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A trend in today’s literature on fixed point theory is the attempt at 
establishing the random versions of results which are well known in the 
deterministic case. To be more precise, we recall that, given a measurable 
space (T, 9) (so, 9 is a a-algebra of subsets of T), a topological space X, 
and a multifunction F from T x X into X, a measurable function q : T + X 
is said to be a random fixed point of F if q(t) E F( t, q(t)) for all t E T. In 
particular, S. Itoh proved in [S] the random version of a result by 
S. B. Nadler, Jr. [lo, Theorem 51 which, in turn, was the first extension to 
multifunctions of the classical contraction mapping principle of Banach. 
Unlike the random case, it seems that very little is known about the 
following more general problem: 

Given a family d of (single-valued) functions from T into X, find an 
d-fixed point of F, i.e., a cp E d such that q(t) E F( t, q(t)) for all t E T. 

The aim of the present paper is to study the above problem, keeping 
always two basic assumptions: X is a complete metric space and, for every 
t E T, F(t, .) is a multi-valued contraction, with closed values. 

Our main abstract result is Theorem 2.1, whose formulation is based on 
the notion of d-stability recently introduced by B. Ricceri in [12]. We 
then present a series of consequences of Theorem 2.1. In particular, besides 
a more refined version of the above-quoted result of Itoh, we establish two 
&-fixed point theorems in the case where T is a topological space and & is 
either the family of all continuous functions or the family of all Baire 
functions of class CL (0 -C a < w, ). Finally, as further consequences, we 
obtain three results on fixed point stability. We will present some 
applications of them in forthcoming papers. 

406 
0022-247X/88 $3.00 
CopyrIght $> 1988 by Academic Press, Inc. 
All rights 01 reproduction m any form reserved 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82475372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


~-FIXED POINTS OF CONTRACTIONS 407 

1. NOTATION, BASIC DEFINITIONS, 
AND PRELIMINARY RESULTS 

Let A, B be two non-empty sets. We will indicate by 2’ the family 
of all non-empty subsets of B. A multifunction from A into B is a 
function from A into 28. Let @: A -+2A. A point XE A is said to be a 
fixed point of @ if XE G(x). We will denote by Fix(@) the set of fixed 
points of @. Moreover, if @: A + 2’, we will denote by gr(@) (graph 
of @) the set {(x, Y)E A x B: YE G(x)}. If Q is a subset of B, we put 
C(Q) = {x E A: Q(x) n Q # a}. If A, B are topological spaces, a mul- 
tifunction @: A + 2’ is said to be lower semicontinuous at x0 E A if for 
every open set ~2 E B such that x0 E C(Q), one has xOe int Q-(Q). @ is 
said to be lower semicontinuous in A if it is so at every point of A. 

If A, B are two non-empty subsets of a generalized metric space 
CM, d), x a point of M, r > 0, we will put B,(x, r) = { y E M: 
4x, y) <r}; d(x, A)=inf,., d(x, Y); d*(A, B)=suP.~~~ d(x, B); d,(A, B)= 
max(d*(A, B), d*(B, A)). A multifunction @: A -+ 2 M is said to be a 
multi-valued contraction if there exists a constant L E [0, l[ such that 
dH(@(x), Q(y)) d Ld(x, y) for every x, 4’ E A. 

Now, let T be a non-empty set, Y c 2’~ (fa f, X a topological space. 
We will say that @: T -+ 2* is g-measurable if C(Q) E 9 for every open 
set Q E X. Thus, if Y is a topology, g-measurability means lower semicon- 
tinuity. If T is a topological space and 9 is the family of all Bore1 subsets of 
T of additive class tl, with 0 < c1 <w, (w, denotes the first uncountable 
ordinal), 9?-measurability means being of lower class o! (see [7, p. 4013). 
Finally, if 9% is a a-algebra, we will say simply “measurability” instead of 
‘Y-measurability.” 

From now on, T will indicate a non-empty set, (X, d) a metric space, 
and F a multifunction from T x X into X. Let us denote by JH( T, X) the set 
of all (single-valued) functions from T into X. We will always consider 
J( T, X) endowed with the generalized metric pd defined by 

PAL 8) = sup d(f(r), s(t)) for f, gE&(T, X). 
tar 

Let &’ be a non-empty subset of &(T, X). We give the following 

DEFINITION 1.1. Let YES?. We say that ,f is an d-fixed point of F if 
f(t)~F(r,f(t)) for every JET. 

Moreover, we recall the following definition (see [12, Definition 1.11). 
Let G: T-+ 2? We say that the multifunction G is d-stable if the following 
two conditions are satisfied: 

(I) there exists fc &’ such that f(t) E G(r) for every t E T; 
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(II) for every E, YE R+ and every gE d such that 
G(t) n Bd( g(t), r) # /zr for all t E T, there exists h E d such that 
h(t)~G(t)nB,(g(t),r+~)for all trzT. 

Finally, for every t E T, we put r,(t) = Fix(F( t, . )). 
The following propositions will be useful in the sequel. 

PROPOSITION 1.1. Let Yr2ru{0}. A ssume that either 99 is closed 
under arbitrary union or 3 is closed under countable union and X is 
separable. Let { @,},, N be a sequence of %-measurable multifunctions from 
T into X and let @: T -+ 2x be such that 

lim sup dn(@,J t), Q(t)) = 0. 
n+cc (ET 

(1) 

Then, @ is g-measurable. 

Proof. Thanks to our first hypothesis, it suffices to prove that, for every 
E > 0 and every y E X, one has @ ~ (Bd( y, a)) E 9?. To this purpose, first of all 
we can construct, thanks to (1 ), a subsequence of {Q,,}, E Ihi, say { @nn}k E rm, 
such that 

sup dH(@nlr(f), Q(t)) < 1/2k for every k E N. (2) 
lET 

Put N, = {k E N : k> l/2.5}. To prove our conclusion, it suffices to 
demonstrate the equality 

@-(Bd(Y,E))= u @- B Y kENI -( d( 4)) 

Then, let toe @-(B,(y, E)); hence, there exists USE @(t,) such that 
d(u,, y) <E. Choose kOE N such that d(u,, y) < E- I/k,. By (2), more- 
over, there exists w0 E @,,,(to) such that d(u,, wO) < 1/2k,. Hence, 
d(w,, y) < E - 1/2k, and so t, E @n, (B,(y, E - 1/2k,)). Now, let 
ttE@;,(BJy, E- 1/2k,)) and let w, l @,,,ft,) with d(w,, y)<&- 1/2k,. By 
(2), there exists v,c@(tl) such that d(v,, w,)<1/2k,. Thus, d(o,, y)<~ 
and so t, E @ - ( Bd( y, 6)). This completes the proof. 

PROPOSITION 1.2. Let 9 E 2= u { @}, ( Y, d’) be a metric space, L 3 0, 
and Cp: T x X -+ 2 ’ be such that one has d’,(@( t, x), @(t, y)) < Ld(x, y) for 
every x, y E X, t E T. Moreover, suppose that: 

(i) there exists a dense subset D of X such that F( ‘, x) is %-measurable 
for each XE D; 
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(ii) Y is u topology or 9 is closed under finite intersection and 
countable union and D is countable. 

Then, for every ~-measurable function cp: T -+ X, the multifunction 
@( ., cp( .)) is Y-measurable. 

Proof Fix cp. For every k E N, t E T, x E X, put 

Qk(t, x) = @(t, B,(x, l/k) n D). 

Fix k E N. It is easily seen that, for every open set 52 5 X, one has 

{tET:@(t,y)nR#@}xB, y,; i )I 
Hence we have 

{t E T: Qk(f, dt)) n Q Z Izr} 
= {te T: (t, cp(t))E@;(SZ)} 

=u [{ 
.L’ E D 

t,T:g,t,I)“R~O}ncp-‘(B,(y,$))]. 

Thanks to this equality and to hypotheses (i) and (ii) it follows that 
@J ., cp( - )) is g-measurable. Moreover, for every (t, x) E T x A’, we have 

dL(@k(f, x), @(t, xl) < L/k. 

Indeed, let z E Dk(t, x), then there exists y E D such that d( y, x) < l/k, 
z E @(t, y). Hence, we have d(z, @(t, xl) < d’,(@(t, y), @(t, x)) < 
Ld(x, y) <L/k, and so d’*(Qk(t, x), @(t, x)) d L/k. Now let w E @(t, x), 
and let y~DnB,(x, l/k). We have d’(w,@,(t,x))<d’(w,@(t, y))< 
dh(@(t, x), @(t, y)) < L/k. Thus, d’*(@( t, x), @Jt, x)) < L/k. Hence, we 
have 

lim SUP d;l(@At, dt)), @(t, dt))) =O. 

Our conclusion follows then from Proposition 1.1 

2. THE MAIN RESULT 

Our main result is the following 

THEOREM 2.1. Let (X, d) be a complete metric space, JZZ’ a non-empty 
closed subset of A!( T, X), and F: T x X + 2x a closed-valued multifunction. 
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Suppose that F( ., cp( .)) is d-stable for each cp E d, and that there exists 
k E [0, l[ such that d,(F(t, x), F(t, y)) <k d(x, y) for every t E T, x, y E X. 
Suppose moreover that there exists cpO E ~2 such that supts T d(cp,Jt), 
F(t, &t))) < +co. Under such hypotheses, F admits an d-fixed point (p* 
such that pd((p*, cpO)< i-a. 

Proqf: For every cp E d put 

G(q)= ($~&:3/(t)~F(t, cp(t))forevery tET}. 

Thanks to the &-stability of F( ., cp( .)), one has G(q) # Qr. Let us prove 
that G is a contraction. Let cp, $ExZ, with pd((p, $)< +co. Fix fog. 
For every t E T we have 

&f(t), Ft’(t, $(t))) d d,(F(t, cp(t)), F(t, ICl(t))) G kp,tcp, II/). 

Therefore, for every E > 0 we have 

F(t, $(I)) n Bd(f(t), bJcp, +) + c/2) Z 0. 

Thanks to the d-stability of F( ., $( .)) there exists gE JZ! such that 
g(t) E F(t, IC/(t)) n BJf(t), kp,tcp, $I+ ~1 for every te T. Hence, ge GtII/) 
and pd(f, g) < kp,(cp, $) + E. Since E is arbitrary, it follows that 
~d(f, Gt$)) Q b,(cp, ‘I). Th is inequality holds for any f E G(q), and so 

PXG(~D), Gt$)) Gkkp,tn $1. 

Changing the roles of cp and Ic/, likewise we obtain 

~,*tGt$), Gtcp)) db,(cp, $1. 

Hence, G is a contraction. Moreover, since X is complete and d is 
closed in A!(T, A’), it follows that & is a complete generalized metric space. 
Now observe that, thanks to the d-stability of the multifunction 
F( ., rp,( .)), the condition suprt T d(cp,(t), F(t, cpo(t))) < +a~ implies that 
pd(‘pO, G(cp,)) < tco. Therefore, by Corollary 1 of Cl] we obtain a 
function q* EZX! such that q* E G(q*). Moreover, by the proof of 
Theorem 1 of [l J, we can derive that pd(q*, cpO) < +co. Thus, the proof is 
complete. 

3. SOME CONSEQUENCES OF THEOREM 2.1 

In this section we present some applications of Theorem 2.1. We begin 
with the following 
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THEOREM 3.1. Let (X, d) be a separable and complete metric space, 
(T, 9) a measurable space, and F: T x X + 2x a closed-valued mu&function 
such that F( ., x) is measurable for every x in a countable dense subset D of 
X, and that F(t, .) is a multi-valued contraction for every t E T. Then, for 
every SE ~9 and every measurable function $1 S+ X such that 
t/J(t) E F( t, $(t)) for every t E S, there exists a measurable function cp: T -+ X 
such that cp(t)EF(t,q(t))forevery tET, andthatcp,,=$. 

Proof Let S and II/ be as in the statement. Define on T a real function 
L by putting 

L(t)= sup d,(F(t, xh Ftt, Y)) 

4x, Y) 
(te T). 

x,yaD X#J 
Observe that L(t) < 1 for every t E T. Moreover, for fixed x, y E D, thanks 

to Lemma 2.1 of [ 111, the real function d,(F( ., x), F( ., y)) is measurable. 
Hence, the function L, as a supremum of a countable family of measurable 
functions, is measurable itself. Further, since D is dense in X, it is easily 
seen that the inequality 

d,(F(t, xl F(t, Y)) G L(t) 4x, Y) 

holds for all x, y E X, t E T. 
Now, choose a measurable function cpO: T -+ X with cpoIS = II/. 
Let {anJn. N be an increasing and unbounded sequence of positive real 

numbers such that, for every n E N, the set 

T,= {te T:d(q,,(t), F(t, cpJt)))<a,} n {te T: L(t)< 1 -l/a,} 

is non-empty. Observe that T,, is measurable by Proposition 1.2 and by 
Lemma 2.1 of [ 111. Now, for each n E N, denote by J& the family of all 
measurable functions from T,, into X and, finally, put 

We want to prove that, for each cp~9Y,,, the multifunction F( ., rp( .)) is 
.?&-stable. To this end, fix cp in Bn and introduce the multifunction 
G: T,, + 2x defined by 

if t E T,\S 
if tET,,nS. 

G is measurable because, for each subset Q of X, we have 
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and, by Proposition 1.2, F( ., cp( . )) is measurable. Then, by Proposition 3.2 
(part (p)) of [12], G is dn-stable. It is easy to see that the dE-stability of G 
and the gn-stability of F( ., cp( . )) are equivalent. 

Finally, observe that an is closed in (A(T,,, X), pd) and that 
Supt. Tn 4cpdt), f’(6 cpdt))) <a, and d,(f’(t, ~1, F(f, ~1) G (I- lk) 4x, Y) 
for all t E T,,, x, y E X. Therefore, by Theorem 2.1, there exists a function 
(Pi EB,, such that q,(t) E F(t, q,(t)) for each t E T,. For each no N, put 
T,* = T,,\T,- i( T, = 0). Observe that the sets T,* are measurable, pairwise 
disjoint, and U,, N T,* = T. 

Then, the function cp: T + X defined by putting 

v(t) = cpn(t) if ZET,*, rt~N 

is the required function. 

Remark 3.1. Theorem 3.1 is an improvement of the Theorem on p. 88 
of [S]. 

Now, we state the following. 

THEOREM 3.2. Let T be a perfectly normal topological space, (X, d) a 
complete, separable, and bounded metric space, and F: T x X -+ 2x a closed- 
valued multifunction such that F( ., x) is of lower class a (0 <a < w,) for 
every x in a countable dense subset of X. 

Suppose moreover that there exists k E [0, 1 [ such that dn(F(t, x), 
F( t, y)) < kd(x, y) for all t E T, x, y E X. Then, for every ambiguous set SE T 
of class a and every function I+G: S -+X of class a such that IC/(~)E F(t, $(t)) 
for all t E S, there exists a function cp: T-+X of class a such that 
cp(t)~F(t,cp(t))for all t~Tandcp,,=$. 

Proof Let S an $ be as in the statement. Denote by d the family of all 
functions of class a from T into X, and put 5@ = (cp E d : ‘pls = $}. Choose 
cpO E .%9. Now, let us prove that, for every cp E g, the multifunction F( ., cp(. )) 
is a-stable. To this end, consider the multifunction G: T + 2x defined by 

if tET\S 
if tES. 

By Proposition 1.2, the multifunction F( ., cp(. )) is of lower class a, then, 
since S is ambigous of class a, also G is of lower class a. Hence, by 
Proposition 3.2 (part (B)) of [12] ( see also p. 401 of [7]), G is d-stable, 
and so F( ., cp( .)) is g-stable. Now, observe that, by Proposition 1.1, g is 
closed in (A(T, X), pd). Moreover, we have SUP,,~ d(cp,,(t), F(t, ~~(2))) 
< +co. Therefore, by Theorem 2.1, there exists a 9&lixed point cp of F, and 
cp is the required function. 
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Another consequence of Theorem 2.1 is the following 

THEOREM 3.3. Let T be a paracompact topological space, X a closed con- 
vex subset of a Banach space (E, II . (I ), 2 a subset of T, with dim.(Z) < 0, ’ 
and F: T x X -+ 2x a closed-valued multifunction such that F( t, x) is convex 
for every (t, x) E (T\Z) x X. Suppose moreover that F( ., x) is lower semicon- 
tinuous for every x in a dense subset of X and that there exists a continuous 
function k: T+ [0, l[ such that d,(F(t,x), F(t, y))<k(t)llx- yll for each 
x, y E X, t E T, where d is the metric on X induced by the norm II . )I. Then, for 
every closed subset S of T and every continuous function $ : S + X such that 
$(t) E F(t, $(t)) for every t E S, there exists a continuous function cp: T-+ X 
such that q(t) E F(t, q(t)) for every t E T and that cpls = II/. If, in addition, 
Z = T, we can suppose that X is only closed. 

Proof: Let S and $ be as in the statement. By Theorem 1.4 of [9], we 
can choose a continuous function 4: T -+ X such that qls = II/. Observe that 
the multifunction F( ., @( .)) is closed-valued and, by Proposition 1.2, it is 
lower semicontinuous. Moreover, if t E T\Z, F( t, q(t)) is convex. Then, by 
Theorem 7.1 of [9], there exists a continuous function qO: T -+ X such that 
cpo(t) E F(t, Q(t)) for every t E T and cpols = $. Observe that, for every t E T, 
one has 

d(cPo(t)> F(t, cpo(t))) < d,(F(t, G(t)), F(t, cpo(t))) 

<k(t) II@(t) - cPo(t)ll. 

Let fanlnc N be an increasing and unbounded sequence of positive real 
numbers such that, for every n E N, the set 

is non-empty. Then, { T,, }n E N is an increasing sequence of open sets and 
U nt N T, = T. We prove that there exists a sequence {cp,},, N of con- 
tinuous and bounded functions from T into X such that, for each n E IV, 
one has 

cp,(t) E F(t, rp,(t)) for every t E T, ; (3) 

(PnlT"-,=(P"-l (we put To = @); (4) 

cp nlSn T” = II/. (5) 

We construct such a sequence by induction. Let us construct cp r . Denote 
by &, the family of all continuous functions from T, into X, and put 

’ dimdZ) < 0 means that dim(U) < 0 for every UC_ Z which is closed in T, where dim(U) 
denotes the covering dimension of U. 

409:135/2-4 
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@,={~Ed,:cp,snTI= $ ). For each cp E g,, the multifunction F( ., cp( .)) is 
%-stable. Indeed, consider the multifunction G, : T, + 2* defined by 
putting 

{ 
F(f, cp(t)) 

G1(t)= C%(t)) 
if t E T,\S 
if tET,nS. 

By Example 1.3* of [S] and Proposition 1.2, G, is lower semicon- 
tinuous, then, by Proposition 3.2 (part (u)) of [ 123, it is s8,-stable. It is 
easy to see that the &,-stability of Gr and the al-stability of F( ., cp( .)) are 
equivalent. Now, observe that g, is closed in (A(Tr, X), pd), that 
(Po,r,E%, that d,(F( t, x), F( t, y)) 6 (1 - l/a,) 11x - yll for every t E T,, 
x, YEX and that supts r, d(cp,(t), F(t, q,,(t))) <a,. Therefore, by 
Theorem 2.1, there exists a continuous function cp: : T, + X such that 
d,Sn T, = 4k v: E F(f, cp?(t)) for each t E T,, and suple T, IlqiYt) - qdt)ll < 
+ co. Therefore, cp: is bounded on T, . Then, by Theorem 1.4 of [9], it is 
possible to extend cpf to a continuous and bounded function cpl on T, 
which satisfies (3) (4), (5) for n = 1. Suppose now that bounded and 
continuous functions cp i , . . . . (Pi from T into X, satisfying (3), (4), (5) for 
n = 1, 2, . . . . h, have been constructed. Let us construct (~,,+i. To this end, 
denote by &j+, the family of all continuous functions from T,,+ i into X 
and put ~~+,={(PE~~+~:(P,~~==~}. Fix (PE&,+, and consider the 
multifunction G,,+ , : Th+, + 2x defined by putting 

,(t) = i 
F(t, dt)) if tEThh+,\Th 

bh(fH if tET,. 

As in the case n = 1 it is seen that G,, , is &j+ ,-stable and hence 
F( ‘, q,( ,)) is @,,+ ,-stable. Observe now that s,,+ r is closed in 
(J@(T,+,, X), pd), and that (~~,r~+, E B,, + , . Moreover, for all t E ?,, + r, one 
has 4(Ph(t), f’(t, (PAt))) d Ilvh(t) - cPdt)ll + 4cpdt), F(t, cpdt))) + 
d*V’(t, cpdt)), J’(t, (Ph(t))) Q (2 - l/ah+ ,) Ilvh(t) - cpdt)ll + ah+ I9 hence 
suite rh+, d(cp,(t), F(t, q,z(t))) < +m. Finally, one has d,(Ftt, xl, 
F(t,~))Q(l-lla,+, ) IIx - yll for every t E F,,+ 1, x, y E A’. Therefore, by 
Theorem 2.1 there exists a continuous function (pz+ , : Th + 1 + X such that 
(pt+ ,,r* = (Pi and (pt+ r(t) E F(t, (pz+ I(t)) for every t E Th+, . Now, extend 
(pt+ , to a continuous and bounded function (Pi + , : T + X. The function 
qhC1 satisfies (3), (4), (5) for n=h+ 1. So, the sequence (4~~)~~ N has been 
constructed. Now, define cp: T -+ X by putting 

v(t) = cp,(t) if tET,\T,-,, PIEN. 

Of course, q(t) E F(t, q(t)) for every t E T and cpls = cc/. Finally, to prove 
the continuity of cp, it suffices to observe that, thanks to (4), we have 
(P,~,=(P~ for all HEN. 
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Remark 3.2. Since every complete metric space can be isometrically 
embedded in a Banach space as a closed set, when T= Z, in Theorem 3.3, 
we can suppose that (A’, d) is an arbitrary complete metric space. 

Remark 3.3. Theorem 3.3 improves in several directions the 
Proposition on p. 768 of [ 151. It is also an extension of Theorem 1 of [ 143. 

Before stating the next result, we recall the following definition (see 
C6, P. 3351). 

Let (M, d) be a metric space and {A,},, N a sequence of non-empty 
subsets of M. The set 

Li A,= {xEM: lim d(x,A,)=O} 
n-m n-m 

is called the topological lower limit of {A,},, N. 
The following result is a consequence of Theorem 3.3. 

THEOREM 3.4. Let (X, d) be a complete metric space and let @, 
@, , Q2, be a sequence of closed-valued multijiinctions from X into itself, 
which are multi-valued contractions with the same constant k. Suppose that 
there exists a dense subset D of X, such that 

@(x)c Li Q,(x) for every x E D. (6) “-CC 

Then, Fix(@) c Li, _ ~ Fix( @,). 

Proof: Let T be the one-point compactilication of N with the usual 
topology. Define a multifunction F: TX X-+ 2x by putting 

F( t, x) = @n(x) if t=n,nEN, xEX 

Q(x) if t=cO,xEX. 

F satisfies the hypotheses of Theorem 3.3. In particular, relation (6) is 
equivalent to the lower semicontinuity of F( ., x) at the point t = co, for 
XE D. Then, choose X~E Fix(@) and put S= { oo}, 1(/(m) =x0. By 
Theorem 3.3 (see Remark 3.2 and take into account that T is zero-dimen- 
sional), there exists a continuous function cp : T+ X such that 
cp(n)E F(n, q(n)) for all nE N and cp(co) =x,,. Thus, if we put x, = cp(n), 
nE N, we have X,E Fix(@,). Moreover, by the continuity of cp, we have 
lim n--r3o x,=x0, hence x,,ELi,,, Fix(@,). 

Remark 3.4. Observe that Theorem 3.4 extends to multifunctions 
Proposition 1 of [lo]. 
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The following result is the random version of Theorem 3.4. 

THEOREM 3.5. Let (T, Y, u) be a complete a-finite measure space, (X, d) 
a complete and separable metric space, and F, F, , F,, . . . a sequence of closed- 
valued multifunctions from T x X into X which are measurable with respect to 
t for every x E X. Moreover, suppose that, for every t E T, one has: 

(a) J’Ct, h f’,(t, 1, . . . are multi-valued contractions with the same 
Lipschitz constant k; 

(b) there exists a dense subset D, of X such that 
F(t,x)GLi,,, F,,(t, x) for every x E D,. 

Then, for every measurable function cp: T -+ X such that cp(t) E F( t, cp(t)) 
for every t E T, there exists a sequence { cp,},, rm of measurable functions 
from T into X, such that 

lim v,(t) = v(t) “--rCC 
for every tE r, 

cpn(t) E Fn(t, RI(t)) foreverytET,nEN. 

Proof Consider the multifunctions rF, rF,, rFZ, . . . . already defined in 
Section 1. Observe that they are closed-valued. Let us prove that rF is 
measurable. To this end, introduce a real function h on T x X by putting 

h(t, xl = 0, F(t, x)1, t E T, XE X, 

and observe that 

gr(r,)= ((t, X)E TX X: h(t, x)=0}. 

By Theorem 3.3 of [3], h( ., x) is measurable for every XE X and by 
Proposition 1.1 of [ 131, h(t, .) is continuous for every t E T. Then, taking 
into account Theorems 3.4 and 6.4 of [3], we realize that r, is measurable. 
Similarly one proves the measurability of rpn for each nE N. Now, 
observe that hypothesis (b), jointly with Theorem 3.4, implies that 
lim, + m d(x, T,(t)) = 0 for every t E T, x E r,(t). Therefore, our conclusion 
follows from Theorem 1.1 of [ll]. 

Now we state the following result, which derives from Theorem 3.4. 

THEOREM 3.6. Let T be a first-countable topological space, (X, d) a com- 
plete metric space, and F a closed-valued multifunction from T x X into X 
such that: 

(c) F( ., x) is lower semicontinuous for every x in a dense subset D of 
x; 
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(d) there exists an upper semicontinuous function k: T --+ [0, 1[ such 
that d,(F(t, x), F(t, y)) f k(t) d(x, y) for every t E T, x, y E X. 

Then, the multifunction rF is lower semicontinuous. 

Proof. Let to E T. By Proposition 2.1 of [4], which is valid also if T is 
first-countable, to prove the lower semicontinuity of TF at to, it suffices to 
show that 

fAt,)E Li r,(t,) (7) H’cc 

for every sequence {t,},, N of points of T convergent to to. To this pur- 
pose, consider the multifunctions from X into itself defined by putting 

@n(x) = FCt,, x) foreveryxEX,nEN; 

@(x) = F(h), x) for every x E X. 

Observe that, by the upper semicontinuity of the function k, all these 
multifunctions are contractions with the same Lipschitz constant 
k’ = max(k(t,), supnc N k(t,)} < 1. Moreover, by (c), one has CD(X) G 
Li,,, Q,(x) for every x E D. Then, by Theorem 3.4, one has Fix(@) E 
Li,,, Fix(@,), that is, (7). 

Taking into account Example 1.3* of [8], Theorem 2 of [2], and 
Theorem 3.6, we obtain the following result. 

THEOREM 3.7. Let the hypotheses of Theorem 3.6 be satisfied. In 
addition, let T be also paracompact and perfectly normal, Then, for every 
closed subset S of T and every continuous function $11 S-+X such that 
ICl(t) E 66 44t)) f or every t E S, there exists a function cp : T -+ X, of the first 
Baire class, such that q(t) E F( t, cp(t)) for every t E T and ‘pls = $. 
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