rewriting

As alreadymentioned, multiset rewriting captures the essence of a paradigm for concurrent and distributed computation

characterized by a prominent notion of state, separate from the transitions that act upon it. Other members of this family

include Petri nets [68], possibly the earliest model of concurrency, and a number of specification approaches including

automata for model checking [54] and inductive definitions [65].

We show that a tiny syntactic fragment ofω corresponds exactly to traditionalmultiset rewriting,with its usual semantics

given by a few of the rules in Fig. 5. Given the way we developed ω through Section 5, this constitutes an interpretation of

multiset rewriting as (a fragment of) logic, whichwe like to contrast to a number of earlier interpretations into (a fragment of)

logic [7,16,18,27,38,46,52]. The system ω similarly provides a logical interpretation of more sophisticated forms of multiset

rewriting and Petri nets.

6.1. Propositional multiset rewriting

We recall from Section 3.1 that propositional multiset rewriting (MSR0) applies rewrite rules of the form r = ã b̃ to

states s̃wheremultisets ã, b̃ and s̃ are commutative monoids with operation “ ,̃” and unit “.̃”. Its rewriting semantics is given

by the meta-rule msr0 of the form (c̃ ,̃ ã) �
R ,̂(ã b̃) (c̃ ,̃ b̃). Here R is a set of such rewrite rules, and we wrote “ ,̂” and “.̂”

for set union and the empty set, respectively. See Section 3.1 for details.

In Section 3.1 we defined a homomorphic embedding of the entities of MSR0 into linear logic by interpreting “.̃”, “ ,̃”, ,

“.̂” and “ ,̂” as “⊗”, “1”, −◦, ◦ and , respectively. We denoted this family of encodings as �_�. Then, reachability in MSR0

corresponded to derivability in LVobs. This correspondence was complete in the fragment of linear logic in the image of this

encoding, which we called LLMSR0 .
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The same encodings support a sound and complete interpretation of MSR0 into ω. Since tensorial formulas are identi-

fied with linear contexts in this language, “.̃” and “ ,̃” are mapped to “·” and “,”. Then, propositional multiset rewriting is

immediately recognized as a form of ω-rewriting by interpreting multisets as linear contexts and rule sets as unrestricted

contexts. Indeed multisets obey the same monoidal laws as contexts, and the semantic rule msr0 introduced in Section 3.1

can be seen as an application of rule clone immediately followed by −◦′
l. The soundness of this encoding is formally stated

by the following simple property:

Property 6.1. For states s̃, s̃′ and rule set R, if s̃ �∗
R s̃′, then S; �R�; �s̃� ⇒∗ S; �R�; �s̃′�.

Proof. This easy proof can be approached in two ways: we can either proceed by a simple induction on the given rewrite

chain, or we can invoke Property 3.1 to obtain the LVobs sequent �R�; �s̃� −→S �s̃′�, from which Corollary 5.8 (part 1)

yields the desired result once we observe that neither the signature nor the unrestricted context can be extended since �R�
and �s̃� do not make use of either ∃ or !. �
Just like �_� identified a syntactic fragment LLMSR0 of linear logic over which completeness holds, it now identifies a related

fragment ωMSR0 of ω on which reachability in the two languages coincide. Indeed, the inverse of the above property holds:

Property 6.2. For every states s̃, s̃′ and every rule set R, if S; �R�; �s̃� ⇒∗ S; �R�; �s̃′�, then s̃ �∗
R s̃′.

Proof. By Corollary 5.8 (part 2), the LVobs sequent �R�; �s̃� −→S �s̃′� is derivable since the representation does not make

use of ∃ or !. Now, the desired result follows by Property 3.2. A direct proof requires permuting applications of the ω-rules

in Fig. 5 just as done in the proof of Property 3.2. �
Together, these properties and the simple mapping underlying them allow us to view propositional multiset rewriting

as a fragment of ω-rewriting, and therefore of linear logic. In particular, it permits redefining the semantics of MSR0 on a

purely logical basis very directly.

6.2. First-order multiset rewriting

In Section 3.2 we defined first-order multiset rewriting, MSR1, by allowing state elements to carry ground structured

terms and extending multiset rewrite rules, which assumed the form ∀�x.ã ∃�n.b̃. The semantics of MSR1 was defined by

the meta-rulemsr1 given by �;
(
c̃ ,̃

[�t/�x] ã) �
R ,̂(∀�x.ã ∃�n.b̃) (�, �n);

(
c̃ ,̃

[�t/�x] b̃)
where � � �t. The encoding of MSR0 into

LVobs was extended by simply mapping the rewrite rule binders ∀ and ∃ to the homonymous quantifiers ∀ and ∃. Then,
reachability in MSR1 was captured by derivability in LVobs in a sound and complete way with respect to the image of the

resulting encoding, a fragment of linear logic that we called LLMSR1 . See Property 3.3 in Section 3.2.

As for MSR0 in Section 6.1, the extended encoding and the consequent soundness and completeness results hold in ω as

well, this time with respect to a fragment of ω that we call ωMSR1 . Indeed, we have the following composite result.

Property 6.3. For every two signatures �, �′, f and states s̃, s̃′, and rule set R, we have that �; s̃ �∗
R �′; s̃′ if and only if

�; �R�; �s̃� ⇒∗ �′; �R�; �s̃′�.

Proof. This proof proceeds along the lines of the proofs of Properties 6.1 and 6.2. The main difference is that rule ∃l is now

applicable, but notice that there is still no mention of ! so that the unrestricted context never changes. The proof can be

carried out either directly or by going through LVobs by means of results proved in Sections 3.2 and 5.2. �
Notice that this statement is more streamlined than the corresponding Property 3.3 in linear logic as the final statementions

an explicit unrestricted context that is not directly visible in LVobs.

Again, this result not only logically justifies the semantics of MSR1, but allows viewing this language as a fragment of ω,

and ultimately of linear logic.

6.3. Discussion

From the above discussion, it is clear that MSR1 accounts only for a very small fragment (ωMSR1 ) of ω. We will now

explore what else ω has to offer as a rewriting framework, and relate it to proposals in the Petri net and multiset rewriting

communities.

In a major departure from traditional state-based formalisms, ω dissolves the boundary between states (usually flat

collections of strictly atomic elements, evenwhen carrying structured data) and the actuators of state change (rules). Indeed,

objects of the form A −◦ B can appear in the linear context, where they are responsible for the rewriting behavior in ωMSR1 .

In this way, ω not only internalizes the rewriting operation within the state, but also makes it available for manipulation as

a first-class object.

Furthermore, ω replaces the monolithic transition rules of traditional state-based languages with a toolkit of elementary

state transformers drawn from the ranks of linear logic: ⊗ and 1 (or “,” and “·”) are the basic glue, −◦ expresses rewrite, ! is
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a reusability mark, ∀ introduces parameters, ∃ allows generating fresh data, offers choice, and � is the unusable object.

Complex transformations can easily be assembled by composing basic operator: an MSR1 rule is an example, (a −◦ b)
!(c −◦ 1) is another.6

Embedded rewrites, such as (a −◦ b, (c, d −◦ e)),7 are a particularly important case of composition as they allow dynami-

cally modifying the rule set available for rewriting. This will be our bridge to process algebra in the next section.

Similar ideas have been incorporated in enhanced formsof Petri nets, and to a lesser extent intomultiset rewriting. Indeed,

Valk argued for self-modifying nets as far back as 1978. A number of recent proposals, such as Hierarchical and Object Petri

Nets [32,78], fully realize this program by permitting nets to manipulate other nets, often using reflection to move between

levels. Among them, Farwer’s Linear Logic Petri Nets [31,33] are rather interesting as they operate on embedded linear logic

formulas. On the multiset rewriting side, Le Métayer outlined a higher-order extension to GAMMA [48], which blurs the

distinction between state and rules.

Most of these proposals are motivated by software engineering considerations, often modularity and control, sometimes

inspired by process algebra. The resulting formalisms tend to be powerful but also complex, as they build on the already

heavy definitions of Petri nets. It is, however, conceivable that they enjoy embeddings in ω akin to those sketched in

Sections 6.1 and 6.2. This would endow these extensions with a formal justification in (linear) logic, and possibly enable

simpler presentations.

It is instead a theoretical investigation of the notion of concurrency that led Pratt to propose a semantics that accounts

not only for applicable and executed transitions, but also for transitions in progress and preempted transitions [72,73].

This model borrows concepts from linear logic and extends them within category theory. An interesting byproduct of this

interpretation is the postulation of a duality between states and events (transitions), which can be understood as a duality

between information and time [73].

7. A logical bridge to process algebra

As we mentioned earlier, formalisms such as the π-calculus [63] support an alternative, process-based, representation of

distributed and concurrent systems. It shuns the global state and static collection of transitions of multiset rewriting and

other state-based models in favor of evolving communicating processes that tie together the data and the program of an

agent, at the same time blurring the distinction between them.

Wewill show in this section thatω is closely related to three such process algebras: the asynchronous π-calculus [63,74]

and its propositional variant, which we introduced in Section 4, and the join calculus [34]. We will show that a simple

execution-preserving translation maps process constructors to rewrite operators inω, while structural equivalence map are

captured by the structure of states in the rewrite language. As we do so, we will focus on process algebras as computation

rather than analysis mechanisms. In particular, we will concentrate on a trace-based semantics, leaving the investigation of

finer notions, such as bisimulation, for future work.

7.1. Propositional process algebra

In Section 4.1 we introduced the language aπ0, a propositional variant of the asynchronous π-calculus [63,74], devised

a simple encoding to linear logic, and showed that its operational semantics was captured by derivability in the target

fragment of the logic, which we called LLaπ0 . Processes P in aπ0 were freely generated from ‖ (parallel composition), 0

(the inert process), ! (process replication) as well as name prefixing xP and isolated co-names x. A notion of structural

equivalence, written P
π≡ Q , gave processes a commutative monoidal structure with respect to ‖ and 0, and the reduction

semantics allowed a co-name to expose a process prefixed by the corresponding name and let !P to spawn copies of P. We

denoted it as P ∗ Q . See Section 4.1 for the details.

The encoding �_� of aπ0 in linear logic mapped homomorphically ‖, 0 and ! to ⊗, 1 and !, respectively, it associated a

co-name x to the propositional constant x, and turned a named prefix xP into the linear implication x −◦ �P�. This encoding
identified a fragment LLaπ0 of linear logic on which structural equivalence coincided with logical equivalence, and iterated

reduction with derivability. Once more, see Section 4.1 for details.

As we interprete aπ0 in ω, we retain the encoding �_� unchanged, modulo the identification of tensorial formulas and

linear contexts. This has an important implications: while in LVobs structural equivalence needed to be modeled by by ≡⊗-
equivalence (whose soundness and completeness are given by Lemmas 4.1 and 4.2), they aremapped simply to themonoidal

structure of the linear context in ω, as shown in Section 5.3. Therefore, whenever structural equivalence is needed in an aπ0

reduction sequence, it can be emulated implicitly in ω.

6 “Either turn an a into a b once, or delete arbitrarily many c’s”.
7 “Upon encountering an a, transform it into a b and introduce a single-use rule that will transform a c and a d into an ewhen these object appear in the

state”.
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The soundness of the encoding is expressed by the following property, which corresponds to Property 4.3 in Section 4.1.

Note that, because the end-state of ω has more structure than the goal formula of LVobs, this statement is more precise than

Property 4.3.

Property 7.1. Given processes P and Q , let �P be the set of all names in P. If P ∗ Q , then there exist contexts � and � and a

process Q ′ such that �P; ◦; �P� ⇒∗ �P; �; � where Q
π≡ Q ′ and �Q ′� = (!�,�).

Proof. This statement is proved by a straightforward induction on the given reduction sequence. Going through LVobs by

first appealing to Property 4.3 and then porting the result to ω using the first part of Corollary 5.8 is ineffective because of

the imprecision of Property 4.3. �
A corresponding completeness result holds with respect to the syntactic fragment ωaπ0 of ω identified by the encoding

�_�. This is analogous to, but again more precise than, Property 4.5 from Section 4.1.

Property 7.2. Let P be a process, �P be the set of all names in P, and � and � be contexts. If �P; ◦; �P� ⇒∗ �P; �; � holds

in ω, then there exists a process Q such that P ∗ Q and �Q� = (!�,�).

Proof. Similarly to the proof of Property 6.2 in Section 6.1, we shall reorder applications of the ω-rules in Fig. 5 (similarly to

what happened in the proof of Property 7.2) before factoring them out as reductions in aπ0. �

7.2. The asynchronous π-calculus

The definition of the asynchronousπ-calculus, aπ1, introduced in Section 4.2 extends the propositional case by interpret-

ing names and co-names as communication channels andusing them for processes to exchangemessages. A co-nameprocess

x becomes x〈y〉 where y represents some message sent over channel x, and the name-prefixed process xP now assumes the

form x(y)P, where y is a variables to which a message sent over xwill be bound to and possibly used inside P. For simplicity,

we identified channels and messages as names, although this idea can be considerably refined [74]. Finally, we included the

hiding operator, νx.P, which binds the name x within P. This lead to extending the notion of structural equivalence with

properties of ν . The reduction semantics was altered only to the point ofmodeling reduction and allowing them to take place

in the scope of the hiding operator.

The representation of this language in linear logic extended the propositional encoding �_� reviewed in Section 7.1 by

reserving a binary predicate symbol c and use it as a universal channel when representing input and output: �x〈y〉� =
c(x, y) and �x(y)P� = ∀y. c(x, y) −◦ �P�. Moreover, it modeled ν as ∃. With this encoding, structural equivalence in aπ1

corresponded to logical equivalence in LVobs and reduction to derivability. This is formalized in Property 4.7 in Section 4.2.

The interpretation of aπ1 in ω retains this logical encoding, but once more the identification of tensorial formulas and

linear contexts implies that ‖ and 0 are effectively mapped to “,” and “·”, respectively. The computational meaning of aπ1’s

structural equivalence relation is capturedby Lemmas5.11 and5.12 in Section5.3,which say that≡⊗∃-equivalentω-multisets

eventually yield similar states, and we already know by Property 4.6 that ≡⊗∃ and
π≡ are isomorphic relative to �_� over

LLaπ1 (and therefore ωaπ1 ).

We nowextend the propositional soundness and completeness results for reduction obtained in Section 7.1 to aπ1 relative

to the syntactic fragment ωaπ1
of ω in the image of the encoding �_�. Both results are presented together in the following

property, which corresponds to Property 4.7 in Section 4.2. Note again that the structure of states in ω allows more precise

and concise statements.

Property 7.3. Let P be a process and �P = c,, FN(P).

• For any process Q such that P ∗ Q , there exist a signature �, contexts � and � and a process Q ′ such that �P; ◦; �P� ⇒∗

(�P ,,�); �; �, where Q
π≡ Q ′ and �Q ′� = ∃�. (!�,�).

• For any signature� and contexts� and�, if �P; ◦; �P� ⇒∗ (�P ,,�); �; �, then there exists a process Q such that P ∗ Q

and �Q� = ∃�. (!�,�).

Proof. Each of these two proofs follow a strategy that is similar to the propositional cases in Section 7.1, with the minor

complication of dealingwith the quantifiers. In particular, the first part proceeds by a simple induction on the given reduction

sequence, while the second requires performing dependency-preserving permutations of ω rewrites to cluster them into

groups that correspond to the reduction rules (mainly red_i/o). �

In Section 8, we will briefly consider a language aπ+
1 that extends aπ1 with terms over some signature �, polyadic

channels, and pattern matching, but does never hide names used as channels. Because of this last aspect, the easy extension

of �_� to aπ+
1 does not need to rely on the auxiliary symbol c. A strong version of Property 7.3 is valid for this language, so

that it can be seen as a fragment ωaπ+
1 of ω (and therefore of linear logic).
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7.3. The join calculus

The asynchronous core of the join calculus is defined by the following grammar [34]:

Processes P,Q , R ::= 0 | P ‖ Q | def D in P | x〈�y〉
Definitions D, E ::= J � P | D ∧ E | �
Join patterns J, I ::= J ‖ I | x〈�y〉

Processes P consist of the parallel composition of messages over polyadic channels x (x〈�y〉) and definitions (def D in P). A

definition D is a collection of rules (J � P) where each join pattern J is given by one or more messages patterns (also x〈�y〉).
The name tuples �yD in the pattern of a definition D = J � P are bound in P, while the channel names �xD are defined. A

definition def J1 � P1 ∧ . . . ∧ Jn � Pn in Q binds all channel names �xJi in each Pj and Q . Bound names are subject to implicit

α-conversion. We write FN(P) for the free names of a process P (and similarly definitions), and [�z/�y]P for the simultaneous

capture-avoiding substitution of names �z for �y in process P.

The join calculus defines a structural congruence, written ≡j , which specifies that processes (respectively rules) form a

monoid with operation ‖ (respectively ∧) and unit 0 (respectively �). It moreover comprises the following equivalences for

definitions:

def � in P ≡j P

(def D in P) ‖ Q ≡j def D in (P ‖ Q)

if �xD ∩ FN(Q) = ∅
def D in (def E in P) ≡j def (D ∧ E) in P

if �xE ∩ FN(D) = ∅
A process can always be ≡j-converted to the canonical form def D in P, where P does not contain definitions.

The operational semantics of the join calculus is expressed by the judgment P � Q given by the following rule, up to ≡j:

def (J � P) ∧ D in
([�z/�yJ] J ‖ Q

)
� def (J � P) ∧ D in

([�z/�yJ] P ‖ Q
)

That is, whenever an instance [�z/�yJ] J of the join pattern J of a rule J � P appears the body of a canonical process, it can be

replaced with the corresponding instance [�z/�yJ]P of the rule’s right-hand side P. Expectedly, we write _�∗_ for the reflexive

and transitive closure of _�_.

We define amapping of the various syntactic classes of the join calculus intoω. As usual, wewrite it �_�, overloading this
notation for processes, rules and patterns. This mapping, which is spelled out below, homomorphically maps themonoids of

the join calculus to the tensorial core ofω. Similarly to theπ-calculus, messages and patterns are renderedwith the help of a

family of auxiliary symbols �c of increasing arity (to accommodate the names �y in x〈�y〉). We rely onω’s universal quantifier to

govern the bound variables �yJ of a rule J � P, while ∃ is needed to bind the variables �xD defined in a definition. The transition

potential of rules is captured bymeans of linear implication, while their reusability is naturally expressed using !. Altogether,
we have the following definition for �_�:

P : �0� = ·
�P ‖ Q� = �P�, �Q�

�def D in P� = ∃�xD. (�D�, �P�)
�x〈�y〉� = c(x, �y)

D : �J � P� = !∀�yJ . (�J� −◦ �P�)
�D ∧ E� = �D�, �E�

��� = ·
J : �J ‖ I� = �J�, �I�

�x〈�y〉� = c(x, �y)
As in previous cases, this encoding is invertible, so that every formula A in its image identifies an object X of the appropriate

syntactic category in the join calculus. We write ωJ for the fragment of ω in the image of �_�.
The encoding we just defined is next shown to preserve the operational semantics of the join calculus. This is formalized

in the following property.

Property 7.4. Let P be a process and �P = �c,, FN(P). Then, P �∗ Q if and only if there exist a signature �, contexts � and �

and a process Q ′ such that �P; ◦; �P� ⇒∗ (�P ,,�); �; � where �Q ′� = ∃�. (!�,�) and Q ′ ≡j Q .

Proof. This proof proceeds along the lines of the proof of Property 7.3 in Section 7.2. �
Once more, this result allows interpreting the language under examination as a fragment ωJ of ω, and therefore of linear

logic.
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7.4. Discussion

Once more, our encoding of aπ1 makes use of a fraction of the syntax of ω. In particular, � and are not used at all and

at most one object appears in the antecedent of −◦. It is natural to interpret as a form of non-deterministic choice. Its

semantics in ω is different, however, from the choice operator, +, found in the synchronous π-calculus [63], as the reaction

rule of the latter realizes both choice and communication in the same step [73]. As noted in [23], its emulation with would

be sound, but in general incomplete as intermediate stages are visible in ω.

The π-calculus, like many process algebras, does not allowmultiple concurrent communications to occur atomically: for

example nothing prevents xyP to reducing into yP when run in parallel with a process that provides x but not y. If wewanted

xyP to reduce to P if both x and y are present, and stay put otherwise, something we may write, {x, y}P, we would need

to introduce a complex mechanism of transactions. By contrast, multiset rewriting supports atomic transitions triggered

by the presence of an arbitrary number of multiset elements. The operational behavior of the join calculus [34] natively

provides a similarly adaptable notion of atomicity. The same holds true of ω: the expression x −◦ (y −◦ �P�) has the same

sequentializing semantics as xyP in the π-calculus, while (x, y) −◦ �P� atomically rewrites x and y into �P�, as can be

achieved in multiset rewriting or in the join calculus.

Several authors have taken to the task of giving logical interpretations to process algebras, with particular focus on the

π-calculus. Operationally sound and complete CLF encodings of both the synchronous and asynchronous versions of this

language are given in [23]. A propositional fragment of the π-calculus is instead analyzed in [56]. That paper attempts a

logical account of a form of testing equivalence. The adaptation to ω of classical notions of inter-process equivalence goes

beyond the scope of the present work, but will be particularly interesting to undertake as future work.

8. Specifying security protocols

With the recent surge of interest in security protocols, numerous languages have been adapted or invented for the purpose

of specifying and reasoning about these subtle distributed algorithms. With a few exceptions, these languages tend to be

eitherprocess-orientedor state-based. The former include the spi-calculus [1], a security-enhancedversionof theπ-calculus,

strand spaces [29], and others such as [25]. The latter comprises formalisms directly based on multiset rewriting [19,21],

tool-specific languages [54], inductive definitions [65], Colored Petri Nets [4,13], and more.

This profusion of formalisms has triggered an intense research activity intent to comparing and bridging them [14,20,

22,25]. In spite of clear commonalities, these mappings are very specific to the languages they consider, and therefore

somewhat ad-hoc and hardly reusable. With a foot in both the state- and process-based camp and easy embeddings, we

highlight a security-conscious version ofω as a reusable and logicallymotivated intermediate language for carrying on these

investigations. This language, that we call MSR 3, is itself a promising formalism for the specification of cryptographic

protocols, precisely because it supports both representation paradigms, and can combine them when convenient. The

following discussion should be taken as a taste ofMSR 3, aswewill discuss the details of this language in a future publication.

8.1. A preview of MSR 3

In order to represent security protocols, we consider an initial signature �s that makes available function symbols {_}_
and [_, _] to symbolically express encryption and concatenation (for succinctness, we will often omit the brackets in the

latter). Other cryptographic operations can be included as needed.We also require�s to provide predicate symbols N(_) and
I(_) to represent network messages in transit and intruder knowledge. Other predicates, for example to hold values local for

a principal, can also appear in �s. Different forms of data can be distinguished through typing, although wewill refrain from

doing so here for the sake of brevity.

The language MSR 1 [21] adopts such a signature in a first-order multiset rewriting framework of the sort analyzed in

Section 6.2. It is therefore a fragment of ω. In this section, we will use ω itself as a language for specifying protocols.

As often done, we will use the Needham–Schroeder public-key protocol [64] as an example. This protocol, informally

describedbelow,has thepurposeof establishing communicationbetweenan initiatorA anda responderB, andauthenticating

A to B.

A → B : {A, nA}kB
B → A : {nA, nB}kA
A → B : {nB}kB

Here, A creates a fresh value (nonce) nA and sends it together with her name to B, encrypted with B’s public key kB. Upon

successfully decrypting this message, B creates his own nonce nB and sends it to A together with nA, both encrypted with A’s

public key kA. Upon recognizing nA as her original nonce, A sends nB encrypted back to B as an acknowledgment.

We will now express the initiator’s part of this protocol in ω. We are immediately faced with the choice of which

representation paradigm to use. We give both a state-based and a process-based specification. For the sake of brevity,

we do not explicitly represent administrative tasks such as a principal accessing his or his interlocutor’s keys (see [21]): this

will allow us to concentrate on the overall structure of the specification rather than these details.
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The state-based representation of the initiator role of this protocol is expressed by the following two rules:

∀A. ∀kB.
1 −◦ ∃nA. N({A, nA}kB), L(A, nA, kB)

∀A. ∀kB. ∀kA. ∀nA. ∀nB.
N({nA, nB}kA), L(A, nA, kB) −◦ N({nB}kB)

The first captures the initial step of the protocol, while the second expresses the rest from the initiator’s point of view. In

order to ensure that these rules are executed in the proper order, they rely on the auxiliary predicate L, which has also the

task of communicating the parameters of the execution to the second rule (in particular the value of nA). This encoding

resembles very closely the specification of this protocol in MSR 1 [21] and other state-based formalisms.

The process-based representation of this role does away with the auxiliary predicate L altogether in favor of a nested

implication:

∀A. ∀kB.
1 −◦ ∃nA. N({A, nA}kB),

∀nB. ∀kA.
N({nA, nB}kA) −◦ N({nB}kB)

This closely resembles thedescriptionof this role inaprocess-based languagesuchas strandspaces [29]or the spi-calculus [1].

Observe the nested versus cascaded nature of the specification. Miller has shown that, given some constraints on L, these
two specifications are logically equivalent [58] (although not in the sense of ≡).

Differently fromall other protocol specification languageswe are aware of,ωmakes both styles availablewhen expressing

a protocol. Not only can the specifier choose which one is most appropriate to the task at hand, but she can mix and match

them at her leisure. Indeed, the initiator and receiver roles are not even required to use the same paradigm, so that if our

first specification is used, the receiver could seamlessly be process-based. This may be useful, for example, when analyzing

client–server protocols for denial-of-service vulnerabilities where one may want to use the more succinct process-oriented

form for the client, but a state-based representation for the server in order to clearly account for howmuch data is stored (in

the auxiliary predicate L) between exchanges. Amixed representationmay also be beneficial when representing the intruder

capabilites, as a process-based encoding tends to over-sequentialize the specification [14]. We expect these benefits to grow

with the size and complexity of the protocol at hand.

MSR 1 has been extended with a powerful type system into MSR 2 [19]. We similarly define the language MSR 3 as the

corresponding strongly typed version of ω. A precise description of MSR 3 goes beyond the scope of this paper.

8.2. Discussion

The coexistence of both the state- andprocess-basedparadigm inωmakes it a usefulmeltingpot, not just as a specification

tool, but also as an intermediate language when comparing different formalisms. Indeed, it is well known that the terrain

between the two paradigms is bumpy and treacherous [12,14,22], and any new road shall reckon with these difficulties.

System ω suggests a different approach: engineer a robust translation between the state- and the process-based fragments

of this language, and use it as a fast expressway to relate them. Other languages can then be mapped to the closest fragment

of ω by what would be neighborhood roads in our analogy.

To be more precise, we define an execution preserving embedding of all of ω in ωMSR1 , which we identified as the

counterpart of first-order multiset rewriting, a quintessential state-based language. This encoding is rather simple andwell-

behaved. Space limitation prevent us frompresenting it, andwe shall refer the interested reader to [14], which gives a similar

translation.

What fragment of ω (or what process algebra) best captures the process-based paradigm is open to discussion. Were we

to take ωaπ+
1 , we would similarly map ω to this sublanguage. See again [14] for details. This direction is not as easy, and it is

not clear whether a fully satisfactory solution exists.

Now, in order to relate, say, strand spaces [29] and Paulson inductive encoding [65], it suffices to produce a shallow

encodingof the former intoωaπ+
1 , a similarly simple translationof the latter toωaπ1 , and thenuse the two internal translations

we just sketched to bridge them.

9. Conclusions and future work

We have endowed a large fragment of linear logic with a rewriting semantics by interpreting the left sequent rules of

linear logic as rewrite transitions, folding selected right rules into an observation rule, and extending our focus beyond

finite derivations. The resulting language, which we called system ω, is a flexible specification formalism for concurrent

systems: at any point the state of the execution corresponds to the left-hand side of a linear sequent, with atomic formulas

representing shared state or messages in transit, and composite formulas standing for concurrent processes; the next state

is obtained by applying a left rule bottom-up, and therefore guided by the connectives and quantifiers appearing in some

formula of the current state (in a fashion that is dual but otherwise not dissimilar to abstract logic programming [60]); such a
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transition sequence is potentially unbounded, which allows modeling infinite systems and corresponds to the construction

of a potentially infinite “proof”; but it can be interrupted at any point by closing the derivation with the observation rule,

which implements a notion of observation as a finite approximation of a possibly infinite computation.

Specifically,ωhasbeen shown toembedpopular formsofmultiset rewriting andPetri nets, giving a clean logical reading to

their semantics.Wehave also demonstratedω’s strong ties to process algebra,with simple execution-preserving embeddings

of the join calculus and a computational variant of asynchronousπ-calculus.We suggested relying onω’s position as a logical

meeting point of multiset rewriting and process algebra for the purpose of expressing and reasoning about cryptographic

protocols, an application areawhere both types of formalisms have been used, often in complementaryways. By being able to

handle state-based and process-based components in the same specification, ω has the potential of overcoming the current

state versus action dichotomy, which has been identified as a major hindrance, for example, in model checking.

As implied in the “Discussion” paragraphs concluding each of the above sections, this work can be extended in numerous

directions. In particular, we expect the definition ofω to evolve asmore questions about its logical foundations are answered

(see Section 5.4). Pursuing the relation with process algebraic languages is particularly interesting in light of the results in

Section 7 and the application potential of ω in the sphere of security protocol specification (Section 8).
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